Introduction

1.	Objectives	3	
2.	What is Data Mining?	4	
3.	Knowledge Discovery Process5		
4.	KD Process Example	7	
5.	Typical Data Mining Architecture	8	
6.	Database vs. Data Mining	9	
7.	Data Mining: On What kind of Data?	10	
8.	Potential Applications		
8	8.1. Market analysis and management	11	
8	8.2. Web Mining	13	
8	8.3. Text Mining	15	
9.	Data Mining Systems and Tools	16	
10.	Data Mining Functionalities	16	
11.	Data Mining: A multi-disciplinary area	18	
12.	Are All of the Patterns Interesting?	19	
13.	Major Issues in Data Mining	21	
14.	Sample Datasets	22	

1. Objectives

- Large amount of data kept in data files, databases, and web servers:
 - Structured data
 - Unstructured data
- Users are expecting more information from these data
- Marketing managers are interested in customers' purchase behavior
- Simple structured/query language queries are not adequate to extract hidden information:
 - Traditional SQL statements only retrieve a subset of the database.
- Evolution of database technology:

Hierarchical → Network → Relational → Extended Relational → Semantic DB → (ORDBMS, OODBMS)

• Overall advancement of computing

2. What is Data Mining?

- Mining 'Gold" from 'Rocks"
- Simple Definition: Extract or "mine" knowledge from large amount of data.
- Data mining (knowledge discovery from data)
 - Extraction of interesting (<u>non-trivial</u>, <u>implicit</u>, <u>previously unknown</u> and <u>potentially useful</u>) patterns or knowledge from huge amount of data
- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.
- Watch out: Is everything "data mining"?
 - o (Deductive) query processing.
 - Expert systems or small ML/statistical programs

3. Knowledge Discovery Process

Figure 1.4 of the textbook (Modified)

- Learning the application domain
 - o Relevant prior knowledge and goals of application
- Data Cleaning: Remove noise data and irrelevant data (stopwords in case of unstructured data)
- Data Integration: Combine multiple data sources
- Data Selection: Get data relevant to the task to be analyzed
- Data Reduction and Transformation: Prepare data in a form appropriate for mining:
 - Represent a text file as a vector
 - Find useful features
 - Reduce your space (dimensionality/variable).
- Data Mining: a process to extract data patterns, e.g., summarization, classification, regression, association, clustering.
- Pattern Evaluation: Evaluate the output of the data mining process.
- Knowledge Representation: Techniques to visualize mined knowledge.

4. KD Process Example

- Web Log Mining
 - o Selection:
 - Select log data (dates and location) to use
 - o Preprocessing:
 - Remove identifying URLs
 - Remove error logs
 - o Transformation:
 - Sessionize (sort and group)
 - o Data Mining:
 - Construct data structure
 - Create frequent sequences
 - o Interpretation/Evaluation:
 - Cache prediction
 - Personalization

5. Typical Data Mining Architecture

6. Database vs. Data Mining

Query:	Query:	
- Well defined SQL	- Poorly defined No precise	
	query language	
Data:	Data:	
- Operational data	- Not operational data	
Output:	Output:	
- Precise Subset of	- Fuzzy	
database	- Not a subset of database	

• Query Example:

- o Database:
 - ✓ Find all credit applicants with last name of Smith.
 - ✓ Identify customers who have purchase more than \$10,000 in last month.
 - ✓ Find all customers who have purchased milk

o Data Mining:

- ✓ Find all credit applicants who are poor credit risks. (Classification)
- ✓ Identify customers with similar buying habits. (Clustering)
- ✓ Find all items that are frequently purchased with milk. (Association rules)

7. Data Mining: On What kind of Data?

- Database
- Data warehouse
- Transactional database
- Object-oriented database
- Object-relational database
- Spatial data
- Temporal data and Time-series data
- Multimedia database
- Text Collections
- WWW

8. Potential Applications

8.1. Market analysis and management

- Where does the data come from?
 - Credit card transactions, loyalty cards, discount coupons, customer complaint calls, plus (public) lifestyle studies
- Target marketing
 - o Find clusters of "model" customers who share the same characteristics: interest, income level, spending habits, etc.
 - o Determine customer purchasing patterns over time
- Cross-market analysis
 - Associations/co-relations between product sales, & prediction based on such association
- Customer profiling
 - What types of customers buy what products (clustering or classification)
- Customer requirement analysis
 - o Identifying the best products for different customers
 - o Predict what factors will attract new customers
- Provision of summary information
 - o Multidimensional summary reports
 - Statistical summary information (data central tendency and variation)

• Risk analysis and management

- Forecasting
- **Customer retention**
- Improved underwriting
- Competitive analysis
- Fraud detection and detection of unusual patterns (outliers)
 - Detect unusual patterns
 - Anti-Terrorism
 - Intrusion detection in network security.
 - Detection of credit card fraud.
 - Money Laundering: Detect suspicious money transactions.
 - Example: Terrorist Network [Ted Senator 2001]

А. венааста

8.2. Web Mining

- Web content: Text + Links
- Help web architects understand users needs
- User profiling
- Site structure

• Taxonomy:

Web Usage Mining

- Analyze web log to mine web users behavior (search engine, e-commerce, etc.)
- Web personalization / collaborative filtering
- Detection of new emerging research areas
- Re-structure web sites based on users' needs
- e-business intelligence, e-CRM, etc.

Web Content Mining

- Information filtering / knowledge extraction
- Web document categorization
- Detection of web categories and topics on the Web

• Web Structure Mining

- Finding "Quality" or "authoritative" sites based on linkage and citation
 - ✓ IBM CLEVER project
 - ✓ Google

8.3. Text Mining

- Message filtering (e-mail, newsgroups, etc.)
- Newspaper articles analysis
- Text and document categorization

9. Data Mining Systems and Tools

• See www.kdnuggets.com

o Oracle: Darwin

o IBM: Intelligence Miner

o SAS: Enterprise Miner

o Business Objects

o SPSS: Clementine

o Xchange: e-CRM

o Microsoft: SQL Server 2000

o Weka

o Etc.

10. Data Mining Functionalities

- Concept description: Characterization and discrimination
 - o Generalize, summarize, and contrast data characteristics, e.g., dry vs. wet regions
- Association (correlation and causality)
 - o Diaper → Beer [0.5%, 75%]
- Classification and Prediction
 - Construct models (functions) that describe and distinguish classes or concepts for future prediction
 - E.g., classify countries based on climate, or classify cars based on gas mileage
 - Presentation: decision-tree, classification rule, neural network
 - o Predict some unknown or missing numerical values

• Cluster analysis

- o Class label is unknown: Group data to form new classes, e.g., cluster houses to find distribution patterns
- o Maximizing intra-class similarity & minimizing interclass similarity

• Outlier analysis

- o Outlier: a data object that does not comply with the general behavior of the data
- o Noise or exception? No! Useful in fraud detection, rare events analysis

• Trend and evolution analysis

- o Trend and deviation: regression analysis
- o Sequential pattern mining, periodicity analysis
- o Similarity-based analysis
- Other pattern-directed or statistical analyses

11. Data Mining: A multi-disciplinary area

12. Are All of the Patterns Interesting?

- Typically, thousands of patterns might be generated.
- How to get interesting patterns?
- What is an interesting pattern?
 - o If it is easily understood by humans
 - o Valid on new or test data with some degree of certainty,
 - o Potentially useful
 - Novel, or validates some hypothesis that a user seeks to confirm

• Objective vs. subjective interestingness measures

- o Objective: based on statistics and structures of patterns,
- o Example: support and confidence
 - Association rules:
 - Given an association rule: X → Y
 - o Rule support represents the percentage of transactions from a transaction database that the given rule satisfies.
 - o Formally, it is the following probability:

P(XUY)

Where X U Y indicates a transaction that contains both X and Y.

• Formally, it is denoted:

$$support(X \rightarrow Y) = P(X \cup Y)$$

- Confidence rules:
 - Given an association rule: X → Y
 - It assesses the degree of certainty of the detected association.
 - o Formally, it is the conditional probability:

P(Y|X) = The probability that a transaction containing X also contains Y.

• Formally, it is denoted:

confidence(
$$X \rightarrow Y$$
) = $P(Y|X)$

o Subjective: based on user's belief in the data, e.g., unexpectedness, novelty, actionability, etc.

13. Major Issues in Data Mining

- Mining methodology
 - Mining different kinds of knowledge from diverse data types, e.g., bio, stream, Web
 - Performance: efficiency, effectiveness, and scalability
 - Pattern evaluation: the interestingness problem
 - Incorporation of background knowledge
 - Handling noise and incomplete data
 - Parallel, distributed and incremental mining methods
 - Integration of the discovered knowledge with existing one: knowledge fusion
- User interaction
 - Data mining query languages and ad-hoc mining
 - Expression and visualization of data mining results
 - Interactive mining of knowledge at multiple levels of abstraction
- Applications and social impacts
 - Domain-specific data mining & invisible data mining
 - Protection of data security, integrity, and privacy

14. Sample Datasets

- Document Collection: duc nist sample text.txt

- 20 newsgroup

- Web Log: <u>weblog sample.txt</u>

- Enron Data

- Intrusion data

- Medical data: Cancer Data