Association Rules

1.	Obje	ectives	2
2.	Defi	nitions	2
3.		e of Association Rules	
4.	Freq	uent Itemset generation	9
5.	Apri	ori Algorithm: Mining Single-Dimension Boolean AR	13
4	5.1.	Join Step:	. 15
4	5.2.	Prune step	. 17
4	5.3.	Example	. 18
4	5.4.	Pseudo-code	. 19
4	5.5.	Challenges	. 19
4	5.6.	Improving the Efficiency of Apriori	. 20
6.	Min	ing Frequent Itemsets without Candidate Generation	. 22
(5.1.	Mining Frequent patterns using FP-Tree	. 25
(5.2.	Major steps to mine FP-trees	. 25
7.	Mul	tiple-Level Association Rules	. 31
-	7.1.	Approach	. 31
7	7.2.	Redundancy Filtering	. 36

1. Objectives

- Increase sales and reduce costs
- What products were often purchased together?
 - o Beer and diapers?!
- What are the subsequent purchases after buying a PC?
- What kinds of DNA are sensitive to this new drug?
- Can we automatically classify web documents?
- Broad applications:
 - o Basket data analysis, cross-marketing, catalog design, sale campaign analysis
 - o Web log (click stream) analysis, DNA sequence analysis, etc.
- Example: Items frequently purchased together:
 - Bread → PeanutButter
- Why associations:
 - o Placement
 - o Advertising
 - o Sales
 - o Coupons

2. Definitions

- Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.
- Frequent pattern: pattern (set of items, sequence, etc.) that occurs frequently in a database.
- Basic Concepts:

o A set of items: $I=\{x_1, ..., x_k\}$

o Transactions: $D=\{t_1,t_2,...,t_n\}, t_j \subseteq I$

o A k-Itemset: $\{I_{i1},I_{i2},...,I_{ik}\}\subseteq I$

- o Support of an itemset: Percentage of transactions that contain that itemset.
- o Large (Frequent) itemset: Itemset whose number of occurrences is above a threshold.
- o Example:

Transaction	Items
t_1	Bread,Jelly,PeanutButter
t_2	Bread,PeanutButter
t_3	Bread,Milk,PeanutButter
t_4	Beer,Bread
t_5	${f Beer, Milk}$

I = { Beer, Bread, Jelly, Milk, PeanutButter} Support of {Bread, PeanutButter} = 3/5 = 60%

Transaction-id	Items bought
10	A, B, C
20	A, C
30	A, D
40	B, E, F

- Association Rules
 - o Implication: $X \rightarrow Y$ where $X,Y \subseteq I$ and $X \cap Y = \emptyset$;
 - o Support of AR (s) $X \rightarrow Y$:
 - ${\color{red} \bullet}$ Percentage of transactions that contain $X \cup Y$
 - Probability that a transaction contains X ∪ Y.
 - o Confidence of AR (a) $X \rightarrow Y$:

- lacktriangle Ratio of number of transactions that contain $X \cup Y$ to the number that contain X
- Conditional probability that a transaction having X also contains Y.

o Example:

Transaction-id	Items bought
10	A, B, C
20	A, C
30	A, D
40	B, E, F

Frequent pattern	Support
{A}	75%
{B}	50%
{C}	50%
{A, C}	50%

• For rule $A \rightarrow C$:

Support($A \rightarrow C$) = $P(A \cup C)$ = support($\{A\} \cup \{C\}$) = 50% confidence ($A \rightarrow C$) = P(C|A)

• Another Example:

Transaction	Items
t_1	Bread,Jelly,PeanutButter
t_2	Bread,PeanutButter
t_3	Bread,Milk,PeanutButter
t_4	Beer,Bread
t_5	Beer,Milk

X → Y	Support	Confidence
Bread → Peanutbutter	= 3/5 %= 60%	=(3/5)/(4/5)%=75%
Peanutbutter → Bread	60%	=(3/5)/(3/5)%=100%
Jelly → Milk	0%	0%
Jelly → Peanutbutter	=1/5 % = 20%	=(1/5)/(1/5)%=100%

• Association Rule Problem:

- Given a set of items I={I₁,I₂,...,I_m} and a database of transactions D={t₁,t₂,...,t_n} where t_i={I_{i1},I_{i2},...,I_{ik}} and I_{ij} ∈ I, the Association Rule Problem is to identify all association rules X → Y with a *minimum support and confidence*.
- NOTE: Support of $X \rightarrow Y$ is same as support of $X \cup Y$.
- Association Rules techniques:
 - Find all frequent itemsets.
 - Generate strong association rules from the frequent itemsets: those rules must satisfy minimum support and minimum confidence.

3. Type of Association Rules

- Boolean AR:
 - o It is a rule that checks whether an item is present or absent.
 - All the examples we have seen so far are Boolean AR.
- Quantitative AR:
 - It describes associations between quantitative items or attributes.
 - o Generally, quantitative values are partitioned into intervals.
 - o Example:

 $Age(X,"30..39") \land income(X,"80K..100K")$

→ buys(X, High Resolution TV)

- Single-Dimension AR:
 - o It is a rule that references only one dimension.
 - o Example:

→ buys(X,"financial_software")

The single dimension is "buys"

o The following rule is a multi-dimensional AR:

- Multi-level AR
 - o It is a set of rules that reference different levels of abstraction.
 - o Example:

Age(X,"30..39")
$$\rightarrow$$
 buys(X, "desktop")
Age(X,"20..29") \rightarrow buys(X, "laptop")

Laptop \rightarrow desktop \rightarrow computer

4. Frequent Itemset generation

• Given d items, there are 2^d possible candidate itemsets

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- o Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d!!!
- Complexiy:
 - o Given d unique items:
 - o Total number of itemsets = 2^d
 - o Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \begin{bmatrix} d \\ k \end{bmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{bmatrix}$$
$$= 3^{d} - 2^{d+1} + 1$$

 \circ If d=6, R = 602 rules

• Frequent Itemset Generation Strategies

- o Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- o Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
- o Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

5. Apriori Algorithm: Mining Single-Dimension Boolean AR

- It is used to mine Boolean, single-level, and single-dimension ARs.
- Apriori Principle

• Apriori algorithm:

- Uses prior knowledge of frequent itemset properties.
- o It is an iterative algorithm known as level-wise search.
- o The search proceeds level-by-level as follows:
 - First determine the set of frequent 1-itemset; L1
 - Second determine the set of frequent 2itemset using L1: L2
 - Etc.
- The complexity of computing Li is O(n) where n is the number of transactions in the transaction database.
- o Reduction of search space:
 - In the worst case what is the number of itemsets in a level Li?
 - Apriori uses "Apriori Property":

o Apriori Property:

- It is an anti-monotone property: if a set cannot pass a test, all of its supersets will fail the same test as well.
- It is called anti-monotone because the property is monotonic in the context of failing a test.
- All nonempty subsets of a frequent itemset must also be frequent.
- An itemset I is not frequent if it does not satisfy the minimum support threshold:

$$P(I) < min_sup$$

If an item A is added to the itemset I, then the resulting itemset I ∪ A cannot occur more frequently than I:

 $I \cup A$ is not frequent

Therefore, $P(I \cup A) < \min_{sup}$

- How Apriori algorithm uses "Apriori property"?
 - O In the computation of the itemsets in L_k using L_{k-1}
 - o It is done in two steps:
 - Join
 - Prune

5.1. Join Step:

• The set of candidate k-itemsets (element of L_k), C_k , is generated by joining L_{k-1} with itself:

$$L_{k-1} \propto L_{k-1}$$

• Given l_1 and l_2 of L_{k-1}

$$\begin{split} L_i &= l_{i1}, l_{i2}, l_{i3}, \dots, l_{i(k-2)}, l_{i(k-1)} \\ L_j &= l_{j1}, l_{j2}, l_{j3}, \dots, l_{j(k-2)}, l_{j(k-1)} \end{split}$$

Where L_i and L_j are sorted.

• L_i and L_j are joined if there are different (no duplicate generation). Assume the following:

$$l_{i1}\!\!=\!\!l_{j1},\,l_{i2}\!\!=\!\!l_{j1},\,\ldots,\,l_{i(k\text{-}2)}\!\!=\!\!l_{j(k\text{-}2)}\,\text{and}\,\,l_{i(k\text{-}1)}\!< l_{j(k\text{-}1)}$$

• The resulting itemset is:

$$l_{i1}, l_{i2}, l_{i3}, \dots, l_{i(k-1)}, l_{j(k-1)}$$

• Example of Candidate-generation:

L3={abc, abd, acd, ace, bcd}

Self-joining: L3 ∞ L3

abcd from abc and abd
acde from acd and ace

5.2. Prune step

- C_k is a superset of $L_k \rightarrow$ some itemset in C_k may or may not be frequent.
- L_k: Test each generated itemset against the database:
 - Scan the database to determine the count of each generated itemset and include those that have a count no less than the minimum support count.
 - This may require intensive computation.
- Use Apriori property to reduce the search space:
 - Any (k-1)-itemset that is not frequent cannot be a subset of a frequent kitemset.
 - Remove from C_k any k-itemset that has a (k-1)-subset not in L_{k-1} (itemsets that are not frequent)
 - Efficiently implemented: maintain a hash table of all frequent itemset.
- Example of Candidate-generation and Pruning:

L3={abc, abd, acd, ace, bcd}

Self-joining: L3 ∞ L3

abcd from abc and abd **acde** from acd and ace

Pruning:

acde is removed because ade is
not in L3
C4={abcd}

5.3. Example

Database TDB

Items
A, C, D
B, C, E
A, B, C, E
B, E

	Itemset	sup
L_1	{A}	2
	{B}	3
→	{C}	3
	{E}	3

 L_2

Itemset	sup
{A, C}	2
{B, C}	2
{B, E}	3
{C, E}	2

•—

 C_2

 C_1

1st scan

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

 C_2 Itemset $\begin{array}{c}
C_2 \\
2^{\text{nd}} \text{ scan}
\end{array}$ $\begin{array}{c}
\{A, B\} \\
\{A, C\} \\
\{A, E\} \\
\{B, C\} \\
\{B, E\} \\
\{C, E\}
\end{array}$

 C_3

Itemset	sup
{B, C, E}	2

5.4. Pseudo-code

```
Ck: Candidate itemset of size k

L_k: frequent itemset of size k

L_1 = \{ \text{frequent items} \}; 

for (k = 1; L_k != \mathcal{A}; k++) do

- C_{k+1} = \text{candidates generated from } L_k; 

- for each transaction t in database do

increment the count of all candidates in C_{k+1}

that are contained in t;

endfor;

- L_{k+1} = \text{candidates in } C_{k+1} \text{ with min\_support}

endfor;

return \cup_k L_k;
```

5.5. Challenges

- Multiple scans of transaction database
- Huge number of candidates
- Tedious workload of support counting for candidates
- Improving Apriori:
 - o general ideas
 - Reduce passes of transaction database scans
 - o Shrink number of candidates
 - Facilitate support counting of candidates
 - o Easily parallelized

5.6. Improving the Efficiency of Apriori

- Several attempts have been introduced to improve the efficiency of Apriori:
 - o Hash-based technique
 - Hashing itemset counts
 - Example:
 - o Transaction DB:

TID	List of Transactions
T100	11,12,15
T200	I2,I4
T300	12,13
T400	I1,I2,I4
T500	I1,I3
T600	I2,I3
T700	I1,I3
T800	I1,I2,I3,I5
T900	I1,I2,I3

- o Create a hash table for candidate 2-itemsets:
 - Generate all 2-itemsets for each transaction in the transaction DB
 - H(x,y) = ((order of x) * 10 + (order of y)) mod 7

 A 2-itemset whose corresponding bucket count is below the support threshold cannot be frequent.

Bucket @	0	1	2	3	4	5	6
Bucket	2	2	4	2	2	4	4
count							
Content	{I1,I4}	{I1,I5}	{I2,I3}	{I2,I4}	{I2,I5}	{I1,I2}	{I1,I3}
	{I3,I5}	{I1,I5}	{I2,I3}	{I2,I4}	{I2,I5}	{I1,I2}	{I1,I3}
			{I2,I3}			{I1,I2}	{I1,I3}
			{I2,I3}			{I1,I2}	{I1,I3}

Remember: support($x \rightarrow y$) = percentage number of transactions that contain x and y. Therefore, if the minimum support is 3, then the itemsets in buckets 0, 1, 3, and 4 cannot be frequent and so they should not be included in C_2 .

o Transaction reduction

- Reduce the number of transactions scanned in future iterations.
- A transaction that does not contain any frequent k-itemsets cannot contain any frequent (k+1)-itemsets: Do not include such transaction in subsequent scans.

o Other techniques include:

- Partitioning (partition the data to find candidate itemsets)
- Sampling (Mining on a subset of the given data)
- Dynamic itemset counting (Adding candidate itemsets at different points during a scan)

6. Mining Frequent Itemsets without Candidate Generation

- Objectives:
 - o The bottleneck of *Apriori*: candidate generation
 - o Huge candidate sets:
 - For 104 frequent 1-itemset, Apriori will generate 107 candidate 2-itemsets.
 - To discover a frequent pattern of size 100, e.g., {a1, a2, ..., a100}, one needs to generate 2100 ≈ 1030 candidates.
 - o Multiple scans of database:
 - Needs (n + 1) scans, n is the length of the longest pattern.
- Principal
 - o Compress a large database into a compact, <u>Frequent-</u> Pattern tree (FP-tree) structure
 - Highly condensed, but complete for frequent pattern mining
 - Avoid costly database scans
 - o Develop an efficient, FP-tree-based frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation: sub-database test only!

• Algorithm:

- 1. Scan DB once, find frequent 1-itemset (single item pattern)
- 2. Order frequent items in frequency descending order, called *L order*: (in the example below: F(4), c(4), a(3), etc.)
- 3. Scan DB again and construct FP-tree
 - a. Create the root of the tree and label it null or {}
 - b. The items in each transaction are processed in the L order (sorted according to descending support count).
 - c. Create a branch for each transaction
 - d. Branches share common prefixes

• Example: $min_support = 0.5$

<u>TID</u>	Items bought	(Ordered) frequent
		<u>items</u>
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$
300	$\{b, f, h, j, o\}$	{ <i>f</i> , <i>b</i> }
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$
500	$\{a, f, c, e, \overline{l}, p, m, n\}$	$\{f, c, a, m, p\}$

• Node Structure:

Item	count	node pointer	child pointers	parent pointer
------	-------	--------------	----------------	----------------

6.1. Mining Frequent patterns using FP-Tree

- General idea (divide-and-conquer)
 - o Recursively grow frequent pattern path using the FP-tree
- Method
 - o For each item, construct its conditional pattern-base, and then its conditional FP-tree
 - Recursion: Repeat the process on each newly created conditional FP-tree
 - o Until the resulting FP-tree is empty, or it contains only one path (single path will generate all the combinations of its sub-paths, each of which is a frequent pattern)

6.2. Major steps to mine FP-trees

- Main Steps:
 - 1. Construct conditional pattern base for each node in the FP-tree
 - 2. Construct conditional FP-tree from each conditional pattern-base
 - 3. Recursively mine conditional FP-trees and grow frequent patterns obtained so far If the conditional FP-tree contains a single path, simply enumerate all the patterns
- Step 1: From FP-tree to Conditional Pattern Base
 - Starting at the frequent header table in the FP-tree
 - Traverse the FP-tree by following the link of each frequent item, starting by the item with the highest frequency.
 - Accumulate all of transformed *prefix paths* of that item to form a conditional pattern base

Conditional pattern bases			
Item Conditional pattern ba			
c	f:3		
a	fc:3		
b	fca:1, f:1, c:1		
m	fca:2, fcab:1		
p	fcam:2, cb:1		

- Properties of FP-tree for Conditional Pattern Base Construction:
 - o Node-link property
 - For any frequent item a_i , all the possible frequent patterns that contain a_i can be obtained by following a_i 's node-links, starting from a_i 's head in the FP-tree header.

o Prefix path property

- To calculate the frequent patterns for a node a_i in a path P, only the prefix sub-path of a_i in P need to be accumulated and its *frequency count should carry the same count as node a_i*.
- Step 2: Construct Conditional FP-tree
 - o For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base
 - o Example:

• Mining Frequent Patterns by Creating Conditional Pattern-Bases:

Item	Conditional pattern-base	Conditional FP-tree
p	{(fcam:2), (cb:1)}	{(c:3)} p
m	{(fca:2), (fcab:1)}	{(f:3, c:3, a:3)} m
b	{(fca:1), (f:1), (c:1)}	Empty
a	{(fc:3)}	$\{(f:3, c:3)\} a$
c	{(f:3)}	$\{(f:3)\} c$
f	Empty	Empty

• Step 3: Recursively mine the conditional FP-tree

cm-conditional FP-tree

Cond. pattern base of "cam": (f:3) f:3

cam-conditional FP-tree

- Why is FP-Tree mining fast?
 - The performance study shows FP-growth is an order of magnitude faster than Apriori
 - o Reasoning:
 - No candidate generation, no candidate test
 - Use compact data structure
 - Eliminate repeated database scan
 - Basic operation is counting and FP-tree building
- FP-Growth vs. Apriori: Scalability with the support Threshold [Jiawei Han and Micheline Kamber]

7. Multiple-Level Association Rules

- Items often form hierarchy.
- Items at the lower level are expected to have lower support.
- Rules regarding itemsets at appropriate levels could be quite useful.
- Transaction database can be encoded based on dimensions and levels
- We can explore shared multi-level mining

7.1. Approach

- A top-down, progressive deepening approach:
 - First find high-level strong rules:

milk → bread [20%, 60%].

■ Then find their lower-level "weaker" rules:

2% milk \rightarrow wheat bread [6%, 50%].

- Variations at mining multiple-level association rules.
 - Level-crossed association rules:

2% milk → Wonder wheat bread

• Association rules with multiple, alternative hierarchies:

2% milk → Wonder bread

- Two multiple-level mining associations strategies:
 - Uniform Support
 - Reduced support
- Uniform Support: the same minimum support for all levels
 - One minimum support threshold.
 - No need to examine itemsets containing any item whose ancestors do not have minimum support.
 - Drawback:
 - Lower level items do not occur as frequently. If support threshold

too high → miss low level associations too low → generate too many high level assoc.

- Reduced Support: reduced minimum support at lower levels
 - There are 4 search strategies:
 - o Level-by-level independent
 - o Level-cross filtering by k-itemset
 - o Level-cross filtering by single item
 - Controlled level-cross filtering by single item

Level-by-Level independent:

- o Full-breadth search
- o No background knowledge is used.
- o Each node is examined regardless the frequency of its parent.

Level-cross filtering by single item:

o An item at the ith level is examined if and only if its parent node at the (i-1)th level is frequent.

Level-cross filtering by k-itemset:

 A k-itemset at the ith level is examined if and only if its corresponding parent k-itemset at the (i-1)th level is frequent.

- o This restriction is stronger than the one in level-cross filtering by single item
- o They are not usually many k-itemsets that, when combined, are also frequent:
- → Many valuable patterns can be mined

Controlled level-cross filtering by single item:

- o A variation of the level-cross filtering by single item: Relax the constraint in this approach
- Allow the children of items that do not satisfy the minimum support threshold to be examined if these items satisfy the level passage threshold:

level_passage_supp

o *level_passage_sup* Value: It is typically set between the min_sup value of the given level and the min_sup of the next level.

o Example:

7.2. Redundancy Filtering

- Some rules may be redundant due to "ancestor" relationships between items.
- Definition: A rule R1 is an ancestor of a rule, R2, if R1 can be obtained by replacing the items in R2 by their ancestors in a concept hierarchy.
- Example

```
R1: milk → wheat bread [support = 8%, confidence = 70%]
R2: 2% milk → wheat bread [support = 2%, confidence = 72%]
```

Milk in R1 is an ancestor of 2% milk in R2.

- We say the first rule is an ancestor of the second rule.
- A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor:
 - R2 is redundant since its confidence is close to the confidence of R1 (kind of expected) and its support is around 2% = (8% * ½)
 - R2 does not add any additional information.