CS 135: Computer Architecture |

Instructor: Prof. Bhagi Narahari
Dept. of Computer Science
Course URL: www.seas.gwu.edu/~bhagiweb/cs135/

Summary: Digital Logic Circuits

o Combinational logic

» Basic gates, complex devices (Multiplexer,
decoder, memory...)

> Output is function of input
e Sequential logic
» Clock

» Flip-flops (latches): store “state” — current
value

> Output is function of input and stored values

» Finite state diagram describes how machine
functions

» Finite state diagram to circuit design

cs135

From Logic to Processor Data Path

The data path of a computer is all the logic used
to process information.

» Eg. data path of the LC-3.

«Combinational Logic
» Decoders -- convert instructions into control signals
» Multiplexers -- select inputs and outputs
» ALU (Arithmetic and Logic Unit) -- operations on data
eSequential Logic

» State machine -- coordinate control signals and data
movement

» Registers and latches -- storage elements

cs135

| C-3Data Path

T

Combinational —=——=et=—=="F T3 L |um=

Logic Sk i 3 5 R e

Storage

State Machine

1.

cs135

») What Next ?
MARMUX or REG
FILE
. |sr2 sm1| | ¢ Next topic: The von Neumann model of
sre7—{OUTOUT— st computer architecture

ADDRZMUX

7:0)
2
ADDR2MUX \/ ADDRIMUX _“DD“WUX

16,f 16| 16 15} 16
0

> Basic components
16 > How instructions are processed

] = e The LC3 computer and instruction set
oo & FnTe 1 sravux | > The ISA of LC3
50 Nz [P btoce Milﬁﬁa—‘ o > Programming the LC3
wr TR R A > Assembly Language programming
gAY e Chapters 4,5,6,7
L% Recall:what are Computers meant to do ~
? Problem Transformation

- levels of abstraction

o We will be solving problems that are
describable in English (or Greek or French or
Hindi or Chinese or ...) and using a box filled
with electrons and magnetism to accomplish
the task.

» This is accomplished using a system of well

defined (sometimes) transformations that have
been developed over the last 50+ years.

The desired behavior:
the application

The building blocks:
electronic devices

cs135 cs135

Putting it all together

e The goal:

»>Turn a theoretical device - Turing’s Universal
Computational Machine - into an actual
computer ...

»... interacting with data and instructions from
the outside world, and producing output data.

e Smart building blocks:
>We have at our disposal a powerful collection

of combinational and sequential logic devices.

* Now we need a master plan ...

cs135

o

The Stored Program Computer

+1943: ENIAC

> Presper Eckert and John Mauchly -- first general electronic computer.
(or was it John V. Atanasoff in 1939?)

> Hard-wired program -- settings of dials and switches.
+1944: Beginnings of EDVAC

» among other improvements, includes program stored in memory
#1945: John von Neumann

» wrote a report on the stored program concept,
known as the First Draft of a Report on EDVAC

«The basic structure proposed in the draft became known
as the “von Neumann machine” (or model).

> amemory, containing instructions and data
» aprocessing unit, for performing arithmetic and logical operations
> acontrol unit, for interpreting instructions

For more history, see http://www.maxmon.com/history.htm
cs135

Von Neumann Model

¢ The central idea in the von
Neumann model of computer
processing is that
> the program and data are both stored

as sequences of bits in the computer's
memory, and

> the program is executed, one
instruction at a time, under the
direction of the control unit.

cs135

Von Neumann Model

MEMORY

INPUT ouTPUT

Keyboard Monitor
Mouse PROCESSING UNIT Printer
Scanner LED

Disk : Disk

CONTROL UNIT

cs135

The von Neumann Model

Memory

MAR MDR
! i

Processing Unit

Input

(keyboard)

ALU [TEMP Output

PC IR

+ Memory: holds both data and instructions

« Processing Unit: carries out the instructions

« Control Unit: sequences and interprets instructions
« Input: external information into the memory

« Output: produces results for the user

cs135

Von Neuman Model: Memory

2k x m array of stored bits

eAddress 0000
» unique (k-bit) identifier of location 88%
«Contents/Addressability goil | COLOLIOL
> m-bit value stored in location 10l
«Basic Operations: :
+LOAD (READ) FEET] —

1111
> read a value from a memory location

eSTORE (WRITE)
> write a value to a memory location

cs135

>

1.
2.

3.

1.

2.
3.

Interface to Memory

How does processing unit get data to/from

memory?
MAR: Memory Address Register MEMORY

MDR: Memory Data Register MAR MDR

Also called MBR: mem. Buffer reg.
To LOAD a location (A):
Write the address (A) into the MAR.
Send a “read” signal to the memory.
Read the data from MDR.
To STORE a value (X) to a location (A):
Write the data (X) to the MDR.
Write the address (A) into the MAR.
Send a “write” signal to the memory.

cs135

Von Neumann Model: Processing Unit

« Processing Unit- does the actual work!

» Can consist of many units, each specializing in one K fi
» At a minimum, has Arithmetic & Logic Unit (ALU) and General Purpose Registers
(GPRs).

» The number of bits a basic Processing Unit operation can handle is called the
WORD SIZE of the machine.

eALU
» Performs basic operations: add, subtract, and, not, etc.
» Generally operates on whole words of data.
~ Some can also operate on subsets of words (eg. single bits or bytes)
» LC3 does ADD, AND, NOT

eRegisters:
» Fast “on-board” storage for a small number of words.
» Invaluable for intermediate data storage while processing
» Close to the ALU (much faster access than RAM)
» LC3 has 8 general purpose registers Ry,R;,...,R;.

cs135

Von Neumann Model: Input and Qutput

eDevices for getting data into and out of computer
memory - peripherals

INPUT

Keyboard
Mouse

esEach device has its own interface, Scanner
usually a set of registers like the pisk

OUTPUT
Monitor
Printer
LED
Disk

memory’s MAR and MDR
» LC-3 supports keyboard (input) and monitor (output)

» keyboard: data register (KBDR) and status register (KBSR)

» monitor: data register (DDR) and status register (DSR)
«Some devices provide both input and output
> disk, network

sProgram that controls access to a device is
usually called a device driver.

cs135

- Von Neumann Model: Control Unit

+Orchestrates execution of the program

CONTROL UNIT

eInstruction Register (IR) contains the current
instruction.

eProgram Counter (PC) contains the address
of the next instruction to be executed.
eControl unit:
» reads an instruction from memory
» the instruction’s address is in the PC

» interprets the instruction, generating signals
that tell the other components what to do
cs135 aninstruction may take many machine cycles to complete

| C-3 Data Path

Combinational =
Logic .

State Machine

cs135

L A—galepc 16%
3
Control R REG
FILE
LD.REG —¢
3 SR2 SR1 8
sr2—4—4 OUT OUT ¢—~ sRr1
16, 16,
16,
FINITE [—7 ;RZMUX ‘g-
STATE [2
MACHINE |3 e 9
HE S =
ALU o
on -] L
" gateALU R
& | j
<
d Z&_GNMDR 1 INIIUT OUTlPUT
16
-KBDR Iaﬂa
(IR MDR || MEMORY [| MAR {~'oMAR - -
R KBSR

- Whatis an Instruction

*The instruction is the fundamental unit of work.
«Specifies two things:

» opcode: operation to be performed

» operands: datal/locations to be used for operation

*An instruction is encoded as a sequence of bits.
(Just like data!)

» Often, but not always, instructions have a fixed length
(16,32,..),

» Control unit interprets instruction:
» generates sequence of control signals to carry out operation.

» Operation is either executed completely, or not at all.

oA computer’s instructions and their formats is known
as its Instruction Set Architecture (ISA).

cs135

ISA

e The ISA specifies all the information
about the computer that the software
needs to be aware of.

e Who uses an ISA?

e What is specified?

¢ How big an ISA
> Reduced Instruction set (RISC)
» Complex Instruction set (CISC)

cs135

Instruction Set Architecture

oISA = All of the programmer-visible
components and operations of the computer

> memory organization
» address space -- how may locations can be addressed?
» addressibility -- how many bits per location?
> register set
» how many? what size? how are they used?
> instruction set
~ opcodes
» data types
» addressing modes

«ISA provides all information needed for someone
that wants to write a program in machine language
(or translate from a high-level language to machine
Iangsl‘,la?ge).

Computer Architectureis...

Instruction Set Architecture

Organization

Hardware

cs135

N
~ Whatis the Hardware/Software Interface ?

Q, G
software /K/ \?
/_[o
ESEss e s —

/

|./ \:

hardware

cs135

Historical Perspective

o ENIAC built in World War Il was the first general purpose
computer
» Used for computing artillery firing tables
» 80 feet long by 8.5 feet high and several feet wide
» Each of the twenty 10 digit registers was 2 feet long
» Used 18,000 vacuum tubes
> Perform 00 aditions per second

-Since then:
Moore’s Law:

transistor capacity doubles
every 18-24 months

cs135

cs135

_John von Neumann & EDVAC

- Whatis an Instruction

*The instruction is the fundamental unit of work.
«Specifies two things:

» opcode: operation to be performed

» operands: datal/locations to be used for operation

*An instruction is encoded as a sequence of bits.
(Just like data!)

» Often, but not always, instructions have a fixed length
(16,32,..),

» Control unit interprets instruction:
» generates sequence of control signals to carry out operation.

» Operation is either executed completely, or not at all.

oA computer’s instructions and their formats is known
as its Instruction Set Architecture (ISA).

cs135

ISA

e The ISA specifies all the information
about the computer that the software
needs to be aware of.

e Who uses an ISA?

e What is specified?
¢ How big an ISA

> Reduced Instruction set (RISC)
» Complex Instruction set (CISC)

cs135

Instruction Set Architecture

oISA = All of the programmer-visible
components and operations of the computer

> memory organization
» address space -- how may locations can be addressed?
» addressibility -- how many bits per location?
> register set
» how many? what size? how are they used?
> instruction set
~ opcodes
» data types
» addressing modes

«ISA provides all information needed for someone
that wants to write a program in machine language
(or translate from a high-level language to machine
Iangsl‘,la?ge).

ISA: Types of Instruction

¢ 1. Operate Instructions

»process data (addition, logical operations, etc.)

e 2. Data Movement Instructions ...

>move data between memory locations and registers.

¢ 3. Control Instructions ...

»change the sequence of execution of instructions in
the stored program.

» The default is sequential ion: the PC is incr by 1 at the start of
every Fetch, in preparation for the next one.

> Control instructions set the PC to a new value during the Execute phase, so
the next instruction comes from a different place in the program.

» This allows us to build control structures such as loops and branches.

cs135

Example: LC-3 ADD Instruction

«LC-3 has 16-bit instructions.
> Each instruction has a four-bit opcode, bits [15:12].
«LC-3 has eight registers (R0-R7) for temporary storage.
» Sources and destination of ADD are registers.

15 14 13 12 11 10 & 8 7 & 5 4 3 2 1 0

ADD | Dst | Srcl (0|0 O Src2
15 14 13 12 11 10 8 8 7 & 5 4 3 2 1 ©
0 01 110010000110

“Add the contents of R2 to the contents of R6,
and store the result in R6.”

cs135

Example: LC-3 LDR Instruction

eLoad instruction -- reads data from memory
eBase + offset mode:

» add offset to base register -- result is memory address

» load from memory address into destination register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LDR | Dst | Base Offset

15 14 13 11 10 S
0 1 010

ra

1 0
10

o

7 6 5 4 3
11000

O o

“Add the value 6 to the contents of R3 to form a
memory address. Load the contents of that
memory location to R2.”

cs135

How do instructions get executed ?
Instruction Cycle - overview

e The Control Unit orchestrates the complete
execution of each instruction:

»At its heart is a Finite State Machine that sets up the state

of the logic circuits according to each instruction.

»This process is governed by the system clock - the FSM
goes through one transition (“machine cycle”) for each
tick of the clock.

>1 Ghz (10°) clock frequency = 1 nanosecond clock cycle

cs135

Instruction Cycle - overview

» Six phases of the complete Instruction Cycle

» Fetch: load IR with instruction from memory

»Decode: determine action to take (set up inputs for ALU, RAM, etc.)
> Evaluate address: compute memory address of operands, if any

» Fetch operands: read operands from memory or registers

» Execute: carry out instruction

» Store results: write result to destination (register or memory)

cs135

Instruction Processing

[}

‘ Fetch instruction from memory ‘

‘ Decode instruction

|

l

‘ Evaluate address

|

!

‘ Fetch operands from memory ‘

‘ Execute operation

‘ Store result

cs135

Instruction Processing Step 1. FETCH

sLoad next instruction (at address stored
in PC) from memory into Instruction Register (IR).
» 1.Copy contents of PC into MAR: MAR — (PC)
» 2.8end “read” signal to mem and read: MDR — (MAR)
» 3.Copy contents of MDR into IR: IR — MDR
> 4. increment PC, so that it points to next inst
in sequence: PC = PC+1
oFETCH takes at least 3 steps/cycles
> 1,3,4 take one cycle, but 2 can take
more
» 1,4 can be done in same cycle

cs135

Instruction Processing Step 2: DECODE

oFirst identify the opcode.

» In LC-3, this is always the first four bits of
instruction.

» A 4-to-16 decoder asserts a control line corresponding
to the desired opcode.

eDepending on opcode, identify other
operands
from the remaining bits.

> Example:

» for LDR, last six bits is offset
» for ADD, last three bits is source operand #2

cs135

~ Instruction Processing Step 3:

EVALUATE ADDRESS

oFor instructions that require memory

access, compute address used for access.

» Called Effective Address (EA)

eExamples:
» add offset to base register (as in LDR)
» add offset to PC
> add offset to zero

cs135

2 gCighl

m
X

S ORERE

10

< Instruction Processing Step 4.
FETCH OPERANDS

«Obtain source operands needed to
perform operation.

> Effective address computed in
previous step used to fetch operands

eExamples:
> load data from memory (LDR)
» read data from register file (ADD)

cs135

< Instruction Processing Step 5:
EXECUTE

ePerform the operation,
using the source operands.

eExamples:
» send operands to ALU and assert ADD signal
» do nothing (e.g., for loads and stores)

cs135

[Instruction Processing Step 6:
STORE RESULT

oWrite results to destination.
(register or memory)

eExamples:
» result of ADD is placed in destination register

» result of memory load is placed in destination
register

> for store instruction, data is stored to memory|
» write address to MAR, data to MDR
» assert WRITE signal to memory

cs135

Instruction Processing Cycle - step 7

o Start over ...

>The control unit just keeps repeating this whole
process: so it now Fetches a new instruction from the
address currently stored in the PC.
» Recall that the PC was incremented in the first step (FETCH),
so the instruction retrieved will be the next in the program as

stored in memory - unless the instruction just executed
changed the contents of the PC.

* Note: Some instructions don't need all 6 phases
» If only using registers, skip Evaluate Address
» If only moving data, skip Execute

cs135

11

Flow Control

¢ Normally we execute instructions one
after another

e When might we not want to do this?

cs135

Changing the Sequence of Instructions

eIn the FETCH phase, we increment the Program
Counter by 1.

*What if we don’t want to always execute the
instruction that follows this one?

» examples: loop, if-then, function call
eNeed special instructions that change the
contents of the PC.
eThese are called control instructions.

» jumps are unconditional -- always change the PC

> branches are conditional -- change the PC only if
some condition is true (e.g., the result of an ADD is
zero)

cs135

Example: LC-3 JMP Instruction

«Set the PC to the value contained in a register.
This becomes the address of the next instruction
to fetch.

14 13 12 11 10 9 8

& S 4 3 2 1 0
JMP 0 0 0 Base 00 0O0O0O

12 11 10 & & 7

7 6 5 4 3 2 1 0
000011000000

“Load the contents of R3 into the PC.”

cs135

Instruction Processing Summary

eInstructions look just like data -- it’s all
interpretation.

eThree basic kinds of instructions:
» Compute/operate instructions (ADD, AND, ...)
> data movement instructions (LD, ST, ...)
» control instructions (JMP, BRnz, ...)
«Six basic phases of instruction
processing:

o F>-D->EA—->OP-S>EX—>S

> not all phases are needed by every instruction

> phases may take variable number of machine
cs135 cyc|es

12

- Control Unit State Diagram - The Instruction Cycle as FSM
eThe control unit is a state machine I/ [”%
> Transition from state to state based on the) | sz
steps in the instruction cycle, the opcode, and ru:nﬂ [m._.um.
outcome (for branches) | j—’
> simplified state diagram for the LC-3 VT i |
» Appendix C has complete state diagram \ s
DECODE [y)
o ‘]/ [- h \-1‘
Ly " e’ 4 4 L l
€S 135 €S 135 b ._ l -) T

Next..

¢ The Instruction set architecture (ISA) of
the LC3

> How is each instruction implemented by the
control and data paths in the LC3

» Programming in machine code

» How are programs executed
» Memory layout, programs in machine code

e Assembly programming
» Assembly and compiler process

> Assembly programming with simple
programs

cs135

LC 3 Instruction Set

e The Instruction set architecture (ISA) of
the LC3

» How is each instruction implemented by the
control and data paths in the LC3

» Programming in machine code

» How are programs executed
» Memory layout, programs in machine code

e Assembly programming
» Assembly and compiler process

» Assembly programming with simple
programs

cs135

13

~ ~
aoo+ [Tooor’ | bR | sri [of oo | Sre wre [Tomo’ [br [Baser | offset6 |
aoor [Jodr [pr [SRT [a | qmb | tear [o, | pr | | ecomses, | | |
anor | o1, | pr [sei Jo[o | Sme nore | jaon | pr [sr [mim ||
anor [Totor’ | or | skt Ji] T imms RET [Tmoo” [o0 [T | 000000 |
BR [oo} [n]z[e] | | |PCofises; RTI [000, [| | | oodoosoosoos | | | |
e | juoo, [ooo [saseR | | ooodoo st [joon, [sk [|| ecptses, | |]
ISR [Towo’ Ji] ° PPCoffsetil ‘ STI [Taou’ [sk | PCoffset9 |
sskR | o0 [o] oo [Baser [000000 STR [Tom [sk [Baser [| Toftses |

1 1
e [Jogo; [R [T ecosen; wree [uny [jodo, | | [wapyecs | | |
e [o, [R [[ecofses, eserved [wmor | o L 0 0]
et + Indicates instructions that modify condition codes cstss + Indicates instructions that modify condition codes

=]] "~ . .

: LC-3 Overview: Memory and Registers : LC-3 Overview: Instruction Set

eMemory *Opcodes

> address space: 2'% locations (16-bit addresses)

> addressability: 16 bits
eRegisters
» temporary storage, accessed in a single machine
cycle
» accessing memory generally takes longer than a single cycle
» eight general-purpose registers: R0 - R7
» each 16 bits wide
> how many bits to uniquely identify a register?
> other registers

> not directly addressable, but used by (and affected by) instructions
» PC (program counter), condition codes

cs135

> 15 opcodes

» Operate instructions: ADD, AND, NOT

> Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI
» Control instructions: BR, JSR/JSRR, JMP, RTI, TRAP

» some opcodes set/clear condition codes, based on result:
» N = negative, Z = zero, P = positive (> 0)

eData Types
> 16-bit 2’s complement integer
eAddressing Modes
» How is the location of an operand specified?
> non-memory addresses: immediate, register
» memory addresses: PC-relative, indirect, base+offset

cs135

14

Operate Instructions

+Only three operations: ADD, AND, NOT

eSource and destination operands are
registers

» These instructions do not reference memory.

> ADD and AND can use “immediate” mode,
where one operand is hard-wired into the
instruction.
*Will show dataflow diagram with each
instruction.

> illustrates when and where data moves
to accomplish the desired operation

cs135

Data Movement Instructions

¢ GPR < Memory

e GPR < I/O Devices

e GPR — Memory ???

e Memory — GPR ???

cs135

Addressing Modes

e Where can operands be found?

cs135

: Data Movement Instructions

eLoad -- read data from memory to register
> LD: PC-relative mode
> LDR: base+offset mode
> LDI: indirect mode

eStore -- write data from register to memory
» ST: PC-relative mode
> STR: base+offset mode
> STI: indirect mode

eLoad effective address -- compute address,

save in register
» LEA: immediate mode
» does not access memory

cs135

15

: PC-Relative Addressing Mode

sWant to specify address directly in the instruction
> But an address is 16 bits, and so is an instruction!

» After subtracting 4 bits for opcode
and 3 bits for register, we have 9 bits available for address.

eSolution:
> Use the 9 bits as a signed offset from the current PC.

*9 bits: —256 < offset < +255
«Can form any address X, such that: PC—256 < X<PC+255

eRemember that PC is incremented as part of the FETCH phase;
oThis is done before the EVALUATE ADDRESS stage.

cs135

- Control Instructions

oUsed to alter the sequence of instructions
(by changing the Program Counter)
eConditional Branch

> branch is taken if a specified condition is true
» signed offset is added to PC to yield new PC

> else, the branch is not taken
» PC is not changed, points to the next sequential instruction

eUnconditional Branch (or Jump)
» always changes the PC

*TRAP

» changes PC to the address of an OS “service routine”

> routine will return control to the next instruction (after TRAP)

cs135

Condition Codes

¢LC-3 has three condition code registers:
N -- negative
Z -- zero
P -- positive (greater than zero)

*Set by any instruction that writes a value
to a register
(ADD, AND, NOT, LD, LDR, LDI, LEA)

eExactly one will be set at all times

> Based on the last instruction that altered a
register

cs135

Branch Instruction

eBranch specifies one or more condition codes.
oIf the set bit is specified, the branch is taken.
» PC-relative addressing:

target address is made by adding signed offset (IR[8:0])

to current PC.

» Note: PC has already been incremented by FETCH
stage.

> Note: Target must be within 256 words of BR instruction.

olf the branch is not taken,
the next sequential instruction is executed.

cs135

16

