Fuzy c-Mean Clustering

e Types of clustering algorithms:

O

O

Hard clustering:
= Data points to only one cluster
= Examples: K-Means
Soft clustering:
= Each data point has a degree of membership (or probability) of
belonging to each cluster.
= Example: Fuzzy C-Means

e Overview:

O

In 1965 Professor Lotfi A. Zadeh introduced the concept of the fuzzy
theory that deals with uncertain concepts.
Developed by Dunn in 1973 and improved vy Bezdek in 1981.
Fuzzy c-Mean clustering is an extension of k-means clustering
algorithm.
Fuzzy c-means allows data points to be assigned into more than one
cluster:

= FEach data point has a degree of membership (or probability) of

belonging to each cluster.

= One data point can potentially belong to multiple clusters.
It gives better results for overlapped dataset and comparatively better
then K-mean cluster algorithm.
Example:

= Gene classification using RNA sequencing.

e Algorithms:

®

Given:
n: number of data points
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vj: jth cluster center
x1 = ith of d-dimensional measured data
m: fuzziness index m >1
c: Number of clusters
wi Membership of ith data to jth cluster center
k: number of iterations.
o Randomly select ‘c’ cluster centers.
o Repeat:
= (Calculate the cluster membership probability p;; for each ith data in

the jth cluster:
1

( 1 )(m—l)
| —

1
B (

uij =
1 )(m—l)
llox; — il

= Compute the centroids c; for each cluster:

Z(uij )" X,
i=1

_ i
Ci ="
m
Z (Uj)
i=1
= Until minimal € achieved. (& is between 0 and 1)

g > {|u§‘j+1 — u{‘]|}

o Notes:
= Each cluster center is the mean of all the samples weighted by the
membership value i (membership value).
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= The algorithm adjusts the center centroids and the membership

values, to minimize the weighted sum of square Euclidian
distances between the centers and the data points.

o Disadvantages:

= Need to define c, the number of clusters.
= Need to determine membership cutoff value.

= With a lower value of threshold we get better results but the

expense of more number of iterations.
= (Clusters are sensitive to the initial assignment of centroids.
» Fuzzy c-means is not a deterministic algorithm.

o Example:

= Consider data points in two-dimensional space using the fuzzy C-

Means algorithm.
= Input:

- number of objects 6

- Number of clusters =2

- Fuzzification parameter m = 2
- Threshold= 0.01
- Max iteration = 2

Point(x,y)

(1,6)

(2,5)

3.8)

(4.4)

(3,7)

(6.9)

= Step 1: Randomly initialize the membership of each data point:

Point(x,y) | W(C1) | w(C2)
(1,6) 0.8 0.2
(2,5) 0.9 0.1
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(3,8) 0.7 0.1
(4,4) 0.3 0.7
(5,7) 0.5 0.5
(6,9) 0.2 0.8

Note: The sum of the probabilities of clusters is 1

= Step 2: Calculate the centroid using Centroid equation with m=2

_ (1%0.8)2+2%(0.9)%+3%(0.7)% +4%(0.3)2+5%(0.5)2 +6%(0.2)?

C11 = (0.8)2+(0.9)2+(0.7)2+(0.3)2+(0.5)2+(0.2)2
C :(6*0.8)2+5*(0.9)2+8*(0.7)2+4*(0.3)2+7*(0.5)2+9*(0.2)2
12 (0.8)2+(0.9)2+(0.7)2+(0.3)2+(0.5)2+(0.2)2
Cl=(2.4,6.1)
~ (1%0.2)? +2%(0.1)*43 * (0.3)*+4 * (0.7)*+5 * (0.5)*+6 * (0.8)*
21— (0.2)2 + (0.1)2+(0.3)2+(0.7)2 + (0.5)2+(0.8)2

C _ (6%0.2)%+5%(0.1)%+8+%(0.3)2+4%(0.7)%+7%(0.5)% +9%(0.8)?
22 — (0.2)2+(0.1)2+(0.3)2+(0.7)2+(0.5)2+(0.8)2

C2=(4.8,6.8)
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= Step 3: Calculate distance between the data points and centroid
using Euclidean distance.

D; =/ (x; — c1)* + (i — ¢2)?

Centroid 1:

(1,6)(2.4,6.1) D; = /(1 —2.4)2 + (6 — 6.1)% = 1.40

(2,5)(2.4,6.1) D, = /(2 —24)%2 + (5 — 6.1)2 = 1.17

(3,8)(2.4,6.1) D3 =/(3 —2.4)%2 + (8 — 6.1)%2 = 1.99

(4,4)(2.4,6.1) Dy = /(4 —24)% + (4 — 6.1)? = 2.64

(5,7)(2.4,6.1) Dg =+/(5—24)%+ (7 — 6.1)2 = 2.75

(6,8)(2.4,6.1) Dg =+/(6 —2.4)2 + (9 — 6.1)% = 4.62

Centroid 2:

(1,6)(4.8,6.8) D; = /(1 —4.8)2 + (6 — 6.8)% = 3.88

(2,5)(4.8,6.8) D, = /(2 —4.8)%2 + (5 — 6.8)2 = 3.32

(3,8)(4.8,6.8) D3 = /(3 —4.8)2 + (8 — 6.8)2 = 2.16

(4,4)(4.8,6.8) D, =+/(4—4.8)2+ (4 —6.8)2 =291

(5,7)(4.8,6.8) Ds = /(5 —4.8)2 + (7 — 6.8)2 = 0.28

(6,8)(4.8,6.8) Dg = /(6 —4.8)2 + (9 — 6.8)2 = 2.50
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Points | Distance(C1) | Distance(C2)
(1,6) |1.40 3.88
(2,5 |1.17 3.32
(3,8) |1.99 2.16
(4,4) |2.64 291
(5,7) |2.75 0.28
(6,9) |4.62 2.50

= Step 4: Update the new membership matrix using the equation.
1

Hij = di; 2
Zk 1(d )m
Cluster 1:
1 1
Hi1 = d = d 2
S (Gt (d“)z T+ (G
1 = 0.89
Hi1 = = V.
1.4, 1.4 .,
2"+ (359
Cluster 2:
1 1
Hz1 = > d
D= 1(d21)2 ( 21)2 1+(d21)2 1
1

M1 =388 388 011

(20"t 3gg)"
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New Membership=p' | | Old Membership p°
Point(x,y) | w(C1) Point(x,y) | u(C1) Max|(u!- p9)|
(1,6) 0.89 (1,6) 0.8 0.09
(2,5) 0.9 (2,5) 0.9 0
(3.8) 0.54 (3.9) 0.7 0.16
(4.4) 0.55 (4.4) 0.3 0.25
(5,7) 0.01 (5,7) 0.5 0.49
(6.9) 0.23 (6.9) 0.2 0.03
= Step 5:

If Max|(n!- pn%)| =0.49 <=0.01 or iteration 1 = ma iteration(2)

Else

Stop; //(none of the conditions is true since we are in iteration

// 1 and 0.49 is greater that 0.01 (threshold)

// then repeat

Return to step 2 iteration = iteration + 1;
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