
A. Bellaachia Page: 1

Functional Programming Languages (FPL)

1. Definitions .. 3

2. Applications .. 3

3. Examples .. 4

4. FPL Characteristics: .. 5

5. Lambda calculus (LC) .. 6

5.1. LC expressions forms ... 6

5.2. Semantic of Functional Computations: 8

5.3. Python Lambda Expression 9

6. Functions in FPLs ... 11

7. IPL vs. FPL ... 13

8. Scheme overview .. 14

8.1. Get your own Scheme from MIT 14

8.2. General overview .. 14

8.3. Data Typing .. 15

8.4. Comments ... 15

8.5. Recursion Instead of Iteration 16

8.6. Evaluation ... 17

8.7. Storing and using Scheme code 17

8.8. Variables ... 18

8.9. Data types ... 19

8.10. Arithmetic functions ... 20

8.11. Selection functions .. 21

8.12. Iteration ... 26

8.13. Defining functions .. 27

9. ML .. 28

10. Haskell .. 29

A. Bellaachia Page: 2

11. Functional Programming Using Python 31

11.1. List Manipulation .. 31

11.2. Car & CDR ... 35

12. Functions .. 37

12.1. Composition .. 37

12.2. Apply-to-all functions 38

A. Bellaachia Page: 3

1. Definitions

 Functional programming languages were originally developed

specifically to handle symbolic computation and list-

processing applications.

 In FPLs the programmer is concerned only with functionality,

not with memory-related variable storage and assignment

sequences.

 FPL can be categorized into two types;

 PURE functional languages, which support only the

functional paradigm (Haskell), and

 Impure functional languages that can also be used for

writing imperative-style programs (LISP).

2. Applications

 AI is the main application domain for functional

programming, covering topics such as:

expert systems

knowledge representation

machine learning

natural language processing

modelling speech and vision

A. Bellaachia Page: 4

o In terms of symbolic computation, functional

programming languages have also proven useful in

some editing environments (EMACS) and some

mathematical software (particularly calculus)

 Lisp and its derivatives are still the dominant functional

languages (we will consider one of the simpler derivatives,

Scheme, in some detail).

3. Examples

 Programming Languages:

o Lisp, Scheme, Miranda, Sisal, Haskell, APL, ML

 Code Examples: Compute the sum of n integers

o A C implementation:

Sum=0;

for(i=1;i<=n;++i)

sum +=i;

 Computations is done by assignment.

o A Haskell implementation:

sum [1..10]

 Computations is function application.

A. Bellaachia Page: 5

o A Python implementation:

>>> sum([1,2,3,4])

10

>>>

 Computations is function application.

4. FPL Characteristics:

 Functional programming languages are modeled on the

concept of mathematical functions, and use only

conditional expressions and recursion to effect

computation.

 In the purest form they use neither variables nor

assignment statements, although this is relaxed somewhat

in most applied functional languages.

 The concept of side effects is also alien to purely functional

programming: a function is given values and returns a

value, there are no variables to manipulate and hence no

possibility for side effects.

 Programs are constructed by composing function

applications - the values produced by one or more functions

become the parameters to another.

 For reasons of efficiency (because the underlying machine

is, in fact, imperative) most functional languages provide

some imperative-style capabilities, including variables with

A. Bellaachia Page: 6

assignment, sequences of statements, and imperative style

loop structures.

 Note that the functional paradigm can also be used with

some imperative languages - e.g. C has both a conditional

expression and support for recursion - so the factorial

function code be coded in functional style in C (or C++ or

Java) as follows: int fact(int x){ return (x == 0) ? 1 : x *

fact(x - 1); }

 Three primary components:

 A set of data object: A single, high-level

data structure like a list

 A set of built-in functions for object

manipulation: Building, deconstructing,

and accessing lists

 A set of functional forms for building

new functions: Composition, reduction,

etc.

5. Lambda calculus (LC)

 A method of modeling the computational aspects of

functions

 It helps us understand the elements and semantics of

functional programming languages independent of

syntax

5.1. LC expressions forms

 There are three LC expressions forms:

A. Bellaachia Page: 7

o e1: A single identifier (such as x, or 3)

o e2: A function definition of the form (x.e)

:The expression e, with x being a bound

variable

 e is the body of the function, x

is a parameter

 e may be any of the three types

of expressions

 square(x) would be written as

(x.x*x)

o e3: A function application of the form e1 e2

Meaning e1 applied e2

square applied to 2 would be

((x.x*x) 2)

 Free and Bound Variables:

A variable appearing in a function F is

said to be free if it is not bound in F

Bound variables are like formal

parameters, and act like local variables

Free variables are like non-local variables

that will be bound at an outer level:

In the function x.xk, x is

bound and k is free

 Substitution: Applying a function

o To apply a function, we rewrite the function,

substituting all occurrences of the bound

A. Bellaachia Page: 8

variable by the argument

o We use substitution to replace all occurrences of an

identifier with an expression:

 [e/x]y means "substitute e for all

occurrences of x in expression y"

5.2. Semantic of Functional Computations:

 We define the result of a function application in

terms of the following:

o Rewriting the definition

o Replacing bound variables with the

corresponding arguments

 Rewrite rules:

o r1: Renaming

 xi.e xj.[xj/xi]e, where xj is not free

in e

 We can replace all occurrences of the

name of a bound variable with another

name without changing the meaning

o r2: Application

 (x.e1)e2 [e2/x]e1
 Replace the bound variable with the

argument to the application

A. Bellaachia Page: 9

o r3: Redundant function elimination

 x.(e x) e, if x is not free in e

o An expression that can no longer be reduced is

said to be in normal form

 Examples:

(x.(y.x + y) 5)((y.y * y) 6) =

(x.x + 5)((y.y * y) 6) =

(x.x + 5)(6 * 6) =

((6 * 6) + 5)

(λx. λy.x + y) 3 4

 λy.(3 + y) 4

 (3 + 4)

 7

5.3. Python Lambda Expression

 Python’s lambda creates anonymous

functions

>>> myf = lambda z: z * 42

 >>> f(3)

126

A. Bellaachia Page: 10

 Only one expression in the lambda body; its

value is always returned.

 Examples:

>>> def f (x): return x**2

...

>>> print f(8)

64

>>>

>>> g = lambda x: x**2

>>>

>>> print g(8)

64

>>> f = lambda y: y * y

>>> g = lambda y: f(x) + y

>>> x=6

>>> f(6)

36

>>> g(5)

41

>>>

>>> myLamFunction = lambda a, b: a+b

>>> myLamFunction(2,3)

5

>>>

A. Bellaachia Page: 11

6. Functions in FPLs

 In a functional language, the basic unit of computation is

the FUNCTION.

 The function definitions typically include a name for the

function, its associated parameter list, and the expressions

used to carry out the computation.

 A function computes a single value based on 0 or more

parameters.

 Though the parameters of a function look like

variables in an imperative language, they are

different in that they are not subject to having

their value changed by assignment - i.e. they

retain their initial value throughout the

computation of the function.

 Pure functional languages don't need an

assignment statement.

 Function construction: given one or more functions as

parameters, as well as a list of other parameters,

construction essentially calls each function and passes it the

list of "other" parameters.

 Function composition: applying one function to the result

of another. E.g. square_root(absolute_value(-3))

A. Bellaachia Page: 12

 Apply-to-all functions: takes a single function as a

parameter along with list of operand values. It then applies

the function to each parameter, and returns a list containing

the results of each call.

 Example:

suppose applyall carried this out with the function

square and the data list (1 2 3).

The result would be a list with the values from

square(1), square(2), and square(3), i.e. (1 4 9)

 Example: A LISP factorial function, illustrating use of

conditional expressions and recursion for iteration

 (DEFUN FACT (X)

 (IF (= X 0)

 1

 (* X (FACT (- 1 X)))

)

)

A. Bellaachia Page: 13

7. IPL vs. FPL

 Note that in imperative programming we concern ourselves

with both the computation sequence and maintaining the

program state (i.e. the collection of current data values).

 Unlike IPLs, purely functional languages (no variables and

hence no assignments) have no equivalent concept of state:

the programmer focuses strictly on defining the desired

functionality.

 Iteration is not accomplished by loop statements, but rather

by conditional recursion.

 Functional programmers are concerned only with

functionality. This comes at a direct cost in terms of

efficiency, since the code is still translated into something

running on Von Neuman architecture.

A. Bellaachia Page: 14

8. Scheme overview

8.1. Get your own Scheme from MIT

swissnet.ai.mit.edu/projects/scheme/index.html

8.2. General overview

Scheme is a functional programming language

Scheme is a small derivative of LISP:

LISt Processing

Dynamic typing and dynamic scooping

Scheme introduced static scooping

 Data Objects

 An expression is either an atom or a list

 An atom is a string of characters

A

Austria

68000

http://swissnet.ai.mit.edu/projects/scheme/index.html

A. Bellaachia Page: 15

 As in Lisp, a Scheme program is a set of

expressions written in prefix notation:

to add 2 and 3, the expression is (+ 2 3)

to subtract 2 from 3, the expression is (- 3 2)

to use the built-in function max to determine the maximum

value from 2, 3, and 17, the expression is (max 2 3 17)

8.3. Data Typing

 Scheme uses dynamic typing (data types are

associated with values rather than with variables)

and uses static scoping for determining the visibility

of non-local variables.

8.4. Comments

 Comments begin with a semi-colon

 Example:

For instance, showing > as the prompt for

user input, a session might look like:

>; First some commentary, which won't get

evaluated

; below we will provide the postfix for

A. Bellaachia Page: 16

; 2+3, and then for (2+3)+6

; and finally for (2+3)-(2*2)

; we'll start the statements to be evaluated

; on the next line

(+ 2 3)

; Value: 5

>(+ (+ 2 3) 6)

; Value: 11

>(- (+ 2 3) (* 2 2))

; Value: 1

8.5. Recursion Instead of Iteration

 Since we are expressing the entire computation as a

composition of functions into a single function,

recursion is usually used rather than iteration

 Example:

>; the first line is the header for the Fibonacci

function:
(define Fibonacci (lambda (n)

; next is the termination case

(if (< n 3) 1

; and the recursive cal

(+ (Fibonacci (- n 1)) (Fibonacci (- n 2))))))

> (Fibonacci 6)

A. Bellaachia Page: 17

; Value: 8

8.6. Evaluation

 The functional approach sometimes requires us to

take a "bottom-up" view of the problem: creating

functions to compute the lowest layer of values,

then other functions taking those as operands.

 Example: Design a code to compute (a + b + c) / (x

+ y + z)

 Compute the numerator and denominator

separately,

; for the numerator

(+ a b c)

; for the denominator

(+ x y z)

and then decide how to apply division with those

two functions as operands, i.e.:

(/ (+ a b c) (+ x y z))

8.7. Storing and using Scheme code

The load function is available to load a Scheme

program stores in a an text file, e.g.:

> (load "myfile.txt")

; Loading "myfile.txt" -- done

A. Bellaachia Page: 18

8.8. Variables

 Variables are always bound to values

 To declare and initialize a variable, we use the built in

define command, giving it the variable name and the value

it is to be initialized with (the value may be an expression)

Examples:

> (define x 3)

; Value:x

> (define foo (+ 4 7))

; Value: foo

Check the content of a variable:

>x

; Value: 3

>foo

; Value: 11

A. Bellaachia Page: 19

8.9. Data types

Literals are described as self-evaluating, in that

evaluating the literal returns the value they

represent. (E.g. evaluating 3 returns the

integer value 3.)

The primitive types are:

characters

strings (in double-quotes)

Booleans:

True: #t

False: The empty set for false or

#f (see example below).

Integers

rational numbers

real numbers

complex numbers.

List: There is also a composite data type,

called the list, which is a fundamental part

of Scheme. Lists are considered in detail in a

later section.

 Numbers

There are integers, rationals, reals, and complex

numbers.

In general, Scheme will return as exact an answer as it

can (i.e. it will give an exact integer or rational over a

real approximation).

Examples:
Let's see the results of some basic arithmetic:

>(/ 3.2 1.6)

A. Bellaachia Page: 20

; Value: 2.

>(/ 16 10)

; Value: 8/5

Suppose we were to try some comparisons:

>(< 2 3)

; Value: #t

>(< 4 3)

; Value: ()

8.10. Arithmetic functions

There are many built-in arithmetic functions. Some of

the commonly used ones include:

max, min

+, *, -, /

quotient, modulo, remainder

ceiling, floor, abs, magnitude, round, truncate

gcd, lcm

exp, log, sqrt

sin, cos, tan

There are also a number of comparison

operators returning Boolean values

A. Bellaachia Page: 21

<, >, =, <=, >=

real?, number?, complex?, rational?, integer?

Example:

(complex? 4+3i)

;Value: #t

zero?, positive?, negative?, odd?, even?, exact?

Examples:

>; does 7 divided by 3 produce an integer result?

(integer? (/ 7 3))

; Value: ()

>; does 7 divided by 3 produce an exact result?

(exact? (/ 7 3))

; Value: #t

(Note that rational values are considered exact.)

 Boolean functions

and, or, not

equal?, Boolean?

E.g., check to see if three is less than seven and two

is not equal to four

>(and (< 3 7) (not (= 2 4)))

; Value: #t

8.11. Selection functions

A. Bellaachia Page: 22

 Selection in a functional language still controls the choice

between different computations, but is expressed by

returning the results of functions representing the different

computations.

 The two major Boolean control operations are:

IF

COND.

 IF:

For example, suppose if x is less than 0 we

want to return y - x: (if (< x 0) (- y x))

Now suppose that if x is less than 0 we want

to return 0, otherwise we want to return the

value x - 1:

(if (< x 0) 0

 (- x 1))

 COND statement is somewhat like the C switch

statement, allowing a series of conditions to test for (with

corresponding functions to evaluate and return) and a

default case:

(cond ((= x y) 0)

 ((> x y) 1)

 (else -1)

)

A. Bellaachia Page: 23

 Lists

 Lists are the main composite data type in Scheme.

 Lists are composed of a series of elements, enclosed

in brackets.

 Implementation note: the typical implementation

format for lists is to represent each element in a list

using two pointers:

 One points to the actual implementation of

the element (hence allowing us to use

anything we like as a list element, the

pointer can refer to a primitive data element,

a list, a string, etc)

 The other points to the next element in the

list

 Example:

 (a b c d) has the four elements a, b, c, and d.

 The empty list is denoted ()

 Examples of lists include

'(a) ; a list with a single element

'(a b c) ; a list with three elements

'() ; an empty, or null, list

'((a b)) ; a list with a single element, which

happens to be another list

A. Bellaachia Page: 24

'("blah" 3.7 () (a b) c) ; a list with 5 elements of a

variety of types

Head:

The front element of the list

It is always an element

Tail:

The list of the remaining elements.

It is always a list

Single quote:

It is used to denote elements which are

actually lists (see the examples in list

functions below)

 List functions

 Constructing lists:

 (list a b c d): creates a list of the given elements (a b

c d)

 (append '(a b) '(c d)): joins the two lists to create list

(a b c d)

 (cons a '(b c d)): adds the first operand at the head

of the other list to create a new list (a b c d)

 Note that (cons '(a) '(b c d)) would add the list (a) as

the head element, giving ((a) b c d)

 CAR function returns the head element of a list, i.e.

(car '(a b c d)) gives a

 CDR function returns the tail of a list, i.e. (car '(a b

c d)) gives (b c d)

 Examples:

A. Bellaachia Page: 25

>(define mylist (list 1 2 3 4 5))

; Value: mylist

>mylist

; Value: (1 2 3 4 5)

>(length mylist)

; Value: 5

>(reverse mylist)

; Value: (5 4 3 2 1)

>mylist

; Value: (1 2 3 4 5)

>(reverse (cdr mylist))

; Value: (4 3 2 1)

 Observe that the functions applied to mylist are NOT

altering the list itself - they are returning manipulated

copies of the list.

A. Bellaachia Page: 26

8.12. Iteration

 Scheme do expression is similar to a C for loop.

(do

((variable init step)...)

(test test-expression ...)

body-expression ...

)

 Example:

(do ; for(i=1;i<10;i++)

 ((i 1 (+ i 1)))

 ((> i 10))

 (write i)

 (write-char #\newline)

)

 step part may be omitted

(do

 (; for(i=10,sum=0;i!=0;i--)

 (i 10 (- i 1))

 (sum 0)

)

 ((= i 0)

 (write-char #\newline)

 (write "The sum is:")

 (write sum)

)

 (set! sum (+ sum i))

)

A. Bellaachia Page: 27

8.13. Defining functions

 User-defined functions can be created through the

use of the lambda operator as follows:

(define functionname (lambda (functionparameters)

 (expression) (expression) ... (expression)))

NOTE: The value returned by the function is the value

of the last expression in the list

 Example: For example, the function below calculates

factorials:
>(define factorial (lambda (n)

 (if (< n 3) n

 (* n (factorial (- n 1))))

))

; Value: factorial

>(factorial 3)

; Value: 6

A. Bellaachia Page: 28

9. ML

 A static-scoped functional language with syntax that

is closer to Pascal than to LISP

 Uses type declarations, but also does type

inferencing to determine the types of undeclared

variables (See Chapter 4)

 It is strongly typed (whereas Scheme is essentially

typeless) and has no type coercions

 Includes exception handling and a module facility

 for implementing abstract data types

 Includes lists and list operations

 The val statement binds a name to a value (similar

to DEFINE in Scheme)

 Function declaration form:

fun function_name (formal_parameters) =

 function_body_expression;

e.g., fun cube (x : int) = x * x * x;

A. Bellaachia Page: 29

10. Haskell

 Similar to ML (syntax, static scoped, strongly

 typed)

 Different from ML (and most other functional

languages) in that it is PURELY functional (e.g., no

variables, no assignment statements, and no side

effects of any kind)

 Most Important Features:

 List functions Uses lazy evaluation (evaluate

no sub-expression until the value is needed)

 Has “list comprehensions,” which allow it to

deal with infinite lists

 Examples

1. Fibonacci numbers (illustrates function

definitions with different parameter forms)

 fib 0 = 1

 fib 1 = 1

 fib (n + 2) = fib (n + 1) + fib n

2. Factorial (illustrates guards)

 fact n

 | n == 0 = 1

 | n > 0 = n * fact (n - 1)

A. Bellaachia Page: 30

 3. List operations

- List notation: Put elements in brackets

e.g., directions = [north, south, east, west]

 - Length: #

e.g., #directions is 4

- Arithmetic series with the .. operator

e.g., [2, 4..10] is [2, 4, 6, 8, 10]

- Catenation is with ++

e.g., [1, 3] ++ [5, 7]

results in [1, 3, 5, 7]

- CAR and CDR via the colon operator

(as in Prolog)

 e.g., 1:[3, 5, 7]

results in [1, 3, 5, 7]

A. Bellaachia Page: 31

11. Functional Programming Using Python

 A list is a collection of objects.

 List constants are surrounded by square brakets and

the elements in the list are separated by commas.

 Lists are "mutable" - we can change an element of

a list using the index operator

 Examples:

myFriendsList = ['Paul', 'Mary', 'Sally']

myNums = [1,2,3,4]

myList = []

 A list can element of another list:

>>> myList2 = [1, 2]

>>> myList3 = ['a', myList2, 50]

>>> myList2

[1, 2]

>>> myList3

['a', [1, 2], 50]

>>>

11.1. List Manipulation

 Building a list from scratch:

>>> myNewList = []

>>> myNewList.append(1)

A. Bellaachia Page: 32

>>> myNewList

[1]

>>> myNewList.append(2)

>>> myNewList

[1, 2]

>>>

 Generate a list by tokenizing a text:

o Use split(delimiter) function:

 When delimiter is omitted, space(s) is

used.

o Examples:

>>> myPhrase = "The quick brown fox

jumps over the moon"

>>> myPhraseList = myPhrase.split()

>>> myPhraseList

['The', 'quick', 'brown', 'fox', 'jumps', 'over',

'the', 'moon']

>>>

 Does an element exist in a list?

o Python provides two operators that let you

check if an item is in a list:

 in

 not in

o These operators do not change the content

of the list.

o Examples:
>>> myList = [1, 9, 21, 10, 16]

>>> 10 in myList

A. Bellaachia Page: 33

True

>>> 2 in myList

False

>>> 9 not in myList

False

>>>

 Append to list:

o Add an element to a list without changing the

list:

>>> myList = ['tot', 1, 3, 'foo', 'python', 'c']

>>> myList

['tot', 1, 3, 'foo', 'python', 'c']

>>> myList + ['new']

['tot', 1, 3, 'foo', 'python', 'c', 'new']

o Change the content of the list:

>>> myList

['tot', 1, 3, 'foo', 'python', 'c']

>>> myList.append('Java')

>>> myList

['tot', 1, 3, 'foo', 'python', 'c', 'Java']

>>>

 Merge two lists:

>>> myList1 = myList + myList

>>> myList1

['tot', 1, 3, 'foo', 'python', 'c', 'Java', 'tot', 1, 3, 'foo',

'python', 'c', 'Java']

>>>

A. Bellaachia Page: 34

>>> myList = ['a', 'b', 100]

>>> myList1 = 3*myList

>>> myList1

['a', 'b', 100, 'a', 'b', 100, 'a', 'b', 100]

>>>

 List Operations:

o Accessing a specific element of a list:

 >>> mylist

[1, 2, 3, 4]

>>> mylist.index(3)

2

o Removing elements:

>>> mylist.remove(2)

>>> mylist

[1, 3, 4]

o Counting Occurences of an element:

>>> mylist.count(1)

1

>>> mylist = [1,2,3,3,3,4,5]

>>> mylist.count(3)

3

>>> mylist = [2,2,2,4,4,5,6]

>>> mylist.count(2)

3

 Sorting a List:

A. Bellaachia Page: 35

>>> myList.sort()

>>> myList

[1, 9, 10, 16, 21]

>>>

>>> myList = ['z', 'b', 'o', 'b', 'p', 'a']

>>> myList.sort()

>>> myList

['a', 'b', 'b', 'o', 'p', 'z']

>>>

11.2. Car & CDR

 Car/cdr Function:

o Example:

>>> myList =['tot', 1, 3, 'foo', 'python', 'c']

>>> myList[0] # like (car myList)

'tot'

>>> myList[1:] # like (cdr myList)

[1, 3, 'foo', 'python', 'c']

>>>

o Example:

 In Lisp

(DEFINE (member atm lis)

 (COND

 ((NULL? lis) '())

A. Bellaachia Page: 36

 ((EQ? atm (CAR lis)) #T)

 ((ELSE (member atm (CDR lis)))

))

 In Python:

def member(atm, lis):

 if len(lis) == 0:

 return (False)

 elif atm == lis[0]:

 return(True)

 else:

 return(member(atm, lis[1:]))

A. Bellaachia Page: 37

12. Functions

 Functions can be used as any other datatype.

 They can even be used as arguments to functions

o Example:

>>> >>> def square(x): return x*x

>>> def useFunction(anyfunction, x): return anyfunction(x)

>>> useFunction(square,4)

16

>>>

12.1. Composition

>>> def powerOf2 (n):

 return (2**n)

>>> powerOf2(2)

4

>>> def doublePower(n):

 return(powerOf2(powerOf2(n)))

>>> doublePower(2)

16

>>>

A. Bellaachia Page: 38

12.2. Apply-to-all functions

 Max/Min Function:

>>> myNums

[1, -1, 200, 12, 33, 400, 0]

>>> print max(myNums))

SyntaxError: invalid syntax

>>> print (max (myNums))

400

>>>

>>> print (min (myNums))

-1

>>>

 Length Function:

>>> myList = [1,2,3,4,5,6]

>>> print (len(myList))

6

>>>

 Map, Reduce, Filter Functions

o Let us now look at 3 higher order functions

which are used a lot in functional

o Map:

 Map takes a function and a list and

applies the function to each elements in

the list

 Example:

>>> g = lambda x: x**2

A. Bellaachia Page: 39

>>> mylist = [1,2,3,4]

>>> print (list (map(g, mylist)))

[1, 4, 9, 16]

>>>

o Reduce:

 The function reduce(func, seq)

continually applies the function func() to

the list. It returns a single value.

 Example:

>>> from functools import reduce

>>> myList = [1,2,3,4,5,6]

>>> k = lambda x,y: x+y

>>> print (reduce(k,mylist))

99

>>>

o Filter:

 Filter takes a function (what type) and a

list, and returns items which pass the test

 Example:

>>> mylist = [10,4,6,9,11,7,22,30]

>>> h = lambda x: x % 3 == 0

>>> print (list (filter(h, mylist)))

[6, 9, 30]

>>> h = lambda x: x % 2 == 0

>>> print (list (filter(h, mylist)))

[10, 4, 6, 22, 30]

