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CS 135: Computer Architecture ICS 135: Computer Architecture I

Instructor: Prof Bhagi NarahariInstructor: Prof. Bhagi Narahari
Dept. of Computer Science

Course URL: www.seas.gwu.edu/~bhagiweb/cs135/

Summary: Digital Logic Circuits

 Combinational logic
 Basic gates, complex devices (Multiplexer, 

decoder, memory…)
 Output is function of input

 Sequential logic
 Clock
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 Clock
 Flip-flops (latches): store “state” – current 

value
 Output is function of input and stored values
 Finite state diagram describes how machine 

functions
 Finite state diagram to circuit design

From Logic to Processor Data Path

The data path of a computer is all the logic used 
to process information.

 Eg.  data path of the LC-3.

Combinational Logic
 Decoders convert instructions into control signals
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 Decoders -- convert instructions into control signals

 Multiplexers -- select inputs and outputs

 ALU (Arithmetic and Logic Unit) -- operations on data

Sequential Logic
 State machine -- coordinate control signals and data 

movement

 Registers and latches -- storage elements

LC-3 Data Path

Combinational
Logic

Storage
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State Machine

Storage
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What Next ?

 Next topic: The von Neumann model of 
computer architecture
 Basic components

 How instructions are processed

 The LC3 computer and instruction set
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p
 The ISA of LC3

 Programming the LC3

 Assembly Language programming

 Chapters 4,5,6,7

Recall: what are Computers meant to do 
?

 We will be solving problems that are 
describable in English (or Greek or French or 
Hindi or Chinese or ...) and using a box filled 
with electrons and magnetism to accomplish 
the task.
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 This is accomplished using a system of well 
defined (sometimes) transformations that have 
been developed over the last 50+ years.

Problem Transformation
- levels of abstraction

Natural Language

Algorithm

Program

The desired behavior:
the application

CS 135

Machine Architecture

Devices

Micro-architecture

Logic Circuits

The building blocks: 
electronic devices
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Putting it all together

The goal:
Turn a theoretical device - Turing’s Universal 

Computational Machine - into an actual 
computer ...

… interacting with data and instructions from 
the outside world and producing output data
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the outside world, and producing output data.

Smart building blocks:
We have at our disposal a powerful collection 

of combinational and sequential logic devices.

Now we need a master plan ...

The Stored Program Computer

1943: ENIAC
 Presper Eckert and John Mauchly -- first general electronic computer.

(or was it John V. Atanasoff in 1939?)

 Hard-wired program -- settings of dials and switches.

1944: Beginnings of EDVAC
 among other improvements, includes program stored in memory

1945: John von Neumann
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 wrote a report on the stored program concept, 
known as the First Draft of a Report on EDVAC

The basic structure proposed in the draft became known
as the “von Neumann machine” (or model).

 a memory, containing instructions and data

 a processing unit, for performing arithmetic and logical operations

 a control unit, for interpreting instructions

For more history, see http://www.maxmon.com/history.htm

Von Neumann Model

 The central idea in the von 
Neumann model of computer 
processing is that 
 the program and data are both stored

as sequences of bits in the computer's
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as sequences of bits in the computer s 
memory, and 

 the program is executed, one 
instruction at a time, under the 
direction of the control unit.

Von Neumann Model

MEMORY

MAR MDR

PROCESSING UNIT

OUTPUT
Monitor
Printer
LED

INPUT
Keyboard
Mouse
Scanner
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CONTROL UNIT

IR

ALU TEMP

PC

LED
Disk

Scanner
Disk
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The von Neumann Model

Memory

Processing Unit

Input Output

MAR MDR

ALU TEMP

(keyboard) (monitor)
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 Memory: holds both data and instructions

 Processing Unit:  carries out the instructions

 Control Unit:  sequences and interprets instructions

 Input:  external information into the memory

 Output:  produces results for the user

Control Unit

PC IR

(monitor)

Von Neuman Model: Memory

2k x m array of stored bits

Address
 unique (k-bit) identifier of location

Contents/Addressability
 m-bit value stored in location

0000
0001
0010
0011
0100
0101

00101101
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 m-bit value stored in location

Basic Operations:

LOAD (READ)
 read a value from a memory location

STORE (WRITE)
 write a value to a memory location

•
•
•

0110

1101
1110
1111

10100010

Interface to Memory

 How does processing unit get data to/from 
memory?

 MAR: Memory Address Register

 MDR: Memory Data Register
 Also called MBR: mem. Buffer reg.

To LOAD a location (A):

MEMORY

MAR MDR
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 To LOAD a location (A):
1. Write the address (A) into the MAR.

2. Send a “read” signal to the memory.

3. Read the data from MDR.

• To STORE a value (X) to a location (A):
1. Write the data (X) to the MDR.

2. Write the address (A) into the MAR.

3. Send a “write” signal to the memory.

Von Neumann Model: Processing Unit

 Processing Unit- does the actual work!
 Can consist of many units, each specializing in one complex function.

 At a minimum, has Arithmetic & Logic Unit (ALU) and General Purpose Registers 
(GPRs).

 The number of bits a basic Processing Unit operation can handle is called the 
WORD SIZE of the machine.

ALU
 Performs basic operations: add subtract and not etc
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 Performs basic operations: add, subtract, and, not, etc.

 Generally operates on whole words of data.

 Some can also operate on subsets of words (eg. single bits or bytes)

 LC3 does ADD, AND, NOT

Registers:  
 Fast “on-board” storage for a small number of words.

 Invaluable for intermediate data storage while processing

 Close to the ALU (much faster access than RAM)

 LC3 has 8 general purpose registers R0,R1,…,R7.
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Von Neumann Model: Input and Output

Devices for getting data into and out of computer 
memory - peripherals

Each device has its own interface,
usually a set of registers like the
memory’s MAR and MDR

INPUT
Keyboard
Mouse
Scanner
Disk

OUTPUT
Monitor
Printer
LED
Disk
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 LC-3 supports keyboard (input) and monitor (output)

 keyboard: data register (KBDR) and status register (KBSR)

 monitor: data register (DDR) and status register (DSR)

Some devices provide both input and output
 disk, network

Program that controls access to a device is 
usually called a device driver.

Von Neumann Model: Control Unit

Orchestrates execution of the program

Instruction Register (IR) contains the current 

CONTROL UNIT

IRPC
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g ( )
instruction.

Program Counter (PC) contains the address
of the next instruction to be executed.

Control unit:
 reads an instruction from memory 

 the instruction’s address is in the PC

 interprets the instruction, generating signals 
that tell the other components what to do

 an instruction may take many machine cycles to complete

LC-3 Data Path

Combinational
Logic

Storage
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State Machine

Storage
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What is an Instruction

The instruction is the fundamental unit of work.

Specifies two things:
 opcode: operation to be performed

 operands: data/locations to be used for operation

An instruction is encoded as a sequence of bits.  
(Just like data!)
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( )

 Often, but not always, instructions have a fixed length 
(16,32,..),

 Control unit interprets instruction:
 generates sequence of control signals to carry out operation.

 Operation is either executed completely, or not at all.

A computer’s instructions and their formats is known 
as its Instruction Set Architecture (ISA).

ISA

 The ISA specifies all the information 
about the computer that the software 
needs to be aware of.

 Who uses an ISA?
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 What is specified?

 How big an ISA
 Reduced Instruction set (RISC)

 Complex Instruction set (CISC)

Instruction Set Architecture

ISA = All of the programmer-visible
components and operations of the computer

 memory organization
 address space -- how may locations can be addressed?

 addressibility -- how many bits per location?

 register set
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 how many?  what size?  how are they used?

 instruction set
 opcodes

 data types

 addressing modes

ISA provides all information needed for someone 
that wants to write a program in machine language
(or translate from a high-level language to machine 
language).

Computer Architecture is ... 

Instruction Set Architecture

CS 135

Organization

Hardware
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What is the Hardware/Software Interface ?

software

CS 135

instruction set

hardware

Historical Perspective

 ENIAC built in World War II was the first general purpose 
computer
 Used for computing artillery firing tables

 80 feet long by 8.5 feet high and several feet wide

 Each of the twenty 10 digit registers was 2 feet long

 Used 18,000 vacuum tubes

 Performed 1900 additions per second

CS 135

–Since then:

Moore’s Law:  

transistor capacity doubles 
every 18-24 months

CS 135
Harvard Mark I

CS 135
John von Neumann & EDVAC
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What is an Instruction

The instruction is the fundamental unit of work.

Specifies two things:
 opcode: operation to be performed

 operands: data/locations to be used for operation

An instruction is encoded as a sequence of bits.  
(Just like data!)

CS 135

( )

 Often, but not always, instructions have a fixed length 
(16,32,..),

 Control unit interprets instruction:
 generates sequence of control signals to carry out operation.

 Operation is either executed completely, or not at all.

A computer’s instructions and their formats is known 
as its Instruction Set Architecture (ISA).

ISA

 The ISA specifies all the information 
about the computer that the software 
needs to be aware of.

 Who uses an ISA?
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 What is specified?

 How big an ISA
 Reduced Instruction set (RISC)

 Complex Instruction set (CISC)

Instruction Set Architecture

ISA = All of the programmer-visible
components and operations of the computer

 memory organization
 address space -- how may locations can be addressed?

 addressibility -- how many bits per location?

 register set
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 how many?  what size?  how are they used?

 instruction set
 opcodes

 data types

 addressing modes

ISA provides all information needed for someone 
that wants to write a program in machine language
(or translate from a high-level language to machine 
language).

ISA: Types of Instruction

 1. Operate Instructions
process data (addition, logical operations, etc.)

 2. Data Movement Instructions …
move data between memory locations and registers.

 3. Control Instructions …

CS 135

3. Control Instructions …
change the sequence of execution of instructions in 

the stored program.
 The default is sequential execution: the PC is incremented by 1 at the start of 

every Fetch, in preparation for the next one.

 Control instructions set the PC to a new value during the Execute phase, so 
the next instruction comes from a different place in the program.

 This allows us to build control structures such as loops and branches.
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Example: LC-3 ADD Instruction

LC-3 has 16-bit instructions.
 Each instruction has a four-bit opcode, bits [15:12].

LC-3 has eight registers (R0-R7) for temporary storage.
 Sources and destination of ADD are registers.
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“Add the contents of R2 to the contents of R6,
and store the result in R6.”

Example: LC-3 LDR Instruction

Load instruction -- reads data from memory

Base + offset mode:
 add offset to base register -- result is memory address

 load from memory address into destination register
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“Add the value 6 to the contents of R3 to form a
memory address.  Load the contents of that 
memory location to R2.”

How do instructions get executed ?
Instruction Cycle - overview

The Control Unit orchestrates the complete 
execution of each instruction:

At its heart is a Finite State Machine that sets up the state 
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p
of the logic circuits according to each instruction.

This process is governed by the system clock - the FSM 
goes through one transition (“machine cycle”) for each 
tick of the clock.
1 Ghz (109) clock frequency = 1 nanosecond clock cycle

Instruction Cycle - overview

 Six phases of the complete Instruction Cycle

Fetch: load IR with instruction from memory

Decode: determine action to take (set up inputs for ALU, RAM, etc.)

Evaluate address: compute memory address of operands, if any
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Evaluate address: compute memory address of operands, if any

Fetch operands: read operands from memory or registers

Execute: carry out instruction

Store results: write result to destination (register or memory)
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Instruction Processing

Decode instruction

E l t dd

Fetch instruction from memory
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Evaluate address

Fetch operands from memory

Execute operation

Store result

Instruction Processing Step 1: FETCH

Load next instruction (at address stored 

in PC) from memory into Instruction Register (IR).
 1.Copy contents of PC into MAR: MAR ← (PC)

 2.Send “read” signal to mem and read: MDR  ← (MAR)

 3.Copy contents of MDR into IR:  IR ← MDR

 4 increment PC so that it points to next inst EA

F

D
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 4. increment PC, so that it points to next inst

in sequence: PC = PC+1

FETCH takes at least 3 steps/cycles
 1,3,4 take one cycle, but 2 can take

more

 1,4 can be done in same cycle

EA

OP

EX

S

Instruction Processing Step 2: DECODE

First identify the opcode.
 In LC-3, this is always the first four bits of 

instruction.
 A 4-to-16 decoder asserts a control line corresponding

to the desired opcode.

EA

F

D
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Depending on opcode, identify other 
operands 
from the remaining bits.
 Example:

 for LDR, last six bits is offset

 for ADD, last three bits is source operand #2

EA

OP

EX

S

Instruction Processing Step 3: 
EVALUATE ADDRESS

For instructions that require memory 
access, compute address used for access.
 Called Effective Address (EA)

Examples: EA

F

D

CS 135

 add offset to base register (as in LDR)

 add offset to PC

 add offset to zero

EA

OP

EX

S
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Instruction Processing Step 4:
FETCH OPERANDS

Obtain source operands needed to 
perform operation.
 Effective address computed in

previous step used to fetch operands

EA

F

D
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Examples:
 load data from memory (LDR)

 read data from register file (ADD)

EA

OP

EX

S

Instruction Processing Step 5:
EXECUTE

Perform the operation, 
using the source operands.

Examples:
 send operands to ALU and assert ADD signal EA

F

D
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 send operands to ALU and assert ADD signal

 do nothing (e.g., for loads and stores)

EA

OP

EX

S

Instruction Processing Step 6:
STORE RESULT

Write results to destination.
(register or memory)

Examples:
 result of ADD is placed in destination register EA

F

D
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 result of ADD is placed in destination register

 result of memory load is placed in destination 
register

 for store instruction, data is stored to memory
 write address to MAR, data to MDR

 assert WRITE signal to memory

EA

OP

EX

S

Instruction Processing Cycle - step 7

Start over …
The control unit just keeps repeating this whole 

process: so it now Fetches a new instruction from the 
address currently stored in the PC.
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y
Recall that the PC was incremented in the first step (FETCH), 

so the instruction retrieved will be the next in the program as 
stored in memory - unless the instruction just executed 
changed the contents of the PC.

Note: Some instructions don't need all 6 phases
 If only using registers, skip Evaluate Address
 If only moving data, skip Execute
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Flow Control

 Normally we execute instructions one 
after another

 When might we not want to do this?
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Changing the Sequence of Instructions

In the FETCH phase, we increment the Program 
Counter by 1.

What if we don’t want to always execute the 
instruction that follows this one?
 examples: loop, if-then, function call
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Need special instructions that change the 
contents  of the PC.

These are called control instructions.
 jumps are unconditional -- always change the PC

 branches are conditional -- change the PC only if
some condition is true (e.g., the result of an ADD is 
zero)

Example: LC-3 JMP Instruction

Set the PC to the value contained in a register.  
This becomes the address of the next instruction 
to fetch.
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“Load the contents of R3 into the PC.”

Instruction Processing Summary

Instructions look just like data -- it’s all 
interpretation.

Three basic kinds of instructions:
 Compute/operate instructions (ADD, AND, …)

 data movement instructions (LD, ST, …)

l i i (JMP BR )
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 control instructions (JMP, BRnz, …)

Six basic phases of instruction 
processing:

 F  D  EA  OP  EX  S
 not all phases are needed by every instruction

 phases may take variable number of machine 
cycles
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Control Unit State Diagram

The control unit is a state machine
 Transition from state to state based on the 

steps in the instruction cycle, the opcode, and 
outcome (for branches)

 simplified state diagram for the LC-3

A di C h l t t t di
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 Appendix C has complete state diagram

The Instruction Cycle as FSM
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Next..

 The Instruction set architecture (ISA) of 
the LC3
 How is each instruction implemented by the 

control and data paths in the LC3

 Programming in machine code
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 How are programs executed
 Memory layout, programs in machine code

 Assembly programming
 Assembly and compiler process

 Assembly programming with simple 
programs

LC 3 Instruction Set

 The Instruction set architecture (ISA) of 
the LC3
 How is each instruction implemented by the 

control and data paths in the LC3

 Programming in machine code

CS 135

 How are programs executed
 Memory layout, programs in machine code

 Assembly programming
 Assembly and compiler process

 Assembly programming with simple 
programs
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0001 DR SR1 0 00 SR2ADD+

0101 DR SR1 0 00 SR2AND+

0001 DR SR1 1 imm5ADD+

0101 DR SR1 1 imm5AND+

0000 n z p PCoffset9BR
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1100 000 BaseR 000000JMP

0100 1 PCoffset11JSR

JSRR 0100 0 00 BaseR 000000

LD+ 0010 PCoffset9DR

LDI+ 1010 PCoffset9DR

+ Indicates instructions that modify condition codes

1000 000000000000RTI

offset60110 DRLDR+ BaseR

PCoffset91110LEA+ DR

1001 111111NOT+ DR SR

1100RET 000 111 000000
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1111 0000 trapvect8TRAP

0011 SRST PCoffset9

1011STI SR PCoffset9

0111 BaseRSTR SR offset6

1101reserved

+ Indicates instructions that modify condition codes

LC-3 Overview: Memory and Registers

Memory
 address space: 216 locations (16-bit addresses)

 addressability: 16 bits

Registers
 temporary storage, accessed in a single machine 
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cycle
 accessing memory generally takes longer than a single cycle

 eight general-purpose registers: R0 - R7
 each 16 bits wide

 how many bits to uniquely identify a register?

 other registers
 not directly addressable, but used by (and affected by) instructions

 PC (program counter), condition codes

LC-3 Overview: Instruction Set

Opcodes
 15 opcodes

 Operate instructions: ADD, AND, NOT

 Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI

 Control instructions: BR, JSR/JSRR, JMP, RTI, TRAP

 some opcodes set/clear condition codes, based on result:
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 N = negative, Z = zero, P = positive (> 0)

Data Types
 16-bit 2’s complement integer

Addressing Modes
 How is the location of an operand specified?

 non-memory addresses: immediate, register

 memory addresses: PC-relative, indirect, base+offset
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Operate Instructions

Only three operations: ADD, AND, NOT

Source and destination operands are 
registers
 These instructions do not reference memory.

 ADD and AND can use “immediate” mode,
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,
where one operand is hard-wired into the 
instruction.

Will show dataflow diagram with each 
instruction.
 illustrates when and where data moves 

to accomplish the desired operation

Data Movement Instructions

 GPR ↔ Memory

 GPR ↔ I/O Devices

GPR M ???
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 GPR ← Memory ???

 Memory ← GPR ???

Addressing Modes

 Where can operands be found?

1

2

CS 135

2

3

Data Movement Instructions

Load -- read data from memory to register
 LD: PC-relative mode

 LDR: base+offset mode

 LDI: indirect mode

Store -- write data from register to memory
ST PC l ti d
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 ST: PC-relative mode

 STR: base+offset mode

 STI: indirect mode

Load effective address -- compute address, 
save in register
 LEA: immediate mode

 does not access memory
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PC-Relative Addressing Mode

Want to specify address directly in the instruction
 But an address is 16 bits, and so is an instruction!

 After subtracting 4 bits for opcode
and 3 bits for register, we have 9 bits available for address.

Solution:
 Use the 9 bits as a signed offset from the current PC.
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9 bits:

Can form any address X, such that: 

Remember that PC is incremented as part of the FETCH phase;

This is done before the EVALUATE ADDRESS stage.

255offset256 
255PCX256PC 

Control Instructions

Used to alter the sequence of instructions
(by changing the Program Counter)

Conditional Branch
 branch is taken if a specified condition is true

 signed offset is added to PC to yield new PC

 else, the branch is not taken
 PC is not changed points to the next sequential instruction
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 PC is not changed, points to the next sequential instruction

Unconditional Branch (or Jump)
 always changes the PC

TRAP
 changes PC to the address of an OS “service routine”

 routine will return control to the next instruction (after TRAP)

Condition Codes

LC-3 has three condition code registers:
N -- negative
Z -- zero
P -- positive (greater than zero)
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Set by any instruction that writes a value 
to a register
(ADD, AND, NOT, LD, LDR, LDI, LEA)

Exactly one will be set at all times
 Based on the last instruction that altered a 

register

Branch Instruction

Branch specifies one or more condition codes.

If the set bit is specified, the branch is taken.

 PC-relative addressing:
target address is made by adding signed offset (IR[8:0])
to current PC.

 Note: PC has already been incremented by FETCH 
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y y
stage.

 Note: Target must be within 256 words of BR instruction.

If the branch is not taken,
the next sequential instruction is executed.


