Fuzy c-Mean Clustering

• Types of clustering algorithms:

- o Hard clustering:
 - Data points to only one cluster
 - Examples: K-Means
- Soft clustering:
 - Each data point has a degree of membership (or probability) of belonging to each cluster.
 - Example: Fuzzy C-Means

• Overview:

- o In 1965 Professor Lotfi A. Zadeh introduced the concept of the fuzzy theory that deals with uncertain concepts.
- o Developed by Dunn in 1973 and improved vy Bezdek in 1981.
- Fuzzy c-Mean clustering is an extension of k-means clustering algorithm.
- Fuzzy c-means allows data points to be assigned into more than one cluster:
 - Each data point has a degree of membership (or probability) of belonging to each cluster.
 - One data point can potentially belong to multiple clusters.
- It gives better results for overlapped dataset and comparatively better then K-mean cluster algorithm.
- o Example:
 - Gene classification using RNA sequencing.

• Algorithms:

o Given:

n: number of data points

vj: jth cluster center

xi = ith of d-dimensional measured data

m: fuzziness index m >1

c: Number of clusters

μii Membership of ith data to jth cluster center

k: number of iterations.

o Randomly select 'c' cluster centers.

o Repeat:

• Calculate the cluster membership probability μ_{ii} for each ith data in the jth cluster:

$$u_{ij} = \frac{\left(\frac{1}{\|x_i - c_j\|}\right)^{\frac{1}{(m-1)}}}{\sum_{k=1}^{c} \left(\frac{1}{\|x_i - c_k\|}\right)^{\frac{1}{(m-1)}}}$$

• Compute the centroids c_i for each cluster:

$$c_{j} = \frac{\sum_{i=1}^{n} (u_{ij})^{m} x_{i}}{\sum_{i=1}^{n} (u_{ij})^{m}}$$

• Until minimal ε achieved. (ε is between 0 and 1)

$$\varepsilon > \left\{ \left| u_{ij}^{k+1} - u_{ij}^k \right| \right\}$$

o Notes:

Each cluster center is the mean of all the samples weighted by the membership value μ_{ii} (membership value).

■ The algorithm adjusts the center centroids and the membership values, to minimize the weighted sum of square Euclidian distances between the centers and the data points.

o Disadvantages:

- Need to define c, the number of clusters.
- Need to determine membership cutoff value.
- With a lower value of threshold we get better results but the expense of more number of iterations.
- Clusters are sensitive to the initial assignment of centroids.
- Fuzzy c-means is not a deterministic algorithm.

o Example:

- Consider data points in two-dimensional space using the fuzzy C-Means algorithm.
- Input:
 - number of objects 6
 - Number of clusters = 2
 - Fuzzification parameter m = 2
 - Threshold= 0.01
 - Max iteration = 2

Point(x,y)
(1,6)
(2,5)
(3,8)
(4,4)
(5,7)
(6,9)

• Step 1: Randomly initialize the membership of each data point:

Point(x,y)	μ(C1)	μ(C2)
(1,6)	0.8	0.2
(2,5)	0.9	0.1

(3,8)	0.7	0.1
(4,4)	0.3	0.7
(5,7)	0.5	0.5
(6,9)	0.2	0.8

Note: The sum of the probabilities of clusters is 1

■ Step 2: Calculate the centroid using Centroid equation with m=2

$$C_{11} = \frac{(1*0.8)^2 + 2*(0.9)^2 + 3*(0.7)^2 + 4*(0.3)^2 + 5*(0.5)^2 + 6*(0.2)^2}{(0.8)^2 + (0.9)^2 + (0.7)^2 + (0.3)^2 + (0.5)^2 + (0.2)^2}$$

$$C_{12} = \frac{(6*0.8)^2 + 5*(0.9)^2 + 8*(0.7)^2 + 4*(0.3)^2 + 7*(0.5)^2 + 9*(0.2)^2}{(0.8)^2 + (0.9)^2 + (0.7)^2 + (0.3)^2 + (0.5)^2 + (0.2)^2}$$

$$C_{1} = \frac{(1*0.2)^{2} + 2*(0.1)^{2} + 3*(0.3)^{2} + 4*(0.7)^{2} + 5*(0.5)^{2} + 6*(0.8)^{2}}{(0.2)^{2} + (0.1)^{2} + (0.3)^{2} + (0.7)^{2} + (0.5)^{2} + (0.8)^{2}}$$

$$C_{22} = \frac{(6*0.2)^2 + 5*(0.1)^2 + 8*(0.3)^2 + 4*(0.7)^2 + 7*(0.5)^2 + 9*(0.8)^2}{(0.2)^2 + (0.1)^2 + (0.3)^2 + (0.7)^2 + (0.5)^2 + (0.8)^2}$$

$$C2 = (4.8, 6.8)$$

• Step 3: Calculate distance between the data points and centroid using Euclidean distance.

$$D_i = \sqrt{(x_i - c_1)^2 + (y_i - c_2)^2}$$

Centroid 1:

$$(1,6)(2.4,6.1) D_1 = \sqrt{(1-2.4)^2 + (6-6.1)^2} = 1.40$$

$$(2,5)(2.4,6.1) D_2 = \sqrt{(2-2.4)^2 + (5-6.1)^2} = 1.17$$

$$(3,8)(2.4,6.1) D_3 = \sqrt{(3-2.4)^2 + (8-6.1)^2} = 1.99$$

$$(4,4)(2.4,6.1) D_4 = \sqrt{(4-2.4)^2 + (4-6.1)^2} = 2.64$$

$$(5,7)(2.4,6.1) D_5 = \sqrt{(5-2.4)^2 + (7-6.1)^2} = 2.75$$

$$(6,8)(2.4,6.1) D_6 = \sqrt{(6-2.4)^2 + (9-6.1)^2} = 4.62$$

Centroid 2:

$$(1,6)(4.8,6.8) D_1 = \sqrt{(1-4.8)^2 + (6-6.8)^2} = 3.88$$

$$(2,5)(4.8,6.8) D_2 = \sqrt{(2-4.8)^2 + (5-6.8)^2} = 3.32$$

$$(3,8)(4.8,6.8) D_3 = \sqrt{(3-4.8)^2 + (8-6.8)^2} = 2.16$$

$$(4,4)(4.8,6.8) D_4 = \sqrt{(4-4.8)^2 + (4-6.8)^2} = 2.91$$

$$(5,7)(4.8,6.8) D_5 = \sqrt{(5-4.8)^2 + (7-6.8)^2} = 0.28$$

$$(6,8)(4.8,6.8) D_6 = \sqrt{(6-4.8)^2 + (9-6.8)^2} = 2.50$$

Points	Distance(C1)	Distance(C2)
(1,6)	1.40	3.88
(2,5)	1.17	3.32
(3,8)	1.99	2.16
(4,4)	2.64	2.91
(5,7)	2.75	0.28
(6,9)	4.62	2.50

• Step 4: Update the new membership matrix using the equation.

$$\mu_{ij} = \frac{1}{\sum_{k=1}^{c} (\frac{d_{ij}}{d_{kj}})^{\frac{2}{m-1}}}$$

Cluster 1:

$$\mu_{11} = \frac{1}{\sum_{k=1}^{c} (\frac{d_{11}}{d_{k1}})^{\frac{2}{2-1}}} = \frac{1}{(\frac{d_{11}}{d_{11}})^{\frac{2}{2-1}} + (\frac{d_{11}}{d_{21}})^{\frac{2}{2-1}}}$$

$$\mu_{11} = \frac{1}{(\frac{1.4}{1.4})^2 + (\frac{1.4}{3.88})^2} = 0.89$$

Cluster 2:

$$\mu_{21} = \frac{1}{\sum_{k=1}^{c} (\frac{d_{21}}{d_{k1}})^{\frac{2}{2-1}}} = \frac{1}{(\frac{d_{21}}{d_{11}})^{\frac{2}{2-1}} + (\frac{d_{21}}{d_{21}})^{\frac{2}{2-1}}}$$

$$\mu_{11} = \frac{1}{(\frac{3.88}{1.40})^2 + (\frac{3.88}{3.88})^2} = 0.11$$

New Membership=μ ¹		
Point(x,y)	$\mu(C1)$	
(1,6)	0.89	
(2,5)	0.9	
(3,8)	0.54	
(4,4)	0.55	
(5,7)	0.01	
(6,9)	0.23	

Old Membership μ ⁰	
Point(x,y)	μ(C1)
(1,6)	0.8
(2,5)	0.9
(3,8)	0.7
(4,4)	0.3
(5,7)	0.5
(6,9)	0.2

$Max (\mu^1 - \mu^0) $
0.09
0
0.16
0.25
0.49
0.03

■ Step 5:

If Max $|(\mu^1 - \mu^0)| = 0.49 <= 0.01$ or iteration 1 = ma iteration(2) Stop;//(none of the conditions is true since we are in iteration

// 1 and 0.49 is greater that 0.01 (threshold)

Else

// then repeat

Return to step 2 iteration = iteration + 1;