CS 135, Fall 2010
Project 4: Code Optimization
Assigned: November 30th, 2010
Due: December 12,, 2010, 12noon

1 Introduction

This assignment deals with optimizing memory intensiveecolinage processing offers many examples
of functions that can benefit from optimization. In this gt we will consider two image processing
operationsr ot at e, which rotates an image counter-clockwised0§, andsnoot h, which “smooths” or
“blurs” an image. You have probably used these operatiorervdealing with images (in Photoshop, Paint,
etc.).

For this project, we will consider an image to be represeated two-dimensional matri/, where; ;
denotes the value df, j)th pixel of M. Pixel values are triples of red, green, and blue (RGB) \alVge

will only consider square images. L&t denote the number of rows (or columns) of an image. Rows and
columns are numbered, in C-style, frénto NV — 1.

Given this representation, thieot at e operation can be implemented quite simply as the combimatio
the following two matrix operations:
e Transpose: For each(i, j) pair, M; ; and M ; are interchanged.

e Exchange rows. Row i is exchanged with rotV — 1 — 4.

This combination is illustrated in Figure 1.

The snpot h operation is implemented by replacing every pixel valuehwiite average of all the pixels
around it (in a maximum o3 x 3 window centered at that pixel). Consider Figure 2. The \&iepixels
M2[1] [1] andM2[N- 1] [N- 1] are given below:

M2[1][1] = TioX; 90M1[(3]
N— 1 N-1
M2[N — 1][N — 1] = - 2ZJ4N 2 M1[1][3]

(0,0)

Rotate by 90

(counter—clockwise)

(0,0)

(0,0 ~
Exchange

Transpose Rows

Figure 1: Rotation of an image 9)° counterclockwise

M1[1][1] M2[1][1]

-
-

smooth
—_—

4 v/

M1IN-11IN-11 M2IN-11IN-11

Figure 2: Smoothing an image

2 Logistics

You must work alone in solving the problems for this project. The ofind-in” will be electronic.
Any clarifications and revisions to the assignment will batpd on the course Web page. There is NO
collaboration of any sort allowed on this project — this ut#s outside sources (online or otherwise) and
you cannot discuss solution strategies with other studéthdsvever, you can use any/all of the notes (and
solutions) from the in-class discussion of team assigni@enit is directly relevant to project 4.

The project source files and installation will be discussethé lab sessions during the week of November
30th. Some of the project logistics will be discussed in #eures during the week of Dec. 1st. Any
guestions regarding this project will be addressely during the labs (and lectures) of the week of Nov.30th
and Dec.2nd.

3 Hand Out Instructions

Links, to the code, will be provided on the homeworks web page more details can be obtained in the
labs. Start by copyingr oj ect 4. t ar to a protected directory in which you plan to do your work. ifthe
give the commandt ar xvf project4.tar. This will cause a number of files to be unpacked into
a directory called project4. The only file you will be modifgi and handing in ikernel s.c. The
dri ver. c program is a driver program that allows you to evaluate tiopmance of your solutions. Use
the commandrake dri ver to generate the driver code and run it with the commahdr i ver .

Looking at the fil&ker nel s. ¢ you'll notice a C structuré eaminto which you should insert the requested
identifying information about yourselDo this right away so you don't forget. (This is similar to project
1))

4 Implementation Overview

Data Structures
The core data structure deals with image representatigui. @€l is a struct as shown below:

typedef struct {
unsi gned short red; [+ R value */
unsi gned short green; /* G val ue */
unsi gned short blue; /* B value =/
} pixel;

As can be seen, RGB values have 16-bit representationshitl@&lor”). An imagel is represented as a one-
dimensional array opi xel s, where thé:, j)th pixel isl [RI DX(i , j, n)] . Heren is the dimension of the image
matrix, andRl DX is a macro defined as follows:

#define RIDX(i,j,n) ((i)*=(n)+(j))

See the filadef s. h for this code.

Rotate

The following C function computes the result of rotating Hoeirce imagesr ¢ by 90° and stores the result in desti-
nation imagedst . di mis the dimension of the image.

void naive rotate(int dim pixel *src, pixel *dst) {
int i, j;
for(j=0; j <dim j++)
for(i=0; i < dim i++)
dst[RIDX(dim21-j,i,dim] = src[RIDX(i,j,dim];

return;

}

The above code scans the rows of the source image matrixingpfythe columns of the destination image matrix.
Your task is to rewrite this code to make it run as fast as ptessising some of the techniques we discussed in the
lecture.

See the fil&ker nel s. c for this code.

Smooth

The smoothing function takes as input a source imsge and returns the smoothed result in the destination image
dst . Here is part of an implementation:

voi d naive_smooth(int dim pixel *src, pixel =dst) {
int i, j;
for(i=0; i <dim i++)
for(j=0; j < dim j++)
dst[RIDX(i,j,dim] = avg(dim i, j, src); /+ Snooth the (i,j)th pixel =*/

return;

}

The functionavg returns the average of all the pixels around the j) th pixel. Your task is to optimizenoot h
(andavg) to run as fast as possibléNdte: The functionavg is a local function and you can get rid of it altogether to
implementsnoot h in some other way.)

This code (and an implementationafg) is in the fileker nel s. c. See the filker nel s. c for this code.

Performance measures

Our main performance measure is the number of (processolg<it takes to run for an image of si2é x N for
different values ofV.

The ratios (speedups) of the execution time of the optimizgdiementation over the naive one will constitutscare
of your implementation.

Assumptions

To make life easier, you can assume thais a multiple of 32. Your code must run correctly for all suues ofV,
but we will measure its performance only for large sizes (& br greater).

5 Infrastructure

We have provided support code to help you test the corresmiegour implementations and measure their perfor-
mance. This section describes how to use this infrastrectlihe exact details of each part of the assignment is
described in the following section. The code handed outtedit and measure the performance of your solutions. We
used the systerol ock utility to measure the time — as a result, you can get diffetiemes each time you run the
code. The performance measurement also takes the averageafg your code 10 times. So you do not need to test
multiple times (although you are not discouraged from dcioy

Note: The only source file you will be modifying iser nel s. c; in fact you will only be witing
the code for my_rotate and ny_snoot h.

Driver

The source code you will write will be linked with object cotihat we supply into a@r i ver binary. To create this
binary, you will need to execute the command

uni x> nmake driver

Note: You will need to re-make driver each time you change the cod@r nel s. c.

To test your implementations, you can then run the command:

uni x> ./driver

System Details

Your solutions will be evaluated on the SEAS Hobbes serveu MUST use these machines to measure the perfor-
mance of your solutions. You MUST use the gcc compiler, wistcampiler optimization options. It is important to
note that we will only be using the hobbes system to measarpdtformance of your solutions — improvements made
on any other system will not be taken into account during eading.

Team Information

Important: Before you start, you should fill in the structker nel s. ¢ with information about your name etc. This
information is just like the one for the first project.

6 Assignment Details

Optimizing Rotate

In this part, you will optimizer ot at e to achieve as low a time (cycles) as possible. You should derdpi ver

and then run it with the appropriate arguments to test yoptementations. The target performance improvement (
i..e, how much faster your version runs when compared with theenavsion handed out) is at least 15% for image
sizes 1024 and higher on the SEAS Hobbes server. This onlstingies a minimum (i.e., a grade of 70% on the
project), so you must try to get an improvement beyond thislmer by trying out different optimizations that could
improve performance.

Optimizing Smooth

In this part, you will optimizesnoot h to achieve as low a time (cycles) as possible. The targebpeence im-
provement (i..e, how much faster your version runs when compared with theenaévsion handed out) is 15% for
image sizes 1024 and higher on the SEAS Hobbes server. Tlisamstitutes a minimum (i.e., a grade of 70% on
the project), so you must try to get an improvement beyorgrthimber.

Hints: (Some tips will be discussed in the class lectures.) Focusptimizing the inner loop (the code that gets
repeatedly executed in a loop). TeeDOt h is more compute-intensive and less memory-sensitive tiandt at e
function, so the optimizations are of somewhat differentdia.

Coding Rules
You may write any code you want, as long as it satisfies theviafig:

e It must be in ANSI C. You may not use any embedded assemblybgsstatements.

e |t must not interfere with the time measurement mechanism. Will also be penalized if your code prints any
extraneous information.

e You MUST use ONLY the optimizations we discussed in the lexgicourself you use any other optimizations
then you will receive a zero on this project.

You can only modify code itker nel s. c. You are allowed to define macros, additional global vagaband other
procedures in these files.

Evaluation

This project is worth 50 points towards your overall projgcade. You will also be able able to earn more than
50 points if you use more optimizations and produce sigmificeedups over the naive version. If you choose
to optimize only one of the two functions (Rotate and Smaatitgn you can earn a maximum of upto 30 points
depending on how well you have optimized the code.

The score for each will be based on the following:
e Correctness: You will get NO CREDIT for buggy code that causes the drivecamplain! This includes code

that correctly operates on the test sizes, but incorrectiymage matrices of other sizes. As mentioned earlier,
you may assume that the image dimension is a multiple of 32.

e Performance: in terms of the number of processor cycles taken by your cddhe minimum performance
improvement (speedup) that your code must achieve for eauttibn was specified earlier in this document.
Your solutions must provide at least this speedup to get sipggrade on this project.

e Report: Your report must briefly describe the optimizations you used why you think they will improve the
performance, and you should also provide a table of youop@dince results (i.e., a table showing how much
better you did compared to the naive implementatioMel must provide justifications and MUST submit
the report — failure to submit the report will result in a grad e of zero for the entire project. We will give
you partial credit if your report is correct and your implamtegions do not provide the minimum speedups we
require.

7 Hand In Instructions

When you have completed the lab, you will hand in (1) a repestdbing your solutions and (2) one filer nel s. c,
that contains your solution.

Here is how to hand in your solution:

e You will hand in using Blackboard. Your report must be in PFnfiat, and must be titled Report4-lastname
(For example, if your last name is Smith then your filenamedpdrt4-smith.pdf).

e Make sure you have included your identifying informatiorihie team struct iker nel s. c.

e Make sure that theot at e() andsnoot h() functions correspond to your fastestimplemnentationthese
are the only functions that will be tested when we use ourdtiy grade your assignement.

e Remove any extraneous print statements.
e Create a team name of the form:
— “ID”whereID is your ID (you can use your GW ID)
o After the handin, if you discover a mistake and want to sulanévised copy, contact the instructor.

e Submit the report in the report submission category in Wlaekd. Your report must briefly describe (i) the
optimization techniques you used for each function, (iiywiou chose the optimizations and why you think
they will improve the performance, and (iii) you should afsovide a table of your performance results (i.e., a
table showing how much better you did compared to the naipdementations)Failure to submit the report
will result in a grade of zero points regardless of how well yar code does.

