
1

CS 135: Computer Architecture ICS 135: Computer Architecture I

Digital Logic Digital Logic CircuitsCircuits

Instructor: Prof. Bhagi Narahari
Dept. of Computer Science

Course URL: www.seas.gwu.edu/~bhagiweb/cs135/

CS 135

Summary of Number Representation

• Binary representation
¾ Why binary
¾ Unsigned integers
¾ 2’s complement
¾ ASCII
¾ Floating point
¾ Hex notation

• Other: Bit Vector, Color
¾ Position of bit i indicates set membership of element i
¾ Color expressed in RGB values (Red,Green,Blue)

• Arithmetic and Logic operations
¾ Addition, multiplication, overflow, sign extension

• Machine dependence
¾ Eg: integers represented and stored using big endian or

little endian

CS 135

What next: Digital Logic Structures

• Chapter 3 of text [P&P]
• Also read the online links posted on lecture

notes webpage
• The hardware building blocks and their

operations
• Digital Logic structures

¾ Basic device operations: CMOS transistor as switch
¾ Combinational Logic circuits

¾ Gates (NAND, OR, NOT), Decoder, Multiplexer
¾ Adders, multipliers

¾ Sequential circuits– concept of memory
¾ Finite state machines, memory organization
¾ Basic storage elements: latches, flip-flops
¾ Memory organization basics

CS 135

Recall: what are Computers meant to do
?

• We will be solving problems that are
describable in English (or Greek or French or
Hindi or Chinese or ...) and using a box filled
with electrons and magnetism to accomplish
the task.
¾ This is accomplished using a system of well

defined (sometimes) transformations that have
been developed over the last 50+ years.

2

CS 135

Problem Transformation
- levels of abstraction

Natural Language

Algorithm

Program

Machine Architecture

Devices

Micro-architecture

Logic Circuits

The desired behavior:
the application

The building blocks:
electronic devices

CS 135

Recall:
Why use Binary and How to represent

data in a computer?
•At the lowest level, a computer is an electronic machine.

¾ works by controlling the flow of electrons
¾ Electrons flowing on the wire when voltage exists

•Easy to recognize two conditions:
1. presence of a voltage – we’ll call this state “1”
2. absence of a voltage – we’ll call this state “0”
More complex to base state on value of voltage

•Think of the two states 0,1 as states of a switch
• Changing from 0 to 1 means throwing the switch to turn on the

light
• Presence of voltage on the wire means value of bit = 1 else 0

CS 135

Simple Switch Circuit

•Switch open:
¾ No current through

circuit
¾ Light is off
¾ Vout is +2.9V

•Switch closed:
¾ Short circuit across

switch
¾ Current flows
¾ Light is on
¾ Vout is 0V

Switch-based circuits can easily represent two states:
on/off, open/closed, voltage/no voltage. CS 135

Digital Circuits:
It's all about switching...

• Action at a distance
• Come here, Watson! I need you!
• Tubes
• Transistors
• CMOS FET

3

CS 135

Switching Devices

• Vacuum Tubes:
¾ Also known as valves because they control the flow of

electrons
¾ Flow from Cathode to Anode

¾ First computer built using vacuum tubes
¾ ENIAC

• Transistors - brought about a big change
¾ Size
¾ Speed
¾ Precision

• transistors viewed in digital circuits as a
“switch”
¾ Transistors used in analog circuits

¾ Stereos, recorders, Image proc., etc.

CS 135

Next Topic…Basics of Digital Circuit Design

• How to build a switch ?
¾ Transistors

• How to build basic logic functions –
gates using transistors ?
¾ Build simple gates (AND, NOT, OR, …) using

transistors
• How to build more complex

combinational logic using gates
¾ Build Adders, multiplexer, decoder, storage

devices using simple gates (AND,NOT, OR..)
• Build a whole computer using complex

logic devices

CS 135

Transistors

•An electronic switch that is open or
closed between the source and the drain
depending on the voltage on the gate.

CS 135

Transistor: Building Block of Computers

•Microprocessors contain millions of transistors
¾ Intel Pentium 4 (2000): 48 million
¾ IBM PowerPC 750FX (2002): 38 million
¾ IBM/Apple PowerPC G5 (2003): 58 million

•Logically, each transistor acts as a switch
•Transistor built using Semiconductor
•Combined to implement logic functions

¾ AND, OR, NOT
•Combined to build higher-level structures

¾ Adder, multiplexer, decoder, register, …
•Combined to build processor

¾ LC-3

4

CS 135

Semiconductor

• Most materials are either insulators or
conductors
¾ They don’t “change” their properties

• Semiconductors: between insulator and
conductor

• Semiconductors: Based on voltage
applied to “gate” it is either insulator or a
conductor
¾ Electric field creates a circuit
¾ Changes the device from an insulator to a

conductor

CS 135

MOS FET (Metal Oxide SemiConductor)

P-type substrate
N-type

Source Gate Drain

Channel

-
-

-

CS 135

A

B

G

N

Open (insulating) if gate is “off” = 0
Closed (conducting) if gate is “on” = 1

P

Open (insulating) if gate is “on” = 1
Closed (conducting) if gate is “off” = 0

A

B

G

CMOS Transistors

• CMOS
¾= Complementary Metal-Oxide Semiconductor
¾Standard type for digital applications
¾Two versions: P-type (positive) and N-type (negative)
¾P and N-type transistors operate in inverse modes

CS 135

p-type MOS Transistor

•p-type
¾ when Gate has positive voltage,

open circuit between #1 and #2
(switch open)

¾ when Gate has zero voltage,
short circuit between #1 and #2
(switch closed)

Gate = 1

Gate = 0

Terminal #1 must be
connected to +2.9V.

5

CS 135

n-type MOS Transistor

•n-type complementary to p-type
¾ when Gate has positive voltage,

short circuit between #1 and #2
(switch closed)

¾ when Gate has zero voltage,
open circuit between #1 and #2
(switch open)

Gate = 1

Gate = 0

Terminal #2 must be
connected to GND (0V). CS 135

Computer hardware –what’s up

• Let’s look back at what we learnt last week
¾ Numbers can be represented as 0s and 1s

¾ 1 is presence of voltage on line, 0 is no voltage on line

¾ Arithmetic operations on these numbers
¾ Logical operations on these numbers

• Starting point: how to implement the basic logic
operators using transistors/switches ?
¾ NOT, AND, OR

• Next: how to implement arithmetic operations
and other functions
¾ Combinational circuits; example: adder

CS 135

Logical Operations

• NOT, AND, OR, NAND, NOR, XOR
• These are binary functions

¾ Input is binary, output is binary
• Boolean function – operates on boolean

variables
¾ Boolean function can be expressed using truth table
¾ Eg: addition can be represented as a boolean function

• Recall: can implement a boolean function using
AND, OR, NOT, etc.

• Start by building these logical operator “gates”
using transistors

CS 135

Logic Gates

•Use switch behavior of MOS transistors
to implement logical functions: AND, OR, NOT.
•Digital symbols:

¾ recall that we assign a range of analog voltages to each
digital (logic) symbol

¾ assignment of voltage ranges depends on
electrical properties of transistors being used

¾ typical values for "1": +5V, +3.3V, +2.9V
¾ from now on we'll use +2.9V

6

CS 135

Ok….start building logic gates

• Use N type and P type transistors
• ‘signal’ is a 1 or 0 and nothing else
• Output value will be voltage measured at

some point in the “circuit”
¾ Need to determine where to designate the

output point (i.e., where to measure)
• Inputs will be applied to the transistor

gate
¾ A line in the circuit always tied to 1 (voltage

source) and one always tied to 0 (ground)
• Start by looking at the truth table for the

logic function

CS 135

NOT Gate

0 V2.9 V
2.9 V0 V
OutIn

01
10

OutIn

Circuit

Vsource (voltage)

Ground (zero)

IN OUT

Vsource (voltage)

CS 135

Inverter (NOT Gate)

0 V2.9 V
2.9 V0 V
OutIn

01
10

OutIn

Truth table

2.9V

CS 135

NOR Gate

010
001

1

0
A

01

10
CB

Note: Serial structure on top, parallel on bottom.

7

CS 135

NOR Gate - Operation

2.9 v

0 v
0 v

P

N

P

0 v

0 v
2.9 v

N

N

0 v
0 v

P

N

P

N

2.9 v

2.9 v

0 v

0 v

2.9 v

0 v
0 v

P

N

2.9 v

2.9 v
0 v

P

CS 135

OR Gate

Add inverter to NOR.

110
101

1

0
A

11

00
CB

CS 135

NAND Gate (AND-NOT)

110
101

1

0
A

01

10
CB

Note: Parallel structure on top, serial on bottom. CS 135

AND Gate

Add inverter to NAND.

010
001

1

0
A

11

00
CB

8

CS 135

Digital Logic Design – Current Summary

•MOS transistors used as switches to implement
logic functions.

¾ n-type: connect to GND, turn on (with 1) to pull down to
0

¾ p-type: connect to +2.9V, turn on (with 0) to pull up to 1
•Basic gates: NOT, NOR, NAND

¾ Logic functions are usually expressed with AND, OR,
and NOT

•Next: a little theory behind combinational logic
design and some basic combinational devices

¾ DeMorgan’s Law
¾ Decoder, Multiplexer, Adder, PLA
¾ Boolean Algebra

CS 135

Basic Logic Gates

CS 135

More than 2 Inputs?

•AND/OR can take any number of inputs.
¾ AND = 1 if all inputs are 1.
¾ OR = 1 if any input is 1.
¾ Similar for NAND/NOR.

•Can implement with multiple two-input gates,
or with single CMOS circuit.

CS 135

Digital Logic Circuits

• We saw how we can build the simple
logic gates using transistors

• Use these gates as building blocks to
build more complex combinational
circuits
¾ Decoder: based on value of n-bit input

control signal, select one of 2N outputs
¾ Multiplexer: based on value of N-bit input

control signal, select one of 2N inputs.
¾ Adder: add two binary numbers
¾ …any boolean function

9

CS 135

DeMorgan's Law

•Converting AND to OR (with some help from NOT)
•Consider the following gate:

0
0
0
1

0
0
1
1

0
1
0
1

101
110

111

0
A

00
B BA ⋅BA BA ⋅

Same as A+B

To convert AND to OR
(or vice versa),

invert inputs and output.

CS 135

DeMorgan's Law
• NOT(A AND B) = (NOT A) OR (NOT B);

¾ i.e. NOT(NOT A AND NOT B) = A OR B
• NOT(A OR B) = (NOT A) AND (NOT B);

¾ i.e., NOT(NOT A OR NOT B) = A AND B
• In C syntax:

¾ ~(~A&~B) = A|B
¾ ~(~A|~B) = A&B

1110100011

0101101001

0101100110

0001011100

A&BA|B~(~A|~B)~A|~B~(~A&~B)~A&~B~B~ABA

CS 135

A note on De-Morgan’s Law

• Where have you seen this before ?
¾ In a different context ?

• Set operations: Union, Intersect, Comp.
¾ (Ac ∪ Bc) = (A ∩ B)c

¾ (Ac ∩ Bc) = (A ∪ B)c

• De-Morgan’s law applies to any boolean
algebra

CS 135

Completeness:
Very Important Concept

• It can be shown that any truth table (i.e. any
binary function of binary variables) can be
reduced to combinations of the AND & NOT
functions, or of the OR & NOT functions.
¾This result extends also to functions of more than two

variables
¾Methodology: Karnaugh Maps

• In fact, it turns out to be convenient to use a
basic set of three logic gates:
¾AND, OR & NOT or NAND, NOR & NOT

¾ In fact, can implement all logic functions using just

NAND!

10

CS 135

Representation of Boolean Logic
Functions

• What is this circuit doing ?

b
a

c

d f

CS 135

Boolean Logic Function

• Output(s) is a function of input boolean
variables

• y = f(x,y,…)
• The “operators” used are any of the

boolean logic operators
¾ AND, OR, NOT, NAND, etc.

• How do we represent boolean functions?

CS 135

Representation of Logic Functions

• A logic function can be represented as
¾a truth table

¾a logic expression

¾a logic circuit

• Example
.ca a.d a.b.c .c a d) a.(b.c f ++=++=

11111
10111
11011
00011
11101
00101
11001
00001
11110
10110
01010
00010
11100
1
0
0
f

0100
1000
0000
dcba

b
a

c

d f

CS 135

Truth tables and Boolean functions

01111

00011

10101

00001

11110

01010

00100

10000

x2x1CBA

11

CS 135

Truth Table to Digital Circuit design…

• Look at all rows with a 1 in the output
¾ ALL conditions in the input must hold for the

output to be 1 = AND of all the input
conditions

¾ Any row can be 1 = do an OR of all the row
conditions

• When is x1 = 1 ?
¾ Look at all rows where x1= 1
¾ What are the values of inputs for each of

these rows ?

CS 135

Canonical Boolean expressions with Minterms

• Each row in a truth table specifies values of all
the input variables
¾ What is the value of each input variable – 0 or 1
¾ i.e., y=1 or y’=1 for each input variable y

• For the specific output, what row(s) are we
interested ?

• When is the value of the output =1
¾ When the value in the row of the truth table =1
¾ What are the values of the input variables ?

• Canonical boolean expression
¾ Any boolean expression can be converted to an

equivalent two level AND-OR expression
¾ an OR of AND terms,
¾ each AND term corresponds to a 1 in the truth table row,
¾ each AND term contains all input variables exactly once – i.e., a minterm

¾ Canonical expression: OR of minterms

CS 135

Boolean function from a Truth Table

• OR of minterms
• Each minterm is an AND of the input

variables y
¾ y or y’ is true in each row

CS 135

Circuits and Boolean Functions

• How to get boolean function represented
by a circuit ?

• Trace each output line through the gates

12

CS 135

Combinational and Sequential Circuits

• A circuit is a collection of devices that
are physically connected by wires
¾ Combinational circuit
¾ Sequential circuit

• In Combinational circuit the input
determines output

• In sequential circuit, the input and the
previous ‘state’ (previous values)
determine output and next ‘state’
¾ Need circuit to implement concept of storage

CS 135

Combinational Devices

• Use basic gates to build more complex
combinational logic functions

CS 135

Problem

• You have an n bit binary number
assigned as unique ID to each student.
How do we select & physically connect to
a specific student with ID y ?

• Example:
¾ 00 is Sam, 01 is Krista, 10 is Zach, 11 is Alex
¾ We want to select Zach:
¾ Give binary 10 as input, and the output line to

Zach is set to high - 110 volts ☺

CS 135

Boolean function for “selector”

• Need to select one of four:
¾ 2 bits needed to encode the four outcomes
¾ a1a0

• 4 outputs – 1 associated with each signal
¾ x3x2x1x0

• What is the boolean function ?
• When is each xi set to 1:

¾ x0 = a1’.a0’ (NOT a1 AND NOT a0)
¾ x1 = a1’.a0
¾ x2 = a1.a0’
¾ x3 = a1.a0

13

CS 135

Truth table

100011

010001

001010

000100

x3x2x1x0a0a1

CS 135

Truth Table to Digital Circuit design…

• Look at all rows with a 1 in the output
¾ ALL conditions in the input must hold for the

output to be 1 = AND of all the input
conditions

¾ Any row can be 1 = do an OR of all the row
conditions

• When is x2 = 1 ?

CS 135

Notation shortcuts…

• What happens when circle is put at input
of AND gate ?

• Invert signal – same as adding a NOT
gate in the input line and then sending it
to input of AND gate

CS 135

Decoder

¾ An n input decoder
has 2n outputs.

¾ Outputi is 1 iff the
binary value of the
n-bit input is i.

¾ At any time, exactly
one output is 1, all
others are 0.

1, iff A,B is 00A
B

1, iff A,B is 01

1, iff A,B is 10 - Ryan

1, iff A,B is 11

i = 0

i = 1

i = 2

i = 3

2-bit decoder
(4 input decoder)

14

CS 135

Truth Table to Digital Circuit design…

• Look at all rows with a 1 in the output
¾ ALL conditions in the input must hold for the

output to be 1 = AND of all the input
conditions

¾ Any row can be 1 = do an OR of all the row
conditions

CS 135

Problem: Selecting one of many
• You have m input signals and you want to use

the logical value on one of them determined by a
set control signals/wires – n control signals
¾ Each student sends a signal (0 or 1)
¾ I want to select Zach’s signal – so I can give him an A

grade…
¾ Need to give Zach’s code of 10 to select his answer

n

m

out

CS 135

Multiplexer (MUX)
¾ In general, a MUX has

¾ 2n data inputs
¾ n select (or control) lines
¾ and 1 output.

¾ It behaves like a channel
selector.

A 4-to-1 MUX:
Out takes the value of A,B, C or D
depending on the value of S (00, 01, 10, 11)

S[1:0]

A B C D

Out

 .S D.S S. C.S .S SB. S. SA. Out 10101010 +++=

A B C D

Out

S0

S1

Zach

CS 135

Problem

• No one will buy your new computer
design unless it can do at least some
math, say, like adding!

• How to build hardware for adding 2
binary numbers using what we have
learnt so far ?

• First look at the function performed by
addition – we saw this last week
¾ Bit by bit addition, right to left, propagate

carry
¾ Inputs: A, B and Carry-in
¾ Output: sum bit and carry-out (to next bit

position)

15

CS 135

Truth table for Addition

111
011
101
001
110
010
100
000

Carry OutOutCarry InBA

CS 135

Truth

11111
10011
10101
01001
10110
01010
01100
00000

Carry OutOutCarry InBA

CS 135

Full Adder

A B

SUM-OUT

Carry INCarry OUT

CS 135

Boolean function for Addition

• When is Sum =1, as a function of A, B,
Cin
¾ Write function for S

• S = A’B’Cin + A’BC’in + AB’Cin’ + ABCin

• When is Cout = 1, as a function of A, B, Cin
¾ Write function for Cout

• Cout = A’BCin + AB’Cin + ABCin’ + ABCin

16

CS 135

Full Adder

•Add two bits and carry-in,
produce one-bit sum and carry-out.

10110
01001
10101
10011

1

1
1
0

S

1

1
0
0

B

010
000

1

0

A

11

00

CoutCin

CS 135

N-bit Adder

• Use the building block of the full-adder to
build N-bit adder
¾ Need to connect carry-out to carry-in of next

significant bit

CS 135

Four-bit Adder

CS 135

Is there a theory behind design of
combinational logic devices ?

• To describe behavior of combinational circuit
¾ Truth table
¾ Boolean expressions
¾ Digital logic circuit/diagram

• Equivalent circuits ?
• Efficient design ?

¾ Fewest gates used

• Boolean Algebra: algebraic expression written
according to laws of boolean algebra specifies
not only what a combinational circuit does, but
also how it does it!

