
A. Bellaachia Page: 1

Event Driven Programming

1. Objectives .. 2

2. Definitions.. 2

3. Event-Driven Style of Programming 2

4. Event Polling Model .. 3

5. Java's Event Delegation Model ... 5

6. How to Implement an Event Handler? 7

A. Bellaachia Page: 2

1. Objectives

 The user is in charge instead of the program: He or she can

perform tasks in any order.

2. Definitions

 Events can be triggered by human interaction or

alternatively a software or hardware process causing an

event to be triggered.

 An event is a hardware condition that is signaled

 Common events are from input devices:

 mouse events - mouse up, mouse down, mouse

move

 keyboard events - key up, key down

 network events - packet arrival

 window events - window resized, window

dragged, focus lost

 Special hardware detects and signals these events. Each

event has additional information. For example a mouse

movement event has an x and y coordinate.

3. Event-Driven Style of Programming

 In event-driven programming, there is essentially no

normal flow-of-control! Only the event handlers exist.

A. Bellaachia Page: 3

 Flow-of-control in the program is entirely driven by

responding to events.

 Program is driven by responding to events

 Two main models:

 Polling:

o Has the event happened yet?

o Are we there yet? Are we there yet?

Etc.

 Delegating:

o Here is what I want you to do when

this event occurs.

4. Event Polling Model

 How does it work?

 Loop: Polling tends to push all event-handling

code into one location (inside the big loop

 The resulting interactions within the big loop tend

to be complex.

 In addition, polling requires a program to sit in a

loop, consuming CPU cycles, while waiting for

the user to do something -- a serious waste of a

valuable resource.

 The Event Loop pseudo-code:

loop

 wait for an event to arrive

 get the event details

A. Bellaachia Page: 4

 do something based on the event

until a stop event occurs

 Examples: Windows and Palm OS

 The Basic Palm Event Loop

The basic Palm event loop looks like this:

EventType event;

do {

 EvtGetEvent(&event, evtWaitForever);

 // dispatch the event here

} while(event.eType != appStopEvent); // until told to stop

Where EvtGetEvent is a Palm OS API:

 It returns the next event for the application by

copying it into the EventType structure passed in

as the first parameter.

 The second parameter is a timeout value, which

tells the operating system how long the

application wants to wait before an event occurs:

evtWaitForever constant: Wait indefinitely

Number of ticks: Pass in the number of

ticks (hundredths of a second) to wait.

A. Bellaachia Page: 5

5. Java's Event Delegation Model

 Supersedes Java's original containment and inheritance

based event handling.

 This model is more efficient since not all events are

handled by your program.

 Three kinds of things (with various corresponding Java

classes):

1. Events:

 Representation of things that happen,

derived from the superclass EventObject.

 They occur in response to an action by

the user within the Graphical User

Interface (GUI).
 When an event occurs, the source of the

event notifies listeners.

2. Event sources:

 Objects that can generate events

 It only notifies listeners that have been

registered to receive the event

 Examples:

Event Source How triggered Event Generated

Button Button pressed Action events

Checkbox Checkbox selected

or deselected

Item events

A. Bellaachia Page: 6

 Multicasting of the event: When an event

occurs, the source notifies all the listeners

that have registered for that event. The

notification includes the details about the

event, for example, the name of the source

that generated the event, the key that was

pressed or the location where the mouse was

clicked.

 Example of events:

Event Classes Description

ActionEvent Button pressed, list item selected, or

item menu selected

TextEvent Value or text field or text area

changed.

KeyEvent Key is pressed or released or typed

MouseEvent Mouse clicked, pressed, released,

dragged, moved, enters, or exits a

compment.

FocusEvent Component gains or loses

focus(keyboard).

3. Event listeners (handlers):

 Are responsible to recognize and process

events. Objects that want to respond to

events.

 A listener is an object that is notified by the

source, if registered, when an event occurs.

 Register their interest in certain events with

event sources.

 Listeners usually sit back and waits for an

event to happen.

A. Bellaachia Page: 7

6. How to Implement an Event Handler?

Every event handler requires three bits of code:

1. In the declaration for the event handler class, code that

specifies that the class either implements a listener

interface or extends a class that implements a listener

interface. For example:

public class MyButtonHandler implements ActionListener {

// class members ...

// constructor …

 ……

 }

2. Code that registers an instance of the event handler

class as a listener upon one or more components. For

example:

public class MyButtonHandler implements ActionListener {

// class members ...

// constructor …

 …

//someComponent.addActionListener(instanceOfMyClass);

button.addActionListener(this);

 …

 }

3. Code that implements the methods in the listener

interface. For example:

A. Bellaachia Page: 8

public class MyButtonHandler implements ActionListener {

// class members ...

// constructor …

 …

//someComponent.addActionListener(instanceOfMyClass);

button.addActionListener(this);

 …

public void actionPerformed(ActionEvent e) {

// handle the event

// code that reacts to the action...

 }

 }

Button

C

l

i

c

k

ActionEvent Action Listener

When the user clicks a button, the button's action listeners

are notified.

A. Bellaachia Page: 9

 Some Event Classes

 KeyEvent: for keyboard input

 MouseEvent: for all sorts of mouse events: press,

release, move, drag,...

 ActionEvent: for GUI actions like clicking on a button,

selecting a menu item,...

...

 Some Event Listener Interfaces

 MouseListener:

 Methods:
void mouseClicked(MouseEvent me)

void mouseEntered(MouseEvent me)

void mouseExited(MouseEvent me)

void mousePressed(MouseEvent me)

void mouseReleased(MouseEvent me)

 Registered with some event source by calling:

void addMouseListener(MouseListener ml)

 MouseMotionListener

 Methods:

void mouseDragged(MouseEvent me)

void mouseMoved(MouseEvent me)

 Registered with some event source by calling:

A. Bellaachia Page: 10

void addMouseMotionListener(MouseMotionListener

mml)

 KeyListener

 Methods:

void keyPressed(KeyEvent ke)

void keyReleased(KeyEvent ke)

void keyTyped(KeyEvent ke)

 Registered with some event source by calling

void addKeyListener(KeyListener kl)

 ActionListener

 Methods:

void actionPerformed(ActionEvent ae)

 Registered with some event source by calling:

void addActionListener(ActionListener al)

