Performance Evaluation

• Confusion Matrix:

		Detected					
		Positive Negative					
Actual	Positive	A: True Positive	B: False Negative				
	Negative	C: False Positive	D: True Negative				

- Recall or Sensitivity or True Positive Rate (TPR):
 - It is the proportion of positive cases that were correctly identified, as calculated using the equation:

$$\text{Recall} = \frac{\text{A}}{\text{A} + \text{B}}$$

- Accuracy (AC):
 - *AC*: is the proportion of the total number of predictions that were correct.
 - \circ It is determined using the equation:

Accuracy =
$$\frac{A+D}{A+B+C+D}$$

 \circ Error rate (misclassification rate) = 1 – AC

• The false positive rate (FPR) is the proportion of negatives cases that were incorrectly classified as positive, as calculated using the equation:

$$FPR = \frac{c}{c+D}$$

- The true negative rate (TNR) or Specificity:
 - It is defined as the proportion of negatives cases that were classified correctly, as calculated using the equation:

$$TNR = \frac{D}{C+D}$$

- The false negative rate (FNR):
 - It is the proportion of positives cases that were incorrectly classified as negative, as calculated using the equation:

$$FNR = \frac{B}{A+B}$$

- Precision:
 - P is the proportion of the predicted positive cases that were correct, as calculated using the equation:

Precision =
$$\frac{A}{A+C}$$

- F-measure:
 - The F-Measure computes some average of the information retrieval precision and recall metrics.
 - Why F-measure?
 - An arithmetic mean does not capture the fact that a (50%, 50%) system is often considered better than an (80%, 20%) system

• F-measure is computed using the harmonic mean:

Given n points, $x_1, x_2, ..., x_n$, the harmonic mean is:

$$\frac{1}{H} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_i}$$

• So, the harmonic mean of Precision and Recall:

$$\frac{1}{F} = \frac{1}{2}\left(\frac{1}{R} + \frac{1}{P}\right) = \frac{P+R}{2PR}$$

• The computation of F-measure:

- Each cluster is considered as if it were the result of a query and each class as if it were the desired set of documents for a query
- We then calculate the recall and precision of that cluster for each given class.
- The F-measure of cluster *j* and class *i* is defined as follows:

$$F_{ij} = \frac{2 * \text{Recall}(i, j) * \text{Precision}(i, j)}{\text{Precision}(i, j) + \text{Recall}(i, j)}$$

• The F-measure of a given clustering algorithm is then computed as follows:

$$F-measure = \sum \frac{n_i}{n} max(\{F_{ij}\})$$

Where *n* is the number of documents in the collection and n_i is the number of documents in cluster i.

• Note that the computed values are between 0 and 1 and a larger F-Measure value indicates a higher classification/clustering quality.

- Cohen's Kapa Measure:
 - Some studies involve the need for some degree of subjective interpretation by observers. For example:
 - Doctors' MRI reading
 - Observing animals' behavior
 - **Expected Frequency (EF)**: Agreements between observers may occur by chance
 - The kappa score considers that two or more observers may agree or disagree just by chance. Hence:
 - A kappa of 1 indicates perfect agreement
 - A kappa of 0 indicates agreement equivalent to chance
 - A Kappa score greater than 0.6 can be considered as substantial
 - Example:

G: Good N: No change W: Worst															
Animals	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Observer A	G	N	G	N	N	G	W	N	G	W	W	G	Ν	W	N
Observer B	G	N	W	G	N	G	W	N	G	N	W	W	N	W	W

• Step 1: Contingency Table

		Observer A				
		G	Ν	W		
	G	3	1	0		
Observer B	Ν	0	4	1		
	W	2	1	3		

• Step 2: Compute the overall totals for rows and columns

		(
		G	N	W	Total
	G	3	1	0	4
Observer B	N	0	4	1	5
	W	2	1	3	6
	Total	5	6	4	15

• Step 3: Compute the total number of agreements:

		Ot			
		G	N	W	Total
	G	3	1	0	4
Observer B	Ν	0	4	1	5
	W	2	1	3	6
	Total	5	6	4	15

Total number of agreements: 3 + 4 + 3 = 10The level of agreement = 10/15 = 0.66

• Step 4: Compute the EF for the agreements:

 Compute the EF for each agreement (Diagonal):

 $EF(G) = \frac{Row Total * Column Total}{Overall Total}$

$$= \frac{5*4}{15} = \frac{20}{15} = \frac{4}{3} = 1.33$$
$$EF(N) = \frac{6*5}{15} = 2$$
$$EF(W) = \frac{4*6}{15} = \frac{24}{15} = 1.6$$

• Compute the sum of the **EFs**:

$$\sum \text{EFs} = 1.33 + 2 + 1.6 = 4.93$$

• Compute Kappa:

$$Kappa = \frac{\sum agreements - \sum EFs}{Total of Data points - \sum EFs}$$

Kappa =
$$\frac{10 - 4.93}{15 - 4.93} = \frac{5.07}{10.07} = 0.5$$

Kappa	Agreement
<0	Less Than Chance Agreement
0.0-0.2	Sight Agreement
0.2-0.4	Fair Agreement
0.4-0.6	Moderate Agreement
0.6-0.8	Substantial Agreement
0.8-0.99	Almost Perfect Agreement
1	Perfect Agreement

Source: Landis, J.R. and Koch, GG. (1977) 'The Measurement of observer agreement for categorical data'. Biometrics, 33 159-74

• Performance of Regression Model

• Evaluate the regression problem's accuracy.

Mean Absolute Error or MAE

• It measures the error between the actual value and predicted value:

MAE = Predicted Value – Actual Value

- Absolute difference means that if the result has a negative sign, it is ignored.
- The lower the MAE score the better since we want to a smaller value between the predicted and actual values.
- The closer MAE is to 0, the more accurate the model is
- Note that MAE cannot be compared across different models and datasets.

• Mean Squared Error (MSE):

$$MAE = \frac{\sum_{i=1}^{N} (Predicted Value - Actual value)^2}{N}$$

• Root Mean Square Error (RMSE):

- It measures the error of a model in predicting quantitative data.
- It used to evaluate the accuracy of regression model

$$\mathbf{RMSE} = \sqrt{\frac{\sum_{i=1}^{N} (\mathbf{Predicted Value} - \mathbf{Actual value})^2}{N}}$$

- \circ The R-squared
 - It is also called the **coefficient of determination**
 - It explains the degree to which the actual input explains the variation of predicted variables.
 - It provides information about the goodness of fit of a model.

• A higher R-squared indicates a better fit for the model.

• The widely used equation is:

$$R^{2} = \frac{1-Sum Squared Regression (SSR)}{Total Sum of Squares (SST)}$$

SSR is also called the sum of residuals, which is the distance from regression line to each data point:

SSR =
$$\sum$$
 (Observed Value – Fitted Value)²

To compute the Total Sum of Squares (SST), you need to first calculate the mean value of the observed values Observed Value

$$SST = \sum_{i=1}^{n} (Observed Value)^{2}$$

Then,

$$R^{2} = \frac{1 - \sum (\text{Observed Value} - \text{Fitted Value})^{2}}{\sum (\text{Observed Value} - \overline{\text{Fitted Value}})^{2}}$$

• Interpretation of R2 value:

- R-Squared vs. RMSE:
 - R-squared gives good indication on how well the model fit.
 - RMSE is better if you are interested in how your model will predict values for new data

- Receiver Operating Characteristic (ROC) Curve:
 - It is a graphical approach for displaying the tradeoff between true positive rate (TPR) and false positive rate (FPR) of a classifier:

TPR = positives correctly classified/total positives

FPR = negatives incorrectly classified/total negatives

- TPR is plotted along the y axis
- FPR is plotted along the x axis
- Performance of each classifier represented as a point on the ROC curve

• Important Points: (TP,FP)

- \circ (0,0): declare everything to be negative class
- \circ (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
- Area Under Curve (AUC):
 - \circ It provides which model is better on the average.
 - \circ Ideal Model: area = 1

- If the model is simply performs random guessing, then its area under the curve would equal 0.5.
- A model that is better than another would have a larger area.

Example:

- No model consistently outperform the other
 M1 is better for small FPR
 M2 is better for large FDP
 - \circ M2 is better for large FPR

Clustering Only

- Intra-Cluster Similarity (ICS):
 - It looks at the similarity of all the data points in a cluster to their cluster centroid.
 - It is calculated as arithmetic mean of all of the data point-centroid similarities.
 - Given a set of k clusters, ICS is defined as follows:

$$ICS = \frac{1}{k} \sum_{i=1}^{k} \frac{1}{|C_i|} \sum_{d_j \in C_i} sim(d_j, c_i)$$

Where c_i is the centroid of cluster C_i .

- A good clustering algorithm maximizes intracluster similarity.
- Centroid Similarity (CS):
 - It computes the similarity between the centroids of all clusters.
 - Given a set of k clusters, CS is defined as follows:

$$CS = \sum_{i=1}^{k} \sum_{j=1}^{k} sim(c_i, c_j)$$