

What next: Digital Logic Structures

- Chapter 3 of text [P&P]
- Also read the online links posted on lecture notes webpage
- The hardware building blocks and their operations
- Digital Logic structures
 - Basic device operations: CMOS transistor as switch
 - Combinational Logic circuits
 Gates (NAND, OR, NOT), Decoder, Multiplexer
 Adders, multipliers
 - Sequential circuits concept of memory
 - Finite state machines, memory organization
 - Basic storage elements: latches, flip-flops
 Memory organization basics

CS 135

9

Recall: what are Computers meant to do <u>?</u>

- We will be solving problems that are describable in English (or Greek or French or Hindi or Chinese or ...) and using a box filled with electrons and magnetism to accomplish the task.
 - > This is accomplished using a system of well defined (sometimes) transformations that have been developed over the last 50+ years.

CS 135

 ► NOT(A AND B) = (NOT A) OR (NOT B); > i.e. NOT(NOT A AND NOT B) = A OR B ■ NOT(A OR B) = (NOT A) AND (NOT B); > i.e., NOT(NOT A OR NOT B) = A AND B ■ In C syntax: > -(-A&-B) = A B > -(-A -B) = A&B 										
I٢	Α	в	~A	~В	~A&~B	~(~A&~B)	~A ~B	~(~A ~B)	A B	A&B
	0	0	1	1	1	0	1	0	0	0
	0	1	1	0	0	1	1	0	1	0
	1	0	0	1	0	1	1	0	1	0
	1	1 cs	0 135	0	0	1	0	1	1	1

Completeness: Very Important Concept

- It can be shown that any truth table (i.e. any binary function of binary variables) can be reduced to combinations of the AND & NOT functions, or of the OR & NOT functions.
 - > This result extends also to functions of more than two
 - Methodology: Karnaugh Maps
- In fact, it turns out to be convenient to use a basic set of three logic gates:
 - > AND, OR & NOT or NAND, NOR & NOT
 - > In fact, can implement all logic functions using just

Α	В	С	x ₁	x ₂
0	0	0	0	1
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	0	0
1	0	1	0	1
1	1	0	0	0
1	1	1	1	0

Boolean function from a Truth Table	
OR of minterms	
Each minterm is an AND of the input variables y	
y or y' is true in each row	
CS 135	

Problem	Boolean function for "selector"
 You have an <i>n</i> bit binary number assigned as unique ID to each student. How do we select & physically connect to a specific student with ID <i>y</i>? Example: 00 is Sam, 01 is Krista, 10 is Zach, 11 is Alex We want to select Zach: Give binary 10 as input, and the output line to Zach is set to high - 110 volts [©] 	 Need to select one of four: 2 bits needed to encode the four outcomes a₁a₀ 4 outputs - 1 associated with each signal x₃x₂x₁x₀ What is the boolean function ? When is each x_i set to 1: x₀ = a₁'.a₀' (NOT a₁ AND NOT a₀) x₁ = a₁'.a₀ x₂ = a₁.a₀' x₃ = a₁.a₀
	> $x_2 = a_1 . a_0'$ > $x_3 = a_1 . a_0$

C	5	Truth	table for <i>l</i>	<u>Addition</u>	
	А	В	Carry In	Out	Carry Out
	0	0	0		
	0	0	1		
	0	1	0		
	0	1	1		
	1	0	0		
	1	0	1		
	1	1	0		
	1	1	1		
_	CS 135				

In Out Carry Ou	t
0 0	
1 0	
1 0	
0 1	
1 0	
0 1	
0 1	
1 1	
	Out Carry Out 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 1

