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1. Why concurrent programming? 

 

 Performance   

 Throughput 

 Utilization of system resources  

 

 

 

2. Evolution 

 

 Single user system:  

o First systems supported one single 

activity at a time. 

o Late 1950s - One general-purpose 

processor and one or more special-

purpose processors for input and 

output operations 

 

 

 Multiprocessing systems: These systems use 

the CPU while an input/output operation is 

being performed. Note that programmers 

cannot control this task explicitly. 

 

 Multitasking systems:  These systems give 

the impression that there are several CPUs 

serving different users at the same time. 

Programmers cannot control task scheduling. 

This is done by the operating system. 

 



 Multithreading systems: This is becoming 

very popular with Java. Programmers can split 

their programs into several threads and 

schedule them.  

 

 Multiprocessor systems:  

 

o These are systems with several 

processing elements (PEs) and 

programmers can concurrently use 

all these PEs. 

o Single-Instruction Multiple-Data 

(SIMD) machines: 

  The same instruction goes to 

all processors, each with 

different data - e.g., vector 

processors  

 Multiple-Instruction 

Multiple-Data (MIMD) 

machines: Independent 

processors that can be 

synchronized (unit-level 

concurrency) 

 

 

 

 

 

3. Definitions 

 

 Concurrency or Parallelism? 



 Concurrency:  

 Logically simultaneous processing. 

  Does not require multiple processing 

elements 

 Requires interleaved execution on a single 

processing element. 

 

 Parallelism: 

 

 Physically simultaneous processing. 

 

 It does involve several processing elements. 

 

 Both concurrency and parallelism require 

controlled access to shared resources. 

  In general people use the word concurrent and 

parallel interchangeably. 

 

 A concurrent program: It is a program that has 

multiple threads or tasks of control allowing it perform 

multiple computations in parallel and to control multiple 

external activities that occur at the same time.  

 

 Processes: 

 A process is an operating system 

abstraction that allows once computer 

system to support many units of 

execution. 

 Each process typically represents a 

separate running program; for example, a 

web browser. 



 A process can generally be composed of 

one or several threads. 

 Threads: 

 A thread is a single sequential 

execution path in a program.  

 A thread is executed independently of 

other threads, while at the same time 

possibly sharing underlying system 

resources such as files, as well as 

accessing other objects constructed 

within the same program.  

 Every program has at least one thread 

 Threads subdivide the run-time 

behavior of a program into separate, 

independently running subtasks. 

  Every thread has its own: 

 stack, 

 priority, and 

 virtual set of registers. 

 

4. Concurrent languages 

 

 Concurrent Pascal  

 Concurrent C 

 Communicating Sequential Processes (CSP) 

 Ada 

 Java 

 Etc. 

 

 



5. Problems with concurrency 

 

 Non-deterministic: Unlike sequential programs, 

where programs are completely deterministic and 

their behavior can be reproducible, concurrent 

programs are likely to be highly non-deterministic. 

The order of execution of process in a concurrent 

program is unpredictable since it may be influenced 

by run-time conditions.  

 Speed-dependence: A sequential program is speed-

independent because its correctness does not depend 

on the rate at which it is executed. However, a 

concurrent program may be speed-dependent. Its 

final output may depend on the relative speeds of 

execution of its component sequential processes.  

 Deadlock: Deadlock is a situation in which a set of 

processes are prevented from making any further 

progress by their mutually incompatible demands 

for additional resources. This can occur in a system 

of processes and resources iff the following 

conditions all hold together:  

 Mutual exclusion: processes are given 

exclusive access to the resources they 

acquire. 

 Wait and hold: processes continue to 

hold previously allocated resources 

while waiting for a new resource 

demand to be satisfied. 



 No preemption: resources cannot be 

removed from a process until it 

voluntarily releases them. 

 Circular wait: there may be a cycle of 

resources and processes in which each 

process is awaiting resources that are 

held by the next process in the cycle. 

 Starvation: This is the case where a process is 

prevented indefinitely from running by unfair 

scheduling. Fair scheduling ensures that no process 

needing a resource is indefinitely prevented from 

obtaining it by the demand from other processes.  

 

 

 

 

 

 

 

 

6. Process Interactions 

 

 Definitions and Notations [D. Watt]: 

 

 Sequential processes:  

 Given two processes A and B, the sequential 

execution of A and B is denoted A;B, i.e., A is 

executed before B. 

 



 Collateral processes:  

 Given two processes A and B, the collateral 

execution of A and B is denoted A,B, i.e., the 

execution of A and B can be done in any order. 

 Example: m=7, n=n+1  

 Note that collateral processes are non-

deterministic.  

 Parallel processes:  

 Given two processes A and B, the parallel 

execution of A and B is denoted A||B.  

 Note that A and B don’t have to be executed 

simultaneously.  

 Unlike sequential processes, A and B may 

need to interact. 

 

 Independent processes 

 

 Definition: Two processes A and B are 

independents if any component or any task Ai 

of A may be executed in any time relationship 

to any component Bi of B, without effect on 

the meaning of the program.  

 Note that if A and B are independent, it 

follows that A;B is equivalent to B;A 

 Also we have A,B is equivalent to A||B.  

 In general, it is undecidable whether A and B 

are independent. 

 

 Competing processes 

 



 Definition: Two processes A and B compete if 

each must gain exclusive access to the same 

resource R for some of their tasks. 

 Let us assume the following:  

- A be the sequence A1, A2, A3 

- B be the sequence B1, B2, B3 

- None of A1, A3, B1, B3 uses R   

- We also assume that A1 and B1are independent, 

and that A3 and B3 are independent. 

- A2 and B2 want to access the same resource R.  

 

 A2 and B2 must not take place simultaneously.  

 They are called critical sections with respect to the 

resource R.  

 Thus the execution of the two sequence of 

command A and B will have two possible outcome: 

  
    ...; A2; ...; B2;... 

  or  

    ...; B2; ...; A2;... 

   but not 

     ...; A2 || B2;... 

 

Which of these outcomes actually happens 

will depend on the relative speeds at which 

A and B are executed, and is not in general 

predictable. 

 

 Communicating processes 

 

 Definition: We say that there is a 

communication from A to B if the task A2 



must entirely precede the action B2 in the case 

B2 needs information produced by A2. 

 Two communicating concurrent processes A||B 

have the same outcome as the sequential 

execution of A;B.  

 Note that communicating processes involving several 

processes yield to the pipeline paradigm. 

 Example: In Unix provides the notation C1|C2 

to execute two commands C1 and C2 

concurrently and C2 takes the output of C1 as 

input.  

 Two processes intercommunicate if there is a 

communication in both directions.  

 This makes the possible outcomes of  'C || k' 

very much more numerous. 

 

  

7. Low-level Concurrency Primitives 

 

 What are low-level abstractions that affect 

concurrency: create, destroy, and control. 

 

 Process creation and control:  

 Different programming languages provide 

different primitive operations to create and 

control processes: 

 

Fork: create, load, and start a task 

Join: wait and destroy 

 



 In Java, this is done by creating an object of 

type thread and start it by invoking the start 

method.  

Example: 

New MyThread().start();  

where MyThread is a class thread.  

 

By invoking the start() method, the JVM scheduler is 

told to run the thread. The scheduler invokes the run() 

method from the object.  

 

Threads in Java are destroyed once the run() 

method is done much like the main() 

function in a C program. 

 

 Event 

 

 An event represents a class of state changes, 

the occurrence of which must be 

communicated among a set of processes. 

 

 In general, this is done through two operations:  

 

Event-wait(e): When a process executes 

this event, it is blocked awaiting the next 

occurrence of an event e. 

Event-signal(e): This operation makes all 

processes that are waiting for the event e to 

run again. If e is omitted, then all blocked 

processes are ready to run. 

 



 Java uses the following operations:  

 

Wait() 

Notify() or notifyall() 

 

 

 Messages:  

 When processes run on a network of 

computers, the network provides a data 

communication service that supports 

process interaction by the exchange of 

messages.  

 If the set of computer uses a shared 

memory architecture, the communication 

can be done using shared variable 

construct such as in Universal Parallel C 

(UPC). 

 

 

 

 

 

 

 Remote Procedure Calls (RPCs) 
 

 RPC is based on extending the notion of 

conventional, or local procedure 

calling, so that the called procedure need 

not exist in the same address space as the 

calling procedure.  



 The two processes may be on the same 

system, or they may be on different 

systems with a network connecting them. 

By using RPC, programmers of 

distributed applications avoid the details 

of the interface with the network.  

 The transport independence of RPC isolates the 

application from the physical and logical elements 

of the data communications.  

 Remote Procedure Calling Mechanism A remote 

procedure is uniquely identified by the triple: 

(program number, version number, procedure 

number): 

 The program number identifies a group of 

related remote procedures, each of which has 

a unique procedure number.  

 A program may consist of one or more 

versions. Each version consists of a 

collection of procedures that are available to 

be called remotely. Version numbers enable 

multiple versions of an RPC protocol to be 

available simultaneously.  

 Each procedure has a procedure number. 

 

 

 



8. Synchronization 

 

  

 Data corruption and inconsistency, and deadlock 

may occur in a multiprogramming environment may 

occur when processes share resources like the 

content of a shared memory area, files, devices. 

 In order to control the access to these shared 

resources, multithreaded environments should 

include support for concurrency control 

mechanisms.  

 Three type to handle synchronization:  

 

 Semaphores 

 Conditional critical sections: This is similar 

to the critical section, except that the execution 

of the critical section is based on a condition(s) 

 Monitors: allows safe and effective sharing of 

an ADT among several processes. 

 Message Passing 
 

 

 Semaphores 

 

 Dijkstra – 1965 

 A semaphore is a data structure consisting of a 

counter and a queue for storing task descriptors 

 Semaphores can be used to implement guards 

on the code that accesses shared data 

structures. 



 Semaphores have only two operations, wait 

and release (originally called P and V by 

Dijkstra) 

 

P(s): if s > 0 then s = s - 1 

      else suspend current process 

V(s): if there is a process suspended on s 

      then wake one of them up 

      else s = s + 1 

 

 Semaphores can be used to provide both 

competition and cooperation synchronization 

 

 Monitor 

 

 The idea: encapsulate the shared data and its 

operations to restrict accessA monitor is an 

abstract data type for shared data 

 

 It is the implementation that ensures the 

mutual exclusion using the delay and 

continue primitives (p 223 & 225) 

 

 Example language: Concurrent Pascal and 

Java 
 

 Message Passing 

 

 Message passing is a general model for 

concurrency 

 It is not just for competition synchronization 



 Central idea: task communication is like 

seeing a doctor--most of the time he waits for 

you or you wait for him, but when you are both 

ready, you get together, or rendezvous (don’t 

let tasks interrupt each other) 

 In terms of tasks, we need:  

 

o A mechanism to allow a task to 

indicate when it is willing to 

accept messages 

o Tasks need a way to remember 

who is waiting to have its message 

accepted and some “fair” way of 

choosing the next message 

 

 

 Definition: When a sender task’s message is 

accepted by a receiver task, the actual 

message transmission is called a rendezvous  

 

 Example: The Ada Message-Passing Model 

 

9. Example 



 The classic Producer-Consumer problems 

 Producer creates things 

 Consumer processes things 

 Many examples in operating systems 

 Print spooler 

 Compile sequences (Compile, generate 

code, link, etc.) 



 

 Pseudo Code: 

 

Process Producer  { 

  repeat forever  { 

    produce an element; 

    append it to the buffer; 

  } 

} 

Process Consumer  { 

 repeat forever  { 

    remove an element from the buffer; 

    operate on it; 

  } 

} 

 

 We need to control access to the buffer 

 

 Writing to a full buffer 

 Reading from an empty buffer 

 More subtly, we need to ensure mutual 

exclusion to the variable describing the state 

of the buffer 

Procedure Append  { 

  total_elements++; 

  i = next_in( ); 

  buffer[i] = x; 

} 

Procedure Remove  { 

  total_elements--; 

  j = next_out( ); 

  x = buffer[j]; 

} 



 

 Producer-Consumer with semaphores 

 

 These are the variables shared between the producer 

and the consumer: 

 

// Buffer to hold items. 

buffer buf;  

semaphore mutex = 1;           // Mutal exclusion. 

          items = 0;           // Num. items in buf. 

          spaces = buf.size(); // Num. spaces in buf. 

  

 Producer 

process Producer  { 

  int i; 

  for( ;; )  { 

    produce( i ); 

    P( spaces ); // Wait for free space. 

    P( mutex );  // Wait to access buf. 

    buf.append( i ); 

    V( mutex );  // Release buf for others. 

    V( items );  // One more item in buf. 

  } 

} 

 

 Consumer 

process Consumer  { 

  int j; 

  for( ;; )  { 

    P( items );  // Wait for item in buf. 

    P( mutex );  // Wait to access buf. 

    j = buf.remove( ); 

    V( mutex );  // Release buf for others. 

    V( spaces ); // One more space in buf. 



    consume( j ); 

  } 

} 

 



10. Concurrency in Java 

 

 Introduction 

 

 Java provides a Thread class to support 

threading. 

 This class keeps track of the context of threads 

and provides many methods to control them. 

 Java provides a package, called green threads, to 

support operating systems that do not support 

threads. 

 

 Creation of a Java thread 

 

1. Create a new class: 

a. Define a subclass of Thread 

b. Override its run() method 

2. Instantiate and run the thread 

a. Create an instance of the class 

b. Call its start() method, which puts the thread in 

the queue. 

3. The JVM scheduler calls the thread’s run() method. 

 

 

 

 

 

 

 

 

 



11. Java Thread Life Cycle (Deitel & Deitel) 

 

 

 

 

 

 
 

 

 

 

 

 



 Thread priority: 

 

 Every Java thread has a priority in the range 

Thread.MIN_PRIORITY (a constant of 1) and 

Thread.MAX_PRIORITY (a constant of 10).  

 Default: Each thread is given priority 

Thread.NORM_PRIORITY (a constant of 5). 

 Each new thread inherits the priority of the thread 

that creates it.  

 The job of the Java scheduler is to keep a highest-priority 

thread running at all times, and if timeslicing is available, to 

ensure that several equally high-priority threads each execute 

for a quantum in round-robin fashion (i.e., these threads can 

be timesliced).  

 The following figure illustrates Java’s multilevel priority 

queue for threads. In the figure, threads A and B each execute 

for a quantum in round-robin fashion until both threads 

complete execution. Next, thread C runs to completion. Then, 

threads D, E and F each execute for a quantum in round-robin 

fashion until they all complete execution. This process 

continues until all threads run to completion.  

 

 

 

 



 
 

 

 Starvation: Note that new higher-priority threads could 

postpone–possibly indefinitely–the execution of lower-

priority threads. Such indefinite postponement is often 

referred to more colorfully as starvation. 



 Example:  
 

package paradigms; 

 

  1) // Fig. 15.3: ThreadTester.java 

  2) // Show multiple threads printing at different intervals. 

  3)  

  4) public class ThreadTester { 

  5)    public static void main( String args[] ) 

  6)    { 

  7)       PrintThread thread1, thread2, thread3, thread4; 

  8)  

  9)       thread1 = new PrintThread( "thread1" ); 

 10)       thread2 = new PrintThread( "thread2" ); 

 11)       thread3 = new PrintThread( "thread3" ); 

 12)       thread4 = new PrintThread( "thread4" ); 

 13)  

 14)       System.out.println( "\nStarting threads" ); 

 15)  

 16)       thread1.start(); 

 17)       thread2.start(); 

 18)       thread3.start(); 

 19)       thread4.start(); 

 20)  

 21)       System.out.println( "Threads started\n" ); 

 22)    } 

 23) } 

 24)  

 25) class PrintThread extends Thread { 

 26)    private int sleepTime; 

 27)  

 28)    // PrintThread constructor assigns name to thread  

 29)    // by calling Thread constructor 

 30)    public PrintThread( String name ) 

 31)    { 

 32)       super( name ); 

 33)  

 34)       // sleep between 0 and 5 seconds 

 35)       sleepTime = (int) ( Math.random() * 5000 ); 

 36)  

 37)       System.out.println( "Name: " + getName() + 

 38)                           ";  sleep: " + sleepTime ); 

 39)    } 

 40)  

 41)    // execute the thread 

 42)    public void run() 



 43)    { 

 44)       // put thread to sleep for a random interval 

 45)       try { 

 46)          System.out.println( getName() + " going to sleep" ); 

 47)          Thread.sleep( sleepTime ); 

 48)       } 

 49)       catch ( InterruptedException exception ) { 

 50)          System.out.println( exception.toString() ); 

 51)       } 

 52)  

 53)       // print thread name 

 54)       System.out.println( getName() + " done sleeping" ); 

 55)    } 

 56) } 
 

 

 The PrintThread constructor (line 30) initializes 

sleepTime to a random integer between 0 and 4999 (0 to 

4.999 seconds). Then, the name of the thread and the value 

of sleepTime are output to show the values for the 

particular PrintThread being constructed.  

 The name of each thread is specified as a String argument 

to the PrintThread constructor and is passed to the 

superclass constructor at line 32.  

 Note: It is possible to allow class Thread to choose a 

name for your thread by using the Thread class’s default 

constructor.  

 When a PrintThread’s start method (inherited from 

Thread) is invoked, the PrintThread object enters the 

ready state.  

 When the system assigns a processor to the PrintThread 

object, it enters the running state and its run method 

begins execution.  

 Method run prints a String in the command window 

indicating that the thread is going to sleep then invokes the 

sleep method (line 47) to immediately put the thread into a 

sleeping state.  



 When the thread awakens, it is placed into a ready state 

again until it is assigned a processor.  

 When the PrintThread object enters the running state 

again, it outputs its name (indicating that the thread is 

done sleeping), its run method terminates and the thread 

object enters the dead state.  

 Class ThreadTester’s main method (line 5) instantiates 

four PrintThread objects and invokes the Thread class 

start method on each one to place all four PrintThread 

objects in a ready state.  

 Note that the program terminates execution when the last 

PrintThread awakens and prints its name. Also note that 

the main method terminates after starting the four 

PrintThreads, but the application does not terminate until 

the last thread dies. 

 

 

 Synchronization 

 

 Java uses monitors to perform synchronization. 

 Every object with synchronized methods is a 

monitor.  

 The monitor allows one thread at a time to 

execute a synchronized method on the object.  

 This is accomplished by locking the object 

when the synchronized method is invoked–

also known as obtaining the lock.  

 If there are several synchronized methods, 

only one synchronized method may be active 

on an object at once; all other threads 

attempting to invoke synchronized methods 

must wait.  



 A thread executing in a synchronized method 

may determine that it cannot proceed, so the 

thread voluntarily calls wait. 

 When a synchronized method finishes 

executing, the lock on the object is released 

and the monitor lets the highest-priority ready 

thread attempting to invoke a synchronized 

method proceed.  
 


