
Concurrency

1. Why concurrent programming? 2

2. Evolution .. 2

3. Definitions .. 3

4. Concurrent languages ... 5

5. Problems with concurrency .. 6

6. Process Interactions .. 7

7. Low-level Concurrency Primitives 10

8. Synchronization .. 14

9. Example .. 16

10. Concurrency in Java ... 20

11. Java Thread Life Cycle (Deitel & Deitel) 21

1. Why concurrent programming?

 Performance

 Throughput

 Utilization of system resources

2. Evolution

 Single user system:

o First systems supported one single

activity at a time.

o Late 1950s - One general-purpose

processor and one or more special-

purpose processors for input and

output operations

 Multiprocessing systems: These systems use

the CPU while an input/output operation is

being performed. Note that programmers

cannot control this task explicitly.

 Multitasking systems: These systems give

the impression that there are several CPUs

serving different users at the same time.

Programmers cannot control task scheduling.

This is done by the operating system.

 Multithreading systems: This is becoming

very popular with Java. Programmers can split

their programs into several threads and

schedule them.

 Multiprocessor systems:

o These are systems with several

processing elements (PEs) and

programmers can concurrently use

all these PEs.

o Single-Instruction Multiple-Data

(SIMD) machines:

 The same instruction goes to

all processors, each with

different data - e.g., vector

processors

 Multiple-Instruction

Multiple-Data (MIMD)

machines: Independent

processors that can be

synchronized (unit-level

concurrency)

3. Definitions

 Concurrency or Parallelism?

 Concurrency:

 Logically simultaneous processing.

 Does not require multiple processing

elements

 Requires interleaved execution on a single

processing element.

 Parallelism:

 Physically simultaneous processing.

 It does involve several processing elements.

 Both concurrency and parallelism require

controlled access to shared resources.

 In general people use the word concurrent and

parallel interchangeably.

 A concurrent program: It is a program that has

multiple threads or tasks of control allowing it perform

multiple computations in parallel and to control multiple

external activities that occur at the same time.

 Processes:

 A process is an operating system

abstraction that allows once computer

system to support many units of

execution.

 Each process typically represents a

separate running program; for example, a

web browser.

 A process can generally be composed of

one or several threads.

 Threads:

 A thread is a single sequential

execution path in a program.

 A thread is executed independently of

other threads, while at the same time

possibly sharing underlying system

resources such as files, as well as

accessing other objects constructed

within the same program.

 Every program has at least one thread

 Threads subdivide the run-time

behavior of a program into separate,

independently running subtasks.

 Every thread has its own:

 stack,

 priority, and

 virtual set of registers.

4. Concurrent languages

 Concurrent Pascal

 Concurrent C

 Communicating Sequential Processes (CSP)

 Ada

 Java

 Etc.

5. Problems with concurrency

 Non-deterministic: Unlike sequential programs,

where programs are completely deterministic and

their behavior can be reproducible, concurrent

programs are likely to be highly non-deterministic.

The order of execution of process in a concurrent

program is unpredictable since it may be influenced

by run-time conditions.

 Speed-dependence: A sequential program is speed-

independent because its correctness does not depend

on the rate at which it is executed. However, a

concurrent program may be speed-dependent. Its

final output may depend on the relative speeds of

execution of its component sequential processes.

 Deadlock: Deadlock is a situation in which a set of

processes are prevented from making any further

progress by their mutually incompatible demands

for additional resources. This can occur in a system

of processes and resources iff the following

conditions all hold together:

 Mutual exclusion: processes are given

exclusive access to the resources they

acquire.

 Wait and hold: processes continue to

hold previously allocated resources

while waiting for a new resource

demand to be satisfied.

 No preemption: resources cannot be

removed from a process until it

voluntarily releases them.

 Circular wait: there may be a cycle of

resources and processes in which each

process is awaiting resources that are

held by the next process in the cycle.

 Starvation: This is the case where a process is

prevented indefinitely from running by unfair

scheduling. Fair scheduling ensures that no process

needing a resource is indefinitely prevented from

obtaining it by the demand from other processes.

6. Process Interactions

 Definitions and Notations [D. Watt]:

 Sequential processes:

 Given two processes A and B, the sequential

execution of A and B is denoted A;B, i.e., A is

executed before B.

 Collateral processes:

 Given two processes A and B, the collateral

execution of A and B is denoted A,B, i.e., the

execution of A and B can be done in any order.

 Example: m=7, n=n+1

 Note that collateral processes are non-

deterministic.

 Parallel processes:

 Given two processes A and B, the parallel

execution of A and B is denoted A||B.

 Note that A and B don’t have to be executed

simultaneously.

 Unlike sequential processes, A and B may

need to interact.

 Independent processes

 Definition: Two processes A and B are

independents if any component or any task Ai

of A may be executed in any time relationship

to any component Bi of B, without effect on

the meaning of the program.

 Note that if A and B are independent, it

follows that A;B is equivalent to B;A

 Also we have A,B is equivalent to A||B.

 In general, it is undecidable whether A and B

are independent.

 Competing processes

 Definition: Two processes A and B compete if

each must gain exclusive access to the same

resource R for some of their tasks.

 Let us assume the following:

- A be the sequence A1, A2, A3

- B be the sequence B1, B2, B3

- None of A1, A3, B1, B3 uses R

- We also assume that A1 and B1are independent,

and that A3 and B3 are independent.

- A2 and B2 want to access the same resource R.

 A2 and B2 must not take place simultaneously.

 They are called critical sections with respect to the

resource R.

 Thus the execution of the two sequence of

command A and B will have two possible outcome:

 ...; A2; ...; B2;...

 or

 ...; B2; ...; A2;...

 but not

 ...; A2 || B2;...

Which of these outcomes actually happens

will depend on the relative speeds at which

A and B are executed, and is not in general

predictable.

 Communicating processes

 Definition: We say that there is a

communication from A to B if the task A2

must entirely precede the action B2 in the case

B2 needs information produced by A2.

 Two communicating concurrent processes A||B

have the same outcome as the sequential

execution of A;B.

 Note that communicating processes involving several

processes yield to the pipeline paradigm.

 Example: In Unix provides the notation C1|C2

to execute two commands C1 and C2

concurrently and C2 takes the output of C1 as

input.

 Two processes intercommunicate if there is a

communication in both directions.

 This makes the possible outcomes of 'C || k'

very much more numerous.

7. Low-level Concurrency Primitives

 What are low-level abstractions that affect

concurrency: create, destroy, and control.

 Process creation and control:

 Different programming languages provide

different primitive operations to create and

control processes:

Fork: create, load, and start a task

Join: wait and destroy

 In Java, this is done by creating an object of

type thread and start it by invoking the start

method.

Example:

New MyThread().start();

where MyThread is a class thread.

By invoking the start() method, the JVM scheduler is

told to run the thread. The scheduler invokes the run()

method from the object.

Threads in Java are destroyed once the run()

method is done much like the main()

function in a C program.

 Event

 An event represents a class of state changes,

the occurrence of which must be

communicated among a set of processes.

 In general, this is done through two operations:

Event-wait(e): When a process executes

this event, it is blocked awaiting the next

occurrence of an event e.

Event-signal(e): This operation makes all

processes that are waiting for the event e to

run again. If e is omitted, then all blocked

processes are ready to run.

 Java uses the following operations:

Wait()

Notify() or notifyall()

 Messages:

 When processes run on a network of

computers, the network provides a data

communication service that supports

process interaction by the exchange of

messages.

 If the set of computer uses a shared

memory architecture, the communication

can be done using shared variable

construct such as in Universal Parallel C

(UPC).

 Remote Procedure Calls (RPCs)

 RPC is based on extending the notion of

conventional, or local procedure

calling, so that the called procedure need

not exist in the same address space as the

calling procedure.

 The two processes may be on the same

system, or they may be on different

systems with a network connecting them.

By using RPC, programmers of

distributed applications avoid the details

of the interface with the network.

 The transport independence of RPC isolates the

application from the physical and logical elements

of the data communications.

 Remote Procedure Calling Mechanism A remote

procedure is uniquely identified by the triple:

(program number, version number, procedure

number):

 The program number identifies a group of

related remote procedures, each of which has

a unique procedure number.

 A program may consist of one or more

versions. Each version consists of a

collection of procedures that are available to

be called remotely. Version numbers enable

multiple versions of an RPC protocol to be

available simultaneously.

 Each procedure has a procedure number.

8. Synchronization

 Data corruption and inconsistency, and deadlock

may occur in a multiprogramming environment may

occur when processes share resources like the

content of a shared memory area, files, devices.

 In order to control the access to these shared

resources, multithreaded environments should

include support for concurrency control

mechanisms.

 Three type to handle synchronization:

 Semaphores

 Conditional critical sections: This is similar

to the critical section, except that the execution

of the critical section is based on a condition(s)

 Monitors: allows safe and effective sharing of

an ADT among several processes.

 Message Passing

 Semaphores

 Dijkstra – 1965

 A semaphore is a data structure consisting of a

counter and a queue for storing task descriptors

 Semaphores can be used to implement guards

on the code that accesses shared data

structures.

 Semaphores have only two operations, wait

and release (originally called P and V by

Dijkstra)

P(s): if s > 0 then s = s - 1

 else suspend current process

V(s): if there is a process suspended on s

 then wake one of them up

 else s = s + 1

 Semaphores can be used to provide both

competition and cooperation synchronization

 Monitor

 The idea: encapsulate the shared data and its

operations to restrict accessA monitor is an

abstract data type for shared data

 It is the implementation that ensures the

mutual exclusion using the delay and

continue primitives (p 223 & 225)

 Example language: Concurrent Pascal and

Java

 Message Passing

 Message passing is a general model for

concurrency

 It is not just for competition synchronization

 Central idea: task communication is like

seeing a doctor--most of the time he waits for

you or you wait for him, but when you are both

ready, you get together, or rendezvous (don’t

let tasks interrupt each other)

 In terms of tasks, we need:

o A mechanism to allow a task to

indicate when it is willing to

accept messages

o Tasks need a way to remember

who is waiting to have its message

accepted and some “fair” way of

choosing the next message

 Definition: When a sender task’s message is

accepted by a receiver task, the actual

message transmission is called a rendezvous

 Example: The Ada Message-Passing Model

9. Example

 The classic Producer-Consumer problems

 Producer creates things

 Consumer processes things

 Many examples in operating systems

 Print spooler

 Compile sequences (Compile, generate

code, link, etc.)

 Pseudo Code:

Process Producer {

 repeat forever {

 produce an element;

 append it to the buffer;

 }

}

Process Consumer {

 repeat forever {

 remove an element from the buffer;

 operate on it;

 }

}

 We need to control access to the buffer

 Writing to a full buffer

 Reading from an empty buffer

 More subtly, we need to ensure mutual

exclusion to the variable describing the state

of the buffer

Procedure Append {

 total_elements++;

 i = next_in();

 buffer[i] = x;

}

Procedure Remove {

 total_elements--;

 j = next_out();

 x = buffer[j];

}

 Producer-Consumer with semaphores

 These are the variables shared between the producer

and the consumer:

// Buffer to hold items.

buffer buf;

semaphore mutex = 1; // Mutal exclusion.

 items = 0; // Num. items in buf.

 spaces = buf.size(); // Num. spaces in buf.

 Producer

process Producer {

 int i;

 for(;;) {

 produce(i);

 P(spaces); // Wait for free space.

 P(mutex); // Wait to access buf.

 buf.append(i);

 V(mutex); // Release buf for others.

 V(items); // One more item in buf.

 }

}

 Consumer

process Consumer {

 int j;

 for(;;) {

 P(items); // Wait for item in buf.

 P(mutex); // Wait to access buf.

 j = buf.remove();

 V(mutex); // Release buf for others.

 V(spaces); // One more space in buf.

 consume(j);

 }

}

10. Concurrency in Java

 Introduction

 Java provides a Thread class to support

threading.

 This class keeps track of the context of threads

and provides many methods to control them.

 Java provides a package, called green threads, to

support operating systems that do not support

threads.

 Creation of a Java thread

1. Create a new class:

a. Define a subclass of Thread

b. Override its run() method

2. Instantiate and run the thread

a. Create an instance of the class

b. Call its start() method, which puts the thread in

the queue.

3. The JVM scheduler calls the thread’s run() method.

11. Java Thread Life Cycle (Deitel & Deitel)

 Thread priority:

 Every Java thread has a priority in the range

Thread.MIN_PRIORITY (a constant of 1) and

Thread.MAX_PRIORITY (a constant of 10).

 Default: Each thread is given priority

Thread.NORM_PRIORITY (a constant of 5).

 Each new thread inherits the priority of the thread

that creates it.

 The job of the Java scheduler is to keep a highest-priority

thread running at all times, and if timeslicing is available, to

ensure that several equally high-priority threads each execute

for a quantum in round-robin fashion (i.e., these threads can

be timesliced).

 The following figure illustrates Java’s multilevel priority

queue for threads. In the figure, threads A and B each execute

for a quantum in round-robin fashion until both threads

complete execution. Next, thread C runs to completion. Then,

threads D, E and F each execute for a quantum in round-robin

fashion until they all complete execution. This process

continues until all threads run to completion.

 Starvation: Note that new higher-priority threads could

postpone–possibly indefinitely–the execution of lower-

priority threads. Such indefinite postponement is often

referred to more colorfully as starvation.

 Example:

package paradigms;

 1) // Fig. 15.3: ThreadTester.java

 2) // Show multiple threads printing at different intervals.

 3)

 4) public class ThreadTester {

 5) public static void main(String args[])

 6) {

 7) PrintThread thread1, thread2, thread3, thread4;

 8)

 9) thread1 = new PrintThread("thread1");

 10) thread2 = new PrintThread("thread2");

 11) thread3 = new PrintThread("thread3");

 12) thread4 = new PrintThread("thread4");

 13)

 14) System.out.println("\nStarting threads");

 15)

 16) thread1.start();

 17) thread2.start();

 18) thread3.start();

 19) thread4.start();

 20)

 21) System.out.println("Threads started\n");

 22) }

 23) }

 24)

 25) class PrintThread extends Thread {

 26) private int sleepTime;

 27)

 28) // PrintThread constructor assigns name to thread

 29) // by calling Thread constructor

 30) public PrintThread(String name)

 31) {

 32) super(name);

 33)

 34) // sleep between 0 and 5 seconds

 35) sleepTime = (int) (Math.random() * 5000);

 36)

 37) System.out.println("Name: " + getName() +

 38) "; sleep: " + sleepTime);

 39) }

 40)

 41) // execute the thread

 42) public void run()

 43) {

 44) // put thread to sleep for a random interval

 45) try {

 46) System.out.println(getName() + " going to sleep");

 47) Thread.sleep(sleepTime);

 48) }

 49) catch (InterruptedException exception) {

 50) System.out.println(exception.toString());

 51) }

 52)

 53) // print thread name

 54) System.out.println(getName() + " done sleeping");

 55) }

 56) }

 The PrintThread constructor (line 30) initializes

sleepTime to a random integer between 0 and 4999 (0 to

4.999 seconds). Then, the name of the thread and the value

of sleepTime are output to show the values for the

particular PrintThread being constructed.

 The name of each thread is specified as a String argument

to the PrintThread constructor and is passed to the

superclass constructor at line 32.

 Note: It is possible to allow class Thread to choose a

name for your thread by using the Thread class’s default

constructor.

 When a PrintThread’s start method (inherited from

Thread) is invoked, the PrintThread object enters the

ready state.

 When the system assigns a processor to the PrintThread

object, it enters the running state and its run method

begins execution.

 Method run prints a String in the command window

indicating that the thread is going to sleep then invokes the

sleep method (line 47) to immediately put the thread into a

sleeping state.

 When the thread awakens, it is placed into a ready state

again until it is assigned a processor.

 When the PrintThread object enters the running state

again, it outputs its name (indicating that the thread is

done sleeping), its run method terminates and the thread

object enters the dead state.

 Class ThreadTester’s main method (line 5) instantiates

four PrintThread objects and invokes the Thread class

start method on each one to place all four PrintThread

objects in a ready state.

 Note that the program terminates execution when the last

PrintThread awakens and prints its name. Also note that

the main method terminates after starting the four

PrintThreads, but the application does not terminate until

the last thread dies.

 Synchronization

 Java uses monitors to perform synchronization.

 Every object with synchronized methods is a

monitor.

 The monitor allows one thread at a time to

execute a synchronized method on the object.

 This is accomplished by locking the object

when the synchronized method is invoked–

also known as obtaining the lock.

 If there are several synchronized methods,

only one synchronized method may be active

on an object at once; all other threads

attempting to invoke synchronized methods

must wait.

 A thread executing in a synchronized method

may determine that it cannot proceed, so the

thread voluntarily calls wait.

 When a synchronized method finishes

executing, the lock on the object is released

and the monitor lets the highest-priority ready

thread attempting to invoke a synchronized

method proceed.

