
1

CS 135: Computer Architecture ICS 135: Computer Architecture I

Instructor: Prof Bhagi NarahariInstructor: Prof. Bhagi Narahari
Dept. of Computer Science

Course URL: www.seas.gwu.edu/~bhagiweb/cs135/

Summary: Digital Logic Circuits

 Combinational logic
 Basic gates, complex devices (Multiplexer,

decoder, memory…)
 Output is function of input

 Sequential logic
 Clock

CS 135

 Clock
 Flip-flops (latches): store “state” – current

value
 Output is function of input and stored values
 Finite state diagram describes how machine

functions
 Finite state diagram to circuit design

From Logic to Processor Data Path

The data path of a computer is all the logic used
to process information.

 Eg. data path of the LC-3.

Combinational Logic
 Decoders convert instructions into control signals

CS 135

 Decoders -- convert instructions into control signals

 Multiplexers -- select inputs and outputs

 ALU (Arithmetic and Logic Unit) -- operations on data

Sequential Logic
 State machine -- coordinate control signals and data

movement

 Registers and latches -- storage elements

LC-3 Data Path

Combinational
Logic

Storage

CS 135

State Machine

Storage

2

+1
PC

SEXT

REG
FILE

SR2 SR1
OUT OUT

gatePC

MARMUX

ADDR2MUX ADDR1MUX

PCMUX

+

ZEXT

gateMARMUX

[10:0]
0

16 16 16 16

1616

DR

LD.REG

SR2
3

3

16

SR1
3

16

16
16

16

[7:0]

2

2

LD.PC

ADDR2MUX

ADDR1MUX

16

16

16

MARMUX

PCMUX

CS 135

FINITE
STATE

MACHINE

MDR MARMEMORY INPUT OUTPUTLD.MDR

MEM.EN, R.W

GateMDR16

16

ALU

SR2MUX
SEXT

SEXT
N Z P

LOGIC

SEXT

16

IR

16

LD.MAR

16

gateALU

R

[8:0]

[5:0]

[4:0]

LD.CC

16

LD.IR

2

16

AB

What Next ?

 Next topic: The von Neumann model of
computer architecture
 Basic components

 How instructions are processed

 The LC3 computer and instruction set

CS 135

p
 The ISA of LC3

 Programming the LC3

 Assembly Language programming

 Chapters 4,5,6,7

Recall: what are Computers meant to do
?

 We will be solving problems that are
describable in English (or Greek or French or
Hindi or Chinese or ...) and using a box filled
with electrons and magnetism to accomplish
the task.

CS 135

 This is accomplished using a system of well
defined (sometimes) transformations that have
been developed over the last 50+ years.

Problem Transformation
- levels of abstraction

Natural Language

Algorithm

Program

The desired behavior:
the application

CS 135

Machine Architecture

Devices

Micro-architecture

Logic Circuits

The building blocks:
electronic devices

3

Putting it all together

The goal:
Turn a theoretical device - Turing’s Universal

Computational Machine - into an actual
computer ...

… interacting with data and instructions from
the outside world and producing output data

CS 135

the outside world, and producing output data.

Smart building blocks:
We have at our disposal a powerful collection

of combinational and sequential logic devices.

Now we need a master plan ...

The Stored Program Computer

1943: ENIAC
 Presper Eckert and John Mauchly -- first general electronic computer.

(or was it John V. Atanasoff in 1939?)

 Hard-wired program -- settings of dials and switches.

1944: Beginnings of EDVAC
 among other improvements, includes program stored in memory

1945: John von Neumann

CS 135

 wrote a report on the stored program concept,
known as the First Draft of a Report on EDVAC

The basic structure proposed in the draft became known
as the “von Neumann machine” (or model).

 a memory, containing instructions and data

 a processing unit, for performing arithmetic and logical operations

 a control unit, for interpreting instructions

For more history, see http://www.maxmon.com/history.htm

Von Neumann Model

 The central idea in the von
Neumann model of computer
processing is that
 the program and data are both stored

as sequences of bits in the computer's

CS 135

as sequences of bits in the computer s
memory, and

 the program is executed, one
instruction at a time, under the
direction of the control unit.

Von Neumann Model

MEMORY

MAR MDR

PROCESSING UNIT

OUTPUT
Monitor
Printer
LED

INPUT
Keyboard
Mouse
Scanner

CS 135

CONTROL UNIT

IR

ALU TEMP

PC

LED
Disk

Scanner
Disk

4

The von Neumann Model

Memory

Processing Unit

Input Output

MAR MDR

ALU TEMP

(keyboard) (monitor)

CS 135

 Memory: holds both data and instructions

 Processing Unit: carries out the instructions

 Control Unit: sequences and interprets instructions

 Input: external information into the memory

 Output: produces results for the user

Control Unit

PC IR

(monitor)

Von Neuman Model: Memory

2k x m array of stored bits

Address
 unique (k-bit) identifier of location

Contents/Addressability
 m-bit value stored in location

0000
0001
0010
0011
0100
0101

00101101

CS 135

 m-bit value stored in location

Basic Operations:

LOAD (READ)
 read a value from a memory location

STORE (WRITE)
 write a value to a memory location

•
•
•

0110

1101
1110
1111

10100010

Interface to Memory

 How does processing unit get data to/from
memory?

 MAR: Memory Address Register

 MDR: Memory Data Register
 Also called MBR: mem. Buffer reg.

To LOAD a location (A):

MEMORY

MAR MDR

CS 135

 To LOAD a location (A):
1. Write the address (A) into the MAR.

2. Send a “read” signal to the memory.

3. Read the data from MDR.

• To STORE a value (X) to a location (A):
1. Write the data (X) to the MDR.

2. Write the address (A) into the MAR.

3. Send a “write” signal to the memory.

Von Neumann Model: Processing Unit

 Processing Unit- does the actual work!
 Can consist of many units, each specializing in one complex function.

 At a minimum, has Arithmetic & Logic Unit (ALU) and General Purpose Registers
(GPRs).

 The number of bits a basic Processing Unit operation can handle is called the
WORD SIZE of the machine.

ALU
 Performs basic operations: add subtract and not etc

CS 135

 Performs basic operations: add, subtract, and, not, etc.

 Generally operates on whole words of data.

 Some can also operate on subsets of words (eg. single bits or bytes)

 LC3 does ADD, AND, NOT

Registers:
 Fast “on-board” storage for a small number of words.

 Invaluable for intermediate data storage while processing

 Close to the ALU (much faster access than RAM)

 LC3 has 8 general purpose registers R0,R1,…,R7.

5

Von Neumann Model: Input and Output

Devices for getting data into and out of computer
memory - peripherals

Each device has its own interface,
usually a set of registers like the
memory’s MAR and MDR

INPUT
Keyboard
Mouse
Scanner
Disk

OUTPUT
Monitor
Printer
LED
Disk

CS 135

 LC-3 supports keyboard (input) and monitor (output)

 keyboard: data register (KBDR) and status register (KBSR)

 monitor: data register (DDR) and status register (DSR)

Some devices provide both input and output
 disk, network

Program that controls access to a device is
usually called a device driver.

Von Neumann Model: Control Unit

Orchestrates execution of the program

Instruction Register (IR) contains the current

CONTROL UNIT

IRPC

CS 135

g ()
instruction.

Program Counter (PC) contains the address
of the next instruction to be executed.

Control unit:
 reads an instruction from memory

 the instruction’s address is in the PC

 interprets the instruction, generating signals
that tell the other components what to do

 an instruction may take many machine cycles to complete

LC-3 Data Path

Combinational
Logic

Storage

CS 135

State Machine

Storage

+1
PC REG

FILE

SR2 SR1
OUT OUT

gatePC

PCMUX

DR

LD.REG

SR2
3

3

16

SR1
3

16

16

16

2

LD.PC

16

PCMUX

Control

CS 135

FINITE
STATE

MACHINE

MDR MARMEMORYLD.MDR

MEM.EN, R.W

GateMDR16

16

ALU

SR2MUX

IR

16

LD.MAR

16

gateALU

RLD.IR

2

16

AB

INPUT

KBDR

KBSR

OUTPUT

DDR

DSR

P
ro

c
e

s
s

o
r

6

What is an Instruction

The instruction is the fundamental unit of work.

Specifies two things:
 opcode: operation to be performed

 operands: data/locations to be used for operation

An instruction is encoded as a sequence of bits.
(Just like data!)

CS 135

()

 Often, but not always, instructions have a fixed length
(16,32,..),

 Control unit interprets instruction:
 generates sequence of control signals to carry out operation.

 Operation is either executed completely, or not at all.

A computer’s instructions and their formats is known
as its Instruction Set Architecture (ISA).

ISA

 The ISA specifies all the information
about the computer that the software
needs to be aware of.

 Who uses an ISA?

CS 135

 What is specified?

 How big an ISA
 Reduced Instruction set (RISC)

 Complex Instruction set (CISC)

Instruction Set Architecture

ISA = All of the programmer-visible
components and operations of the computer

 memory organization
 address space -- how may locations can be addressed?

 addressibility -- how many bits per location?

 register set

CS 135

 how many? what size? how are they used?

 instruction set
 opcodes

 data types

 addressing modes

ISA provides all information needed for someone
that wants to write a program in machine language
(or translate from a high-level language to machine
language).

Computer Architecture is ...

Instruction Set Architecture

CS 135

Organization

Hardware

7

What is the Hardware/Software Interface ?

software

CS 135

instruction set

hardware

Historical Perspective

 ENIAC built in World War II was the first general purpose
computer
 Used for computing artillery firing tables

 80 feet long by 8.5 feet high and several feet wide

 Each of the twenty 10 digit registers was 2 feet long

 Used 18,000 vacuum tubes

 Performed 1900 additions per second

CS 135

–Since then:

Moore’s Law:

transistor capacity doubles
every 18-24 months

CS 135
Harvard Mark I

CS 135
John von Neumann & EDVAC

8

What is an Instruction

The instruction is the fundamental unit of work.

Specifies two things:
 opcode: operation to be performed

 operands: data/locations to be used for operation

An instruction is encoded as a sequence of bits.
(Just like data!)

CS 135

()

 Often, but not always, instructions have a fixed length
(16,32,..),

 Control unit interprets instruction:
 generates sequence of control signals to carry out operation.

 Operation is either executed completely, or not at all.

A computer’s instructions and their formats is known
as its Instruction Set Architecture (ISA).

ISA

 The ISA specifies all the information
about the computer that the software
needs to be aware of.

 Who uses an ISA?

CS 135

 What is specified?

 How big an ISA
 Reduced Instruction set (RISC)

 Complex Instruction set (CISC)

Instruction Set Architecture

ISA = All of the programmer-visible
components and operations of the computer

 memory organization
 address space -- how may locations can be addressed?

 addressibility -- how many bits per location?

 register set

CS 135

 how many? what size? how are they used?

 instruction set
 opcodes

 data types

 addressing modes

ISA provides all information needed for someone
that wants to write a program in machine language
(or translate from a high-level language to machine
language).

ISA: Types of Instruction

 1. Operate Instructions
process data (addition, logical operations, etc.)

 2. Data Movement Instructions …
move data between memory locations and registers.

 3. Control Instructions …

CS 135

3. Control Instructions …
change the sequence of execution of instructions in

the stored program.
 The default is sequential execution: the PC is incremented by 1 at the start of

every Fetch, in preparation for the next one.

 Control instructions set the PC to a new value during the Execute phase, so
the next instruction comes from a different place in the program.

 This allows us to build control structures such as loops and branches.

9

Example: LC-3 ADD Instruction

LC-3 has 16-bit instructions.
 Each instruction has a four-bit opcode, bits [15:12].

LC-3 has eight registers (R0-R7) for temporary storage.
 Sources and destination of ADD are registers.

CS 135

“Add the contents of R2 to the contents of R6,
and store the result in R6.”

Example: LC-3 LDR Instruction

Load instruction -- reads data from memory

Base + offset mode:
 add offset to base register -- result is memory address

 load from memory address into destination register

CS 135

“Add the value 6 to the contents of R3 to form a
memory address. Load the contents of that
memory location to R2.”

How do instructions get executed ?
Instruction Cycle - overview

The Control Unit orchestrates the complete
execution of each instruction:

At its heart is a Finite State Machine that sets up the state

CS 135

p
of the logic circuits according to each instruction.

This process is governed by the system clock - the FSM
goes through one transition (“machine cycle”) for each
tick of the clock.
1 Ghz (109) clock frequency = 1 nanosecond clock cycle

Instruction Cycle - overview

 Six phases of the complete Instruction Cycle

Fetch: load IR with instruction from memory

Decode: determine action to take (set up inputs for ALU, RAM, etc.)

Evaluate address: compute memory address of operands, if any

CS 135

Evaluate address: compute memory address of operands, if any

Fetch operands: read operands from memory or registers

Execute: carry out instruction

Store results: write result to destination (register or memory)

10

Instruction Processing

Decode instruction

E l t dd

Fetch instruction from memory

CS 135

Evaluate address

Fetch operands from memory

Execute operation

Store result

Instruction Processing Step 1: FETCH

Load next instruction (at address stored

in PC) from memory into Instruction Register (IR).
 1.Copy contents of PC into MAR: MAR ← (PC)

 2.Send “read” signal to mem and read: MDR ← (MAR)

 3.Copy contents of MDR into IR: IR ← MDR

 4 increment PC so that it points to next inst EA

F

D

CS 135

 4. increment PC, so that it points to next inst

in sequence: PC = PC+1

FETCH takes at least 3 steps/cycles
 1,3,4 take one cycle, but 2 can take

more

 1,4 can be done in same cycle

EA

OP

EX

S

Instruction Processing Step 2: DECODE

First identify the opcode.
 In LC-3, this is always the first four bits of

instruction.
 A 4-to-16 decoder asserts a control line corresponding

to the desired opcode.

EA

F

D

CS 135

Depending on opcode, identify other
operands
from the remaining bits.
 Example:

 for LDR, last six bits is offset

 for ADD, last three bits is source operand #2

EA

OP

EX

S

Instruction Processing Step 3:
EVALUATE ADDRESS

For instructions that require memory
access, compute address used for access.
 Called Effective Address (EA)

Examples: EA

F

D

CS 135

 add offset to base register (as in LDR)

 add offset to PC

 add offset to zero

EA

OP

EX

S

11

Instruction Processing Step 4:
FETCH OPERANDS

Obtain source operands needed to
perform operation.
 Effective address computed in

previous step used to fetch operands

EA

F

D

CS 135

Examples:
 load data from memory (LDR)

 read data from register file (ADD)

EA

OP

EX

S

Instruction Processing Step 5:
EXECUTE

Perform the operation,
using the source operands.

Examples:
 send operands to ALU and assert ADD signal EA

F

D

CS 135

 send operands to ALU and assert ADD signal

 do nothing (e.g., for loads and stores)

EA

OP

EX

S

Instruction Processing Step 6:
STORE RESULT

Write results to destination.
(register or memory)

Examples:
 result of ADD is placed in destination register EA

F

D

CS 135

 result of ADD is placed in destination register

 result of memory load is placed in destination
register

 for store instruction, data is stored to memory
 write address to MAR, data to MDR

 assert WRITE signal to memory

EA

OP

EX

S

Instruction Processing Cycle - step 7

Start over …
The control unit just keeps repeating this whole

process: so it now Fetches a new instruction from the
address currently stored in the PC.

CS 135

y
Recall that the PC was incremented in the first step (FETCH),

so the instruction retrieved will be the next in the program as
stored in memory - unless the instruction just executed
changed the contents of the PC.

Note: Some instructions don't need all 6 phases
 If only using registers, skip Evaluate Address
 If only moving data, skip Execute

12

Flow Control

 Normally we execute instructions one
after another

 When might we not want to do this?

CS 135

Changing the Sequence of Instructions

In the FETCH phase, we increment the Program
Counter by 1.

What if we don’t want to always execute the
instruction that follows this one?
 examples: loop, if-then, function call

CS 135

Need special instructions that change the
contents of the PC.

These are called control instructions.
 jumps are unconditional -- always change the PC

 branches are conditional -- change the PC only if
some condition is true (e.g., the result of an ADD is
zero)

Example: LC-3 JMP Instruction

Set the PC to the value contained in a register.
This becomes the address of the next instruction
to fetch.

CS 135

“Load the contents of R3 into the PC.”

Instruction Processing Summary

Instructions look just like data -- it’s all
interpretation.

Three basic kinds of instructions:
 Compute/operate instructions (ADD, AND, …)

 data movement instructions (LD, ST, …)

l i i (JMP BR)

CS 135

 control instructions (JMP, BRnz, …)

Six basic phases of instruction
processing:

 F  D  EA  OP  EX  S
 not all phases are needed by every instruction

 phases may take variable number of machine
cycles

13

Control Unit State Diagram

The control unit is a state machine
 Transition from state to state based on the

steps in the instruction cycle, the opcode, and
outcome (for branches)

 simplified state diagram for the LC-3

A di C h l t t t di

CS 135

 Appendix C has complete state diagram

The Instruction Cycle as FSM

CS 135

Next..

 The Instruction set architecture (ISA) of
the LC3
 How is each instruction implemented by the

control and data paths in the LC3

 Programming in machine code

CS 135

 How are programs executed
 Memory layout, programs in machine code

 Assembly programming
 Assembly and compiler process

 Assembly programming with simple
programs

LC 3 Instruction Set

 The Instruction set architecture (ISA) of
the LC3
 How is each instruction implemented by the

control and data paths in the LC3

 Programming in machine code

CS 135

 How are programs executed
 Memory layout, programs in machine code

 Assembly programming
 Assembly and compiler process

 Assembly programming with simple
programs

14

0001 DR SR1 0 00 SR2ADD+

0101 DR SR1 0 00 SR2AND+

0001 DR SR1 1 imm5ADD+

0101 DR SR1 1 imm5AND+

0000 n z p PCoffset9BR

CS 135

1100 000 BaseR 000000JMP

0100 1 PCoffset11JSR

JSRR 0100 0 00 BaseR 000000

LD+ 0010 PCoffset9DR

LDI+ 1010 PCoffset9DR

+ Indicates instructions that modify condition codes

1000 000000000000RTI

offset60110 DRLDR+ BaseR

PCoffset91110LEA+ DR

1001 111111NOT+ DR SR

1100RET 000 111 000000

CS 135

1111 0000 trapvect8TRAP

0011 SRST PCoffset9

1011STI SR PCoffset9

0111 BaseRSTR SR offset6

1101reserved

+ Indicates instructions that modify condition codes

LC-3 Overview: Memory and Registers

Memory
 address space: 216 locations (16-bit addresses)

 addressability: 16 bits

Registers
 temporary storage, accessed in a single machine

CS 135

cycle
 accessing memory generally takes longer than a single cycle

 eight general-purpose registers: R0 - R7
 each 16 bits wide

 how many bits to uniquely identify a register?

 other registers
 not directly addressable, but used by (and affected by) instructions

 PC (program counter), condition codes

LC-3 Overview: Instruction Set

Opcodes
 15 opcodes

 Operate instructions: ADD, AND, NOT

 Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI

 Control instructions: BR, JSR/JSRR, JMP, RTI, TRAP

 some opcodes set/clear condition codes, based on result:

CS 135

 N = negative, Z = zero, P = positive (> 0)

Data Types
 16-bit 2’s complement integer

Addressing Modes
 How is the location of an operand specified?

 non-memory addresses: immediate, register

 memory addresses: PC-relative, indirect, base+offset

15

Operate Instructions

Only three operations: ADD, AND, NOT

Source and destination operands are
registers
 These instructions do not reference memory.

 ADD and AND can use “immediate” mode,

CS 135

,
where one operand is hard-wired into the
instruction.

Will show dataflow diagram with each
instruction.
 illustrates when and where data moves

to accomplish the desired operation

Data Movement Instructions

 GPR ↔ Memory

 GPR ↔ I/O Devices

GPR M ???

CS 135

 GPR ← Memory ???

 Memory ← GPR ???

Addressing Modes

 Where can operands be found?

1

2

CS 135

2

3

Data Movement Instructions

Load -- read data from memory to register
 LD: PC-relative mode

 LDR: base+offset mode

 LDI: indirect mode

Store -- write data from register to memory
ST PC l ti d

CS 135

 ST: PC-relative mode

 STR: base+offset mode

 STI: indirect mode

Load effective address -- compute address,
save in register
 LEA: immediate mode

 does not access memory

16

PC-Relative Addressing Mode

Want to specify address directly in the instruction
 But an address is 16 bits, and so is an instruction!

 After subtracting 4 bits for opcode
and 3 bits for register, we have 9 bits available for address.

Solution:
 Use the 9 bits as a signed offset from the current PC.

CS 135

9 bits:

Can form any address X, such that:

Remember that PC is incremented as part of the FETCH phase;

This is done before the EVALUATE ADDRESS stage.

255offset256 
255PCX256PC 

Control Instructions

Used to alter the sequence of instructions
(by changing the Program Counter)

Conditional Branch
 branch is taken if a specified condition is true

 signed offset is added to PC to yield new PC

 else, the branch is not taken
 PC is not changed points to the next sequential instruction

CS 135

 PC is not changed, points to the next sequential instruction

Unconditional Branch (or Jump)
 always changes the PC

TRAP
 changes PC to the address of an OS “service routine”

 routine will return control to the next instruction (after TRAP)

Condition Codes

LC-3 has three condition code registers:
N -- negative
Z -- zero
P -- positive (greater than zero)

CS 135

Set by any instruction that writes a value
to a register
(ADD, AND, NOT, LD, LDR, LDI, LEA)

Exactly one will be set at all times
 Based on the last instruction that altered a

register

Branch Instruction

Branch specifies one or more condition codes.

If the set bit is specified, the branch is taken.

 PC-relative addressing:
target address is made by adding signed offset (IR[8:0])
to current PC.

 Note: PC has already been incremented by FETCH

CS 135

y y
stage.

 Note: Target must be within 256 words of BR instruction.

If the branch is not taken,
the next sequential instruction is executed.

