## **Data Warehousing and OLAP Technology**

| 1.  | Objectives                                         | 3  |
|-----|----------------------------------------------------|----|
| 2.  | What is Data Warehouse?                            | 4  |
| 2.  | .1. Definitions                                    | 4  |
| 2.  | .2. Data Warehouse—Subject-Oriented                | 5  |
| 2.  | .3. Data Warehouse—Integrated                      | 5  |
| 2.  | .4. Data Warehouse—Time Variant                    | 6  |
| 2.  | .5. Data Warehouse—Non-Volatile                    | 6  |
| 2.  | .6. Data Warehouse vs. Heterogeneous DBMS          | 7  |
| 2.  | .7. Data Warehouse vs. Operational DBMS            | 7  |
| 2.  | .8. OLTP vs. OLAP                                  | 8  |
| 2.  | .9. Why Separate Data Warehouse?                   | 9  |
| 3.  | Multidimensional Data Model                        | 10 |
| 3.  | .1. Definitions                                    | 10 |
| 4.  | Conceptual Modeling of Data Warehousing            | 12 |
| 4.  | .1. Star Schema                                    | 13 |
| 4.  | .2. Snowflake Schema                               | 14 |
| 4.  | .3. Fact Constellation                             | 15 |
| 5.  | A Data Mining Query Language: DMQL                 | 16 |
| 5.  | .1. Definitions and syntax                         | 16 |
| 5.  | .2. Defining a Star Schema in DMQL                 | 17 |
| 5.  | .3. Defining a Snowflake Schema in DMQL            | 18 |
| 5.  | .4. Defining a Fact Constellation in DMQL          | 19 |
| 5.  | .5. Measures: Three Categories                     | 21 |
| 5.  | .6. How to compute data cube measures?             | 22 |
| 6.  | A Concept Hierarchy                                | 24 |
| 7.  | OLAP Operations in a Multidimensional Data         | 26 |
| 8.  | OLAP Operations                                    | 29 |
| 9.  | Starnet Query Model for Multidimensional Databases | 33 |
| 10. | Data warehouse architecture                        | 34 |
| 1(  | 0.1. DW Design Process                             | 35 |

| 10.2. | Three Data Warehouse models                      | . 37 |
|-------|--------------------------------------------------|------|
| 10.3. | OLAP Server Architectures                        | . 39 |
| 11.   | Data Warehouse Implementation                    | . 40 |
| 11.1. | Materialization of data cube                     | . 40 |
| 11.2. | Cube Operation                                   | . 41 |
| 11.3. | Cube Computation Methods                         | . 43 |
| 11.4. | Multi-way Array Aggregation for Cube Computation |      |
|       | Error! Bookmark not defined.                     |      |
| 11.5. | Indexing OLAP Data: Bitmap Index                 | . 44 |
| 11.6. | Indexing OLAP Data: Join Indices                 | . 45 |
| 11.7. | Efficient Processing OLAP Queries                | . 46 |
| 11.8. | Data Warehouse Usage                             | . 46 |
| 11.9. | Why online analytical mining?                    | . 47 |
| 12.   | An OLAM Architecture                             | . 48 |

## 1. Objectives

- What is a data warehouse?
- Data warehouse design issues.
- General architecture of a data warehouse
- Introduction to Online Analytical Processing (OLAP) technology.
- Data warehousing and data mining relationship.

## 2. What is Data Warehouse?

#### **2.1. Definitions**

- Defined in many different ways, but not rigorously.
- A decision support database that is maintained separately from the organization's operational database
- Support information processing by providing a solid platform of consolidated, historical data for analysis.
- "A data warehouse is a <u>subject-oriented</u>, <u>integrated</u>, <u>time-variant</u>, and <u>nonvolatile</u> collection of data in support of management's decision-making process."—W. H. Inmon
- Operational Data: Data used in day-to-day needs of company.
- Informational Data: Supports other functions such as planning and forecasting.
- Data mining tools often access data warehouses rather than operational data.
- Data warehousing: The process of constructing and using data warehouses.

#### 2.2. Data Warehouse—Subject-Oriented

- Organized around major subjects, such as customer, product, sales.
- Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing.
- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process.

## 2.3. Data Warehouse—Integrated

- Constructed by integrating multiple, heterogeneous data sources
  - Relational databases, flat files, on-line transaction records
- Data cleaning and data integration techniques are applied.
  - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
    - E.g., Hotel price: currency, tax, breakfast covered, etc.
  - When data is moved to the warehouse, it is converted.

#### 2.4. Data Warehouse—Time Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems.
  - Operational database: current value data.
  - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Every key structure in the data warehouse
  - Contains an element of time, explicitly or implicitly
  - But the key of operational data may or may not contain "time element".

#### 2.5. Data Warehouse—Non-Volatile

- A physically separate store of data transformed from the operational environment.
- Operational update of data does not occur in the data warehouse environment.
  - Does not require transaction processing, recovery, and concurrency control mechanisms
  - Requires only two operations in data accessing:
    - Initial loading of data and access of data.

#### 2.6. Data Warehouse vs. Heterogeneous DBMS

- Traditional heterogeneous DB integration:
  - Build wrappers/mediators on top of heterogeneous databases
  - Query driven approach
    - When a query is posed to a client site, a metadictionary is used to translate the query into queries appropriate for individual heterogeneous sites involved, and the results are integrated into a global answer set
    - Complex information filtering, compete for resources
- Data warehouse: update-driven, high performance
  - Information from heterogeneous sources is integrated in advance and stored in warehouses for direct query and analysis

## 2.7. Data Warehouse vs. Operational DBMS

- OLTP (on-line transaction processing)
  - Major task of traditional relational DBMS
  - Day-to-day operations: purchasing, inventory, banking, manufacturing, payroll, registration, accounting, etc.
- OLAP (on-line analytical processing)
  - Major task of data warehouse system
  - o Data analysis and decision making
- Distinct features (OLTP vs. OLAP):
  - $\circ~$  User and system orientation: customer vs. market
  - Data contents: current, detailed vs. historical, consolidated
  - Database design: ER + application vs. star + subject
  - View: current, local vs. evolutionary, integrated

 Access patterns: update vs. read-only but complex queries

#### 2.8. OLTP vs. OLAP

|                       | OLTP                                                         | OLAP                                                                    |
|-----------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|
| Users                 | Clerk, IT professional                                       | Knowledge worker                                                        |
| Function              | Day to day operations                                        | Decision support                                                        |
| DB design             | Application-oriented                                         | Subject-oriented                                                        |
| Data                  | Current, up-to-date<br>Detailed, flat relational<br>Isolated | Historical, Summarized,<br>multidimensional<br>Integrated, consolidated |
| Usage                 | Repetitive                                                   | Ad-hoc                                                                  |
| Access                | Read/write, Index/hash on prim. Key                          | Lots of scans                                                           |
| Unit of work          | Short, simple transaction                                    | Complex query                                                           |
| # records<br>accessed | Tens                                                         | Millions                                                                |
| #users                | Thousands                                                    | Hundreds                                                                |
| DB size               | 100MB-GB                                                     | 100GB-TB                                                                |
| Metric                | Transaction throughput                                       | Query throughput, response                                              |

#### 2.9. Why Separate Data Warehouse?

- High performance for both systems
  - DBMS— tuned for OLTP: access methods, indexing, concurrency control, recovery
  - Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, and consolidation.
- Different functions and different data:
  - <u>Missing data</u>: Decision support requires historical data which operational DBs do not typically maintain
  - <u>Data consolidation</u>: DS requires consolidation (aggregation, summarization) of data from heterogeneous sources
  - <u>Data quality</u>: different sources typically use inconsistent data representations, codes and formats which have to be reconciled.

## 3. Multidimensional Data Model

#### **3.1. Definitions**

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube.
- This is not a 3-dimensional cube: it is n-dimensional cube.

• Dimensions of the cube are the equivalent of entities in a database, e.g., how the organization wants to keep records.

- Examples:
  - Product
  - Dates
  - Locations
- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions
  - **Dimension tables**, such as item (item\_name, brand, type), or time(day, week, month, quarter, year)
  - **Fact table** contains measures (such as dollars\_sold) and keys to each of the related dimension tables

• In data warehousing literature, an n-D base cube is called a base cuboid. The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a data cube.



Cube: A lattice of cuboids

## 4. Conceptual Modeling of Data Warehousing

- Modeling data warehouses: dimensions & measures
  - <u>Star schema</u>: A fact table in the middle connected to a set of dimension tables
  - <u>Snowflake schema</u>: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
  - <u>Fact constellations</u>: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation

#### 4.1. Star Schema



#### 4.2. Snowflake Schema



#### 4.3. Fact Constellation



## 5. A Data Mining Query Language: DMQL

#### **5.1. Definitions and syntax**

• Similar to RDBMS, we need a DDL (data definition language) to define the tables in the conceptual model.

- Cube Definition (Fact Table)
  - Syntax: define cube <cube\_name> [<dimension\_list>]: <measure\_list>
  - Example

define cube sales\_star [time, item, branch, location]:
 dollars\_sold = sum(sales\_in\_dollars),
 avg\_sales = avg(sales\_in\_dollars),
 units\_sold = count(\*)

- Dimension Definition ( Dimension Table )
  - Syntax:

define dimension <dimension\_name>
as (<attribute\_or\_subdimension\_list>)

• Example:

define dimension item as (item\_key, item\_name, brand, type, supplier\_type)

- Special Case (Shared Dimension Tables)
  - First time as "cube definition"
  - Syntax: define dimension <dimension\_name> as <dimension\_name\_first\_time> in cube <cube\_name\_first\_time>
  - Example:

#### define dimension item as item in cube sales

#### 5.2. Defining a Star Schema in DMQL

define cube sales\_star [time, item, branch, location]:
 dollars\_sold = sum(sales\_in\_dollars),
 avg\_sales = avg(sales\_in\_dollars),
 units\_sold = count(\*)

**define dimension** time **as** (time\_key, day, day\_of\_week, month, quarter, year)

**define dimension** item **as** (item\_key, item\_name, brand, type, supplier\_type)

**define dimension** branch **as** (branch\_key, branch\_name, branch\_type)

**define dimension** location **as** (location\_key, street, city, province\_or\_state, country)

#### 5.3. Defining a Snowflake Schema in DMQL

```
define cube sales snowflake [time, item, branch, location]:
     dollars_sold = sum(sales_in_dollars),
     avg_sales = avg(sales_in_dollars),
     units_sold = count(*)
define dimension time as (
      time key,
      day,
      day_of_week,
      month,
      quarter,
      year
)
define dimension item as (
      item_key,
      item_name,
      brand, type,
      supplier(supplier_key, supplier_type)
 )
```

**define dimension** branch **as** (branch\_key, branch\_name, branch\_type)

#### **5.4. Defining a Fact Constellation in DMQL**

define cube sales [time, item, branch, location]:
 dollars\_sold = sum(sales\_in\_dollars),
 avg\_sales = avg(sales\_in\_dollars),
 units\_sold = count(\*)

**define dimension** time **as** (time\_key, day, day\_of\_week, month, quarter, year)

define dimension item
as (item\_key, item\_name, brand, type, supplier\_type)

define dimension branch
as (branch\_key, branch\_name, branch\_type)

define dimension location
as (location\_key, street, city, province\_or\_state, country)

define cube shipping [time, item, shipper, from\_location, to\_location]: dollar\_cost = sum(cost\_in\_dollars), unit\_shipped = count(\*)

**define dimension** time **as** time **in cube** sales

**define dimension** item **as** item **in cube** sales

#### define dimension shipper

**as** ( shipper\_key, shipper\_name, location **as** location **in cube** sales, shipper\_type)

**define dimension** from\_location **as** location **in cube** sales

#### **define dimension** to\_location **as** location **in cube** sales

#### **5.5. Measures: Three Categories**

- A data cube function is a numerical function that can be evaluated at each point in the data cube space.
- Given a data point in the data cube space:

Entry(v1, v2, ..., vn)

where vi is the value corresponding to dimension di.

We need to apply the aggregate measures to the dimonsion values v1, v2, ..., vn

#### • <u>Distributive</u>:

- If the result derived by applying the function to *n* aggregate values is the same as that derived by applying the function on all the data without partitioning.
- Example: count(), sum(), min(), max().

#### • <u>Algebraic</u>:

- Use distributive aggregate functions.
- If it can be computed by an algebraic function with *M* arguments (where *M* is a bounded integer), each of which is obtained by applying a distributive aggregate function.

• Example: avg(), min\_N(), standard\_deviation().

#### • <u>Holistic</u>:

- If there is no constant bound on the storage size needed to describe a subaggregate.
- E.g., median(), mode(), rank().

#### **5.6.** How to compute data cube measures?

- How do evaluate the dollars\_sold and unit\_sold in the star schema of the previous example?
- Assume that the relation database schema corresponding to our example is the following:

time (time\_key, day, day\_of\_week, month, quarter, year)
item (item\_key, item\_name, brand, type, supplier(supplier\_key,
supplier\_type))
branch (branch\_key, branch\_name, branch\_type)
location (location\_key, street, city, province\_or\_state, country)
sales (time\_key, item\_key, branch\_key, location\_key,
number\_of\_unit\_sold, price)

• Let us then compute the two measures we have in our data cube: dollars\_sold and units\_sold

- Relationship between "data cube" and "group by"?
  - The above query corresponds to the base cuboid.
  - By changing the group by clause in our query, we may generate other cuboids.
  - What is query for the 0-D cuboid or apex?

## 6. A Concept Hierarchy

- A concept hierarchy is an order relation between a set of attributes of a concept or dimension.
- It can be manually (users or experts) or automatically generated (statistical analysis).
- Multidimensional data is usually organized into dimension and each dimension is further defined into a lower level of abstractions defined by concept hierarchies.
- Example: Dimension (location)



• The order can be either partial or total:

**Location dimension**: Street <city<state<country **Time dimension**: Day < {month<quarter ; week} < year



Total order hierarchy

Partial order hierarchy

- Set-grouping hierarchy:
  - It is a concept hierarchy among groups of values.
  - Example: {1..10} < inexpensive

## 7. OLAP Operations in a Multidimensional Data

• Sales volume as a function of **product**, **time**, and **region**.

# • Dimensions hierarchical concepts: Product, Location, Time



Region  $\rightarrow$  Country  $\rightarrow$  City  $\rightarrow$  Office



• Sales volume as a function of **product**, **month**, and **region**.



Month

• A Sample data cube:



A. Bellaachia

• Querying a data cube



## 8. OLAP Operations

- Objectives:
  - OLAP is a powerful analysis tool:
    - Forecasting
    - Statistical computations,
    - aggregations,
    - etc.
- Roll up (drill-up): summarize data
  - It is performed by climbing up hierarchy of a dimension or by dimension reduction (reduce the cube by one or more dimensions).
  - The roll up operation in the example is based location (roll up on location) is equivalent to grouping the data by country.



- Drill down (roll down):
  - It is the reverse of roll-up
  - It is performed by stepping down a concept hierarchy for a dimension or introducing new dimensions.
- Slice and Dice:
  - Project and Select operations
  - Check the example.
- Pivot (rotate):
  - Re-orient the cube for an alternative presentation of the data
  - Transform 3D view to series of 2D planes.
- Other operations
  - Drill across: involving (across) more than one fact table.
  - Drill through: through the bottom level of the cube to its back-end relational tables (using SQL)





## 9. Starnet Query Model for Multidimensional Databases

- Each radial line represents a dimension
- Each abstraction level in a hierarchy concept is called a **footprint**
- Apply OLAP operations.



## **10.** Data warehouse architecture

- The design of a successful DW requires the understanding and the analysis of business requirements:
  - Competitive advantage
  - Enhance business productivity
  - Cost reduction
- Four views regarding the design of a data warehouse:
  - Top-down view:
    - allows selection of the relevant information necessary for the data warehouse. It covers the current and future business needs.
  - Data source view:
    - This view exposes the information being captured, stored, and managed by operational systems.
    - Usually modeled by traditional data modeling techniques, e.g., ER model.
  - Data warehouse view:
    - This view consists of fact tables and dimension tables.
  - Business query view:
    - This view sees the perspectives of data in the warehouse from the view of end-user

#### **10.1. DW Design Process**

- Top-down, bottom-up approaches or a combination of both
- <u>Top-down</u>: Starts with overall design and planning (mature)
- <u>Bottom-up</u>: Starts with experiments and prototypes (rapid)
  - From software engineering point of view
  - <u>Waterfall</u>: structured and systematic analysis at each step before proceeding to the next
  - <u>Spiral</u>: rapid generation of increasingly functional systems, short turn around time, quick turn around
- Typical data warehouse design process
  - Choose a business process to model, e.g., orders, invoices, etc.
  - Choose the <u>grain</u> (atomic level of data) of the business process
  - Choose the dimensions that will apply to each fact table record
  - Choose the measure that will populate each fact table record

#### • Multi-Tiered Architecture

![](_page_35_Figure_1.jpeg)

#### **10.2.** Three Data Warehouse models

- Enterprise warehouse
  - Collect all of the information about subjects spanning the entire organization.
- Data Mart
  - a subset of corporate-wide data that is of value to a specific groups of users. Its scope is confined to specific, selected groups, such as marketing data mart
    - Independent vs. dependent (directly from warehouse) data mart.
- Virtual warehouse
  - o A set of views over operational databases
  - Only some of the possible summary views may be materialized

![](_page_37_Figure_0.jpeg)

![](_page_37_Figure_1.jpeg)

- Build the data warehouse incrementally, data marts → data warehouse:
  - Start with a data model
  - Build each data mart in the organization in parallel
  - Integrate the data marts

#### **10.3. OLAP Server Architectures**

- Relational OLAP (ROLAP)
  - Use relational or extended-relational DBMS to store and manage warehouse data and OLAP middle ware to support missing pieces
  - Include optimization of DBMS backend, implementation of aggregation navigation logic, and additional tools and services
  - o greater scalability
- Multidimensional OLAP (MOLAP)
  - Array-based multidimensional storage engine (sparse matrix techniques)
  - $\circ~$  fast indexing to pre-computed summarized data
- Hybrid OLAP (HOLAP)
  - User flexibility, e.g., low level: relational, highlevel: array
  - Specialized SQL servers
  - specialized support for SQL queries over star/snowflake schemas
  - How data is actually stored in ROLAP and MOLAB?
    - Two methods:
      - Base cuboid data is stored in a `base fact table
      - Aggregate data:
        - Data can be stored in the base fact table (Summary Fact table), or
        - Data can be stored in a separate summary fact tables to store each level of abstraction.

## **11. Data Warehouse Implementation**

- Objectives:
  - Monitoring: Sending data from sources
  - Integrating: Loading, cleansing,...
  - Processing: Efficient cube computation, and query processing in general, indexing, ...
- Cube Computation
  - One approach extends SQL using compute cube operator
  - A cube operator is the n-dimensional generalization of the group-by SQL clause.
  - OLAP needs to compute the cuboid corresponding each input query.
  - Pre-computation: for fast response time, it seems a good idea to pre-compute data for all cuboids or at least a subset of cuboids since the number of cuboids is:

number of cuboids = 
$$\begin{cases} 2^{n} & \text{If no hierarchy} \\ & \text{if hierarchy and} \\ \prod_{i=1}^{n} (L_{i} + 1) & L_{i} \text{ is number of levels} \\ & \text{associated with d dim ension is} \end{cases}$$

#### **11.1. Materialization of data cube**

- Store in warehouse results useful for common queries
- Pre-compute some cuboids

• This is equivalent to the define new warehouse relations using SQL expressions

• Materialize <u>every</u> (cuboid) (full materialization), <u>none</u> (no materialization), or <u>some (partial materialization)</u>

- Selection of which cuboids to materialize
  - Based on size, sharing, access frequency, etc.
  - Define new warehouse relations using SQL expressions

#### **11.2.** Cube Operation

• Cube definition and computation in DMQL

**define** cube sales[item, city, year]: sum(sales\_in\_dollars) **compute cube** sales

• Transform it into a SQL-like language (with a new operator cube by, introduced by Gray et al.'96)

SELECT item, city, year, SUM (amount) FROM SALES **CUBE BY** item, city, year

• Need compute the following Group-Bys

(date, product, customer), (date,product),(date, customer), (product, customer), (date), (product), (customer) ()

![](_page_41_Figure_0.jpeg)

#### **11.3.** Cube Computation Methods

- ROLAP-based cubing
  - Sorting, hashing, and grouping operations are applied to the dimension attributes in order to reorder and cluster related tuples
  - Grouping is performed on some subaggregates as a "partial grouping step"
  - Aggregates may be computed from previously computed aggregates, rather than from the base fact table
- MOLAP Approach
  - Uses Array-based algorithm
  - The base cuboid is stored as multidimensional array.
  - Read in a number of cells to compute partial cuboids

#### **11.4. Indexing OLAP Data: Bitmap Index**

- Approach:
  - Index on a particular column
  - Each value in the column has a bit vector: bit-op is fast
  - The length of the bit vector: # of records in the base table
  - The *i*-th bit is set if the *i*-th row of the base table has the value for the indexed column
  - Not suitable for high cardinality domains
- Example:

Base Table:

| Cust | Region  | Туре   |
|------|---------|--------|
| C1   | Asia    | Retail |
| C2   | Europe  | Dealer |
| C3   | Asia    | Dealer |
| C4   | America | Retail |
| C5   | Europe  | Dealer |

Index on Region:

| RecID | Asia | Europe | America |
|-------|------|--------|---------|
| 1     | 1    | 0      | 0       |
| 2     | 0    | 1      | 0       |
| 3     | 1    | 0      | 0       |
| 4     | 0    | 0      | 1       |
| 5     | 0    | 1      | 0       |

Index on Type:

| RecID | Retail | Dealer |
|-------|--------|--------|
| 1     | 1      | 0      |
| 2     | 0      | 1      |
| 3     | 0      | 1      |
| 4     | 1      | 0      |
| 5     | 0      | 1      |

#### 11.5. Indexing OLAP Data: Join Indices

• Join index:

JI(R-id, S-id)

where R (R-id,  $\ldots$ ) >< S (S-id,  $\ldots$ )

• Traditional indices map the values to a list of record ids

• It materializes relational join in JI file and speeds up relational join — a rather costly operation

• In data warehouses, join index relates the values of the <u>dimensions</u> of a star schema to <u>rows</u> in the fact table.

- E.g. fact table: *Sales* and two dimensions *city* and *product* 
  - A join index on *city* maintains for each distinct city a list of R-IDs of the tuples recording the Sales in the city
  - Join indices can span multiple dimensions

![](_page_44_Figure_10.jpeg)

#### **11.6. Efficient Processing OLAP Queries**

- Determine which operations should be performed on the available cuboids:
  - transform drill, roll, etc. into corresponding SQL and/or OLAP operations, e.g, dice = selection + projection

• Determine to which materialized cuboid(s) the relevant operations should be applied.

• Exploring indexing structures and compressed vs. dense array structures in MOLAP

#### **11.7. Data Warehouse Usage**

- Three kinds of data warehouse applications
  - Information processing
    - supports querying, basic statistical analysis, and reporting using crosstabs, tables, charts and graphs
  - Analytical processing
    - multidimensional analysis of data warehouse data
    - supports basic OLAP operations, slice-dice, drilling, pivoting
  - Data mining
    - knowledge discovery from hidden patterns
    - supports associations, constructing analytical models, performing classification and prediction, and presenting the mining results using visualization tools.
- Differences among the three tasks

#### **11.8.** Why online analytical mining?

- High quality of data in data warehouses
   DW contains integrated, consistent, cleaned data
- Available information processing structure surrounding data warehouses
  - ODBC, OLEDB, Web accessing, service facilities, reporting and OLAP tools
- OLAP-based exploratory data analysis

   mining with drilling, dicing, pivoting, etc.
- On-line selection of data mining functions

   Integration and swapping of multiple mining functions, algorithms, and tasks.
- Architecture of OLAM

## 12. An OLAM Architecture

![](_page_47_Figure_1.jpeg)