Clustering

1.	Obje	ectives	2
2.	Clus	stering	2
	2.1.	Definitions	2
	2.2.	General Applications	2
	2.3.	What is a good clustering?	3
	2.4.	Requirements	
3.	Data	a Structures	4
4.	Sim	ilarity Measures	4
	4.1.	Standardize data	5
	4.2.	Binary variables	7
	4.3.	Nominal Variables	8
	4.4.	Ordinal Variables	9
	4.5.	Ratio-scaled variables	. 10
	4.6.	Variables of mixed types	. 10
5.	Clus	stering approaches	. 11
	5.1.	Major approaches	. 11
	5.2.	Partitioning approach	. 11
6.	The	K-means clustering method	. 12
7.	The	K-medoids Clustering Method	. 15
8.	Hier	archal Clustering	. 16
	8.1.	AGNES (Agglomerative Nesting)	. 16
	8.2.	Divisive Analysis: DIANA	. 18
	8.3.	Analysis of hierarchical clustering	. 18
9.	Outl	liers	. 19
	9.1.	Statistical Approach	. 19
	9.2.	Distance-Based Approach	. 20

1. Objectives

- Techniques to group data into related classify datasets and provide categorical labels, e.g., sports, technology, kid, etc.
- Detection of patterns
- Models to predict certain future behaviors.

2. Clustering

2.1. Definitions

- Cluster: a collection of data objects
 - o Similar to one another within the same cluster
 - o Dissimilar to the objects in other clusters
- Cluster analysis
 - o Grouping a set of data objects into clusters
- Clustering is unsupervised classification: no predefined classes
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - o As a preprocessing step for other algorithms

2.2. General Applications

- o Text mining:
 - Document categorization
 - Detection of topics
 - Summarization
- o Text Mining:
 - Web log analysis
 - Detection of groups of similar access patterns

- o Bio-informatics:
 - Gene expression data: detection of cancer genes
- o Others:
 - Image processing
 - Market analysis
 - Etc.

2.3. What is a good clustering?

- A good clustering method will produce high quality clusters with
 - o **High intra-class** similarity
 - o **Low inter-class** similarity
- The quality of a clustering result depends on both the **similarity measure** used by the method and its implementation.
- The quality of a clustering method is also measured by its ability **to discover** some or all of the hidden patterns.

2.4. Requirements

- Scalability
- Ability to deal with different types of attributes
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability

3. Data Structures

• Data Matrix (two modes)

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

• Dissimilarity (or similarity) matrix

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

4. Similarity Measures

- Dissimilarity/Similarity metric: Similarity is expressed in terms of a distance function, which is typically metric: d(i, j)
- There is a separate "quality" function that measures the "goodness" of a cluster.
- The definitions of distance functions are usually very different for interval-scaled, boolean, categorical, ordinal and ratio variables.

- Weights should be associated with different variables based on applications and data semantics.
- It is hard to define "similar enough" or "good enough"
 - o The answer is typically highly subjective.
- Type of data in clustering analysis
 - o Interval-scaled variables
 - o Binary variables
 - o Nominal, ordinal, and ratio variables
 - o <u>Variables of mixed types</u>

4.1. Standardize data

• Calculate the *mean absolute deviation*:

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

Where

$$m_f = \frac{1}{n}(x_{1f} + x_{2f} + \dots + x_{nf})$$

• *z-score:* Calculate the standardized measurement

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

• Using mean absolute deviation is more robust than using standard deviation

- Computation of data similarity
 - <u>Distances</u> are normally used to measure the <u>similarity</u> or dissimilarity between two data objects
 - Some popular ones include: *Minkowski distance*:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)}$$

where $i = (x_{11}, x_{12}, ..., x_{1p})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two p-dimensional data objects, and q is a positive integer.

• If q = 1, d is Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

• If q = 2, d is Euclidean distance:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

Properties:

$$o d(i,j) \ge 0$$

$$o d(i,i) = 0$$

$$\circ \ d(i,j) = d(j,i)$$

$$\circ d(i,j) \le d(i,k) + d(k,j)$$

 Also, one can use weighted distance, parametric Pearson product moment correlation, or other disimilarity measures

4.2. Binary variables

• A contingency table for binary data

• Simple matching coefficient (invariant, if the binary variable is *symmetric*):

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

• Jaccard coefficient (noninvariant if the binary variable is *asymmetric*):

$$d(i,j) = \frac{b+c}{a+b+c}$$

• Example:

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- gender is a symmetric attribute
- The remaining attributes are asymmetric binary
- Let the values Y and P be set to 1, and the value N be set to 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

4.3. Nominal Variables

- A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green
- Method 1: Simple matching
 m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: use a large number of binary variables
 - Creating a new binary variable for each of the *M* nominal states

4.4. Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
 - Replace *xif* by their rank:

$$r_{if} \in \{1, ..., M_f\}$$

Map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

• Compute the dissimilarity using methods for intervalscaled variables

4.5. Ratio-scaled variables

- Ratio-scaled variable: a positive measurement on a nonlinear scale, approximately at exponential scale, such as AeBt or Ae-Bt
- Methods:
 - Treat them like interval-scaled variables—not a good choice! (why?—the scale can be distorted)
 - Apply logarithmic transformation: yif = log(xif)
 - Treat them as continuous ordinal data treat their rank as interval-scaled

4.6. Variables of mixed types

- A database may contain all the six types of variables
 - Symmetric binary, asymmetric binary, nominal, ordinal, interval and ratio
- One may use a weighted formula to combine their effects:

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

• *f* is binary or nominal:

$$dij(f) = 0$$
 if $xif = xif$, or $dij(f) = 1$ o.w.

- \bullet f is interval-based: use the normalized distance
- f is ordinal or ratio-scaled
 - o compute ranks rif and
 - o treat zif as interval-scaled

$$Z_{if} = \frac{r_{if} - 1}{M_{f} - 1}$$

5. Clustering approaches

5.1. Major approaches

- <u>Partitioning algorithms</u>: Construct various partitions and then evaluate them by some criterion
- <u>Hierarchy algorithms</u>: Create a hierarchical decomposition of the set of data (or objects) using some criterion
- <u>Density-based</u>: based on connectivity and density functions
- <u>Grid-based</u>: based on a multiple-level granularity structure
- <u>Model-based</u>: A model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other

5.2. Partitioning approach

- Partitioning method: Construct a partition of a database **D** of **n** objects into a set of **k** clusters
- Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - o Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: *k-means* and *k-medoids* algorithms
 - o <u>k-means</u> (MacQueen'67): Each cluster is represented by the center of the cluster
 - o <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

6. The K-means clustering method

• Input: n objects (or points) and a number k

• Algorithm 1:

- o Step 1: Randomly place K points into the space represented by the objects that are being clustered. These points represent initial group centroids.
- o Step 2: Assign each object to the group that has the closest centroid.
- o Step 3: When all objects have been assigned, recalculate the positions of the K centroids.
- o Repeat Steps 2 and 3 until the stopping criteria is met.

• Algorithm 2:

- Step 1: Partition objects into *k* nonempty subsets
- o Step 2: Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e., *mean point*, of the cluster)
- Step 3: Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when no more new assignment

o Example

- Stopping criteria:
 - o No change in the members of all clusters
 - o when the squared error is less than some small threshold value α :
 - Squared error se

$$se = \sum_{i=1}^{k} \sum_{p \in c_i} ||p - m_i||^2$$

where mi is the mean of all instances in cluster ci

- $se(j) < \alpha$
- Properties of k-means
 - o Guaranteed to converge
 - o Guaranteed to achieve local optimal, not necessarily global optimal. Often terminates at a *local optimum*. The *global optimum* may be found using techniques such as: *deterministic annealing* and *genetic algorithms*
- Analysis
 - o <u>Strength:</u> Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.
 - o Comparing: PAM: $O(k(n-k)^2)$, CLARA: $O(ks^2 + k(n-k))$
 - o Weakness
 - Applicable only when *mean* is defined, then what about categorical data?
 - Need to specify k, the number of clusters, in advance
 - Unable to handle noisy data and outliers
 - Not suitable to discover clusters with non-convex shapes

- Variations of K-means method:
 - A few variants of the *k-means* which differ in
 - Selection of the initial *k* means
 - o Dissimilarity calculations
 - o Strategies to calculate cluster means
 - Handling categorical data: k-modes (Huang'98)
 - o Replacing means of clusters with modes
 - Using new dissimilarity measures to deal with categorical objects
 - o Using a <u>frequency</u>-based method to update modes of clusters
 - A mixture of categorical and numerical data: *k-prototype* method
 - Drawbacks of k-mean method
 - o The k-means algorithm is sensitive to outliers!
 - Since an object with an extremely large value may substantially distort the distribution of the data.
 - K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.

7. The K-medoids Clustering Method

- Find representative objects, called medoids, in clusters
- *PAM* (Partitioning Around Medoids, 1987)
 - o starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - o *PAM* works effectively for small data sets, but does not scale well for large data sets
- *CLARA* (Kaufmann & Rousseeuw, 1990)
- CLARANS (Ng & Han, 1994): Randomized sampling
- Focusing + spatial data structure (Ester et al., 1995)

8. Hierarchal Clustering

- Use distance matrix as clustering criteria.
- This method does not require the number of clusters k as an input, but needs a termination condition

8.1. AGNES (Agglomerative Nesting)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Use the Single-Link method and the dissimilarity matrix.
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster

- A *Dendrogram* Shows How the Clusters are Merged Hierarchically
 - o Decompose data objects into a several levels of nested partitioning (<u>tree</u> of clusters), called a <u>dendrogram</u>.
 - o A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected component</u> forms a cluster.

8.2. Divisive Analysis: DIANA

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own

8.3. Analysis of hierarchical clustering

- Major weakness of agglomerative clustering methods
 - o do not scale well: time complexity of at least $O(n^2)$, where n is the number of total objects
- Integration of hierarchical with distance-based clustering
 - o <u>BIRCH (1996)</u>: uses CF-tree and incrementally adjusts the quality of sub-clusters
 - o <u>CURE (1998</u>): selects well-scattered points from the cluster and then shrinks them towards the center of the cluster by a specified fraction
 - o <u>CHAMELEON (1999)</u>: hierarchical clustering using dynamic modeling.

9. Outliers

- What are outliers?
 - o The set of objects are considerably dissimilar from the remainder of the data
 - o Example: Sports: Michael Jordon, Wayne Gretzky, ...
- Problem
 - o Find top n outlier points
- Applications:
 - o Credit card fraud detection
 - o Telecom fraud detection
 - o Customer segmentation
 - o Medical analysis

9.1. Statistical Approach

- Assume a model underlying distribution that generates data set (e.g. normal distribution)
 - Use discordancy tests depending on
 - o Data distribution
 - o Distribution parameter (e.g., mean, variance)
 - o Number of expected outliers
 - Drawbacks
 - o Most tests are for single attribute
 - o In many cases, data distribution may not be known

9.2. Distance-Based Approach

- Introduced to counter the main limitations imposed by statistical methods
 - We need multi-dimensional analysis without knowing data distribution.
- Distance-based outlier: A Outlier(p, D)-outlier is an object O in a dataset T such that at least a fraction p of the objects in T lies at a distance greater than D from O
 - Algorithms for mining distance-based outliers
 - o Index-based algorithm:
 - Use R-tree indexing structure.
 - It takes O(k*n²) without the cost of building the tree.
 - o Nested-loop algorithm:
 - Divide the dataset into blocks and look for outliers in block by block.
 - It has the same complexity as index-based algorithm.
 - o Cell-based algorithm:
 - Divide the data space into cells and look for outliers cell-by-cell rather than point-by-point.
 - It takes $O(n^2)$.