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1. Objectives 
 

• Increase sales and reduce costs  
• What products were often purchased together? 

o Beer and diapers?! 
• What are the subsequent purchases after buying a PC? 
• What kinds of DNA are sensitive to this new drug? 
• Can we automatically classify web documents? 
• Broad applications: 

o Basket data analysis, cross-marketing, catalog 
design, sale campaign analysis 

o Web log (click stream) analysis, DNA 
sequence analysis, etc. 

• Example: Items frequently purchased together: 
• Bread  PeanutButter 

• Why associations: 
o Placement  
o Advertising 
o Sales 
o Coupons 

 

2. Definitions 
 

• Finding frequent patterns, associations, correlations, or 
causal structures among sets of items or objects in transaction 
databases, relational databases, and other information 
repositories. 

 
• Frequent pattern: pattern (set of items, sequence, etc.) that 
occurs frequently in a database. 
 
• Basic Concepts: 
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o A set of items:  I={x1, …, xk} 
 
o Transactions: D={t1,t2, …, tn}, tj ⊆ I 

 
o A k-Itemset: {Ii1,Ii2, …, Iik}  ⊆ I 

 
o Support of an itemset: Percentage of transactions that 

contain that itemset. 
 
o Large (Frequent) itemset: Itemset whose number of 

occurrences is above a threshold. 
 
o Example:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I = { Beer, Bread, Jelly, Milk, PeanutButter} 
Support of {Bread,PeanutButter} = 3/5 =  60% 
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• Association Rules 
o Implication: X  Y where X,Y ⊆ I and X ∩Y 

= ∅; 
o Support of AR (s) X   Y:  

 Percentage of transactions that contain  
X ∪ Y 
 Probability that a transaction contains 

X∪Y. 
 
o Confidence of AR (a) X  Y:  

Customer 
buys milk 

Customer 
buys both 

Customer 
buys Bread 

B, E, F 40 

A, D 30 

A, C 20 

A, B, C 10 

Items bought Transaction-id 
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 Ratio of number of transactions that 
contain X ∪ Y to the number that contain 
X 

 Conditional probability that a transaction 
having X also contains Y. 

 
 

o Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• For rule A  C: 
 

Support(AC) = P(A∪C) = support({A}∪{C}) = 50% 
confidence (A C) = P(C|A)  

B, E, F 40 

A, D 30 

A, C 20 

A, B, C 10 

Items bought Transaction-id 

50% {A, C} 

50% {C} 

50% {B} 

75% {A} 

Support Frequent pattern 
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= support({A}∪{C})/support({A}) = 66.6% 
 

• Another Example: 
 
 
 
 
 
 
 
 
 
 
 
 

X Y Support Confidence 
Bread  Peanutbutter = 3/5 %= 60% = (3/5)/(4/5)%=75% 
Peanutbutter  Bread 60% = (3/5)/(3/5)%=100% 
Jelly  Milk 0% 0% 
Jelly  Peanutbutter =1/5 % = 20% = (1/5)/(1/5) % = 100% 
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• Association Rule Problem: 
o Given a set of items I={I1,I2,…,Im} and a 

database of transactions D={t1,t2, …, tn} 
where ti={Ii1,Ii2, …, Iik} and Iij ∈ I, the 
Association Rule Problem is to identify all 
association rules X  Y with a minimum 
support and confidence. 

 
o NOTE: Support of X  Y is same as support 

of X ∪ Y. 
 

• Association Rules techniques: 
 Find all frequent itemsets. 
 Generate strong association rules from 

the frequent itemsets: those rules must 
satisfy minimum support and minimum 
confidence.  

3. Type of Association Rules 
 

• Boolean AR:  
o It is a rule that checks whether an item is 

present or absent.  
o All the examples we have seen so far are 

Boolean AR. 
 
• Quantitative AR: 

o It describes associations between quantitative 
items or attributes. 

o Generally, quantitative values are partitioned 
into intervals. 

o Example: 
 
Age(X,”30..39”) ∧ income(X,”80K..100K”)  
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  buys(X, High Resolution TV) 
 
• Single-Dimension AR: 

o It is a rule that references only one dimension. 
o Example: 

buys(X,”computer”)  
 buys(X,”financial_software”) 
 
The single dimension is “buys” 
 

o The following rule is a multi-dimensional AR: 
 

Age(X,”30..39”) ∧ income(X,”80K..100K”)  
  buys(X, High Resolution TV) 

 
• Multi-level AR 

o It is a set of rules that reference different levels 
of abstraction. 

o Example: 
Age(X,”30..39”)   buys(X, “desktop”) 
Age(X,”20..29”)   buys(X, “laptop”) 
 

Laptop  desktop  computer 
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4. Frequent Itemset generation 
 
• Given d items, there are 2d possible candidate itemsets 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
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• Brute-force approach: 
o Each itemset in the lattice is a candidate frequent 

itemset 
o Count the support of each candidate by scanning 

the database 
 
 
 
 
 
 
 
 
 
 
 
 
 

o Match each transaction against every candidate 
o Complexity ~ O(NMw) => Expensive since M = 

2d !!! 
 

• Complexiy:  
o Given d unique items: 
o Total number of itemsets = 2d 
o Total number of possible association rules:  

 
 
 
 
 
 
 

o If d=6,  R = 602 rules 
 

TID Items 
1 Bread, Milk 
2 Bread, Diaper, Beer, Eggs 
3 Milk, Diaper, Beer, Coke 
4 Bread, Milk, Diaper, Beer 
5 Bread, Milk, Diaper, Coke 

 

N
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• Frequent Itemset Generation Strategies 
o Reduce the number of candidates (M) 

 Complete search: M=2d 
 Use pruning techniques to reduce M 

o Reduce the number of transactions (N)  
 Reduce size of N as the size of 

itemset increases 
o Reduce the number of comparisons (NM) 

 Use efficient data structures to store 
the candidates or transactions 

 No need to match every candidate 
against every transaction 
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5. Apriori Algorithm: Mining Single-Dimension 
Boolean AR 
 

• It is used to mine Boolean, single-level, and single-
dimension ARs. 
• Apriori Principle 
 
 

 
 
 
 

Found to be 
Infrequent 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Pruned 
supersets 
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• Apriori algorithm:  
 

o Uses prior knowledge of frequent itemset 
properties. 

 
o It is an iterative algorithm known as level-wise 

search. 
 
o The search proceeds level-by-level as follows: 

  First determine the set of frequent 1-
itemset; L1 

 Second determine the set of frequent 2-
itemset using L1: L2 

 Etc.  
 
o The complexity of computing Li is O(n) where 

n is the number of transactions in the 
transaction database. 

 
o Reduction of search space: 

 In the worst case what is the number of 
itemsets in a level Li?  

 Apriori uses “Apriori Property”: 
 

o Apriori Property: 
 It is an anti-monotone property: if a set 

cannot pass a test, all of its supersets will 
fail the same test as well.  

 It is called anti-monotone because the 
property is monotonic in the context of 
failing a test. 

 All nonempty subsets of a frequent 
itemset must also be frequent. 

 An itemset I is not frequent if it does not 
satisfy the minimum support threshold:  
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P(I) < min_sup 

 
 If an item A is added to the itemset I, then 

the resulting itemset I ∪ A cannot occur 
more frequently than I:  

I ∪ A is not frequent  
 

Therefore, P(I ∪ A) < min_sup 
• How Apriori algorithm uses “Apriori property”? 

o In the computation of the itemsets in Lk using 
Lk-1 

o It is done in two steps: 
 Join  
 Prune 

5.1. Join Step: 
• The set of candidate k-itemsets (element of Lk), Ck, 

is generated by joining Lk-1 with itself:  
 

Lk-1 ∞ Lk-1 
 
• Given l1 and l2 of Lk-1 

 
Li=li1,li2,li3,…,li(k-2),li(k-1) 
Lj=lj1,lj2,lj3,…,lj(k-2),lj(k-1) 
 
Where Li and Lj are sorted. 
 

• Li and Lj are joined if there are different (no 
duplicate generation). Assume the following: 

 
 li1=lj1, li2=lj1, …, li(k-2)=lj(k-2) and li(k-1) < lj(k-1) 

 
• The resulting itemset is:  
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li1,li2,li3,…,li(k-1),lj(k-1) 

 
• Example of Candidate-generation:  

 
L3={abc, abd, acd, ace, bcd} 
 
Self-joining: L3 ∞ L3  

 
abcd from abc and abd 
acde from acd and ace 
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5.2. Prune step 
 

• Ck is a superset of Lk  some itemset in Ck may or 
may not be frequent. 
• Lk: Test each generated itemset against the database:  

 Scan the database to determine the count 
of each generated itemset and include 
those that have a count no less than the 
minimum support count.  

 This may require intensive computation. 
 
• Use Apriori property to reduce the search space: 

 Any (k-1)-itemset that is not frequent 
cannot be a subset of a frequent k-
itemset.  

 Remove from Ck any k-itemset that has a 
(k-1)-subset not in Lk-1 (itemsets that are 
not frequent) 

 Efficiently implemented: maintain a hash 
table of all frequent itemset. 

  
• Example of Candidate-generation and Pruning:  

 
L3={abc, abd, acd, ace, bcd} 
 
Self-joining: L3 ∞ L3  

 
   abcd from abc and abd 

acde from acd and ace 
 
     Pruning: 

acde is removed because ade is 
not in L3 

C4={abcd} 



A. Bellaachia     Page: 18 

 

  
5.3. Example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Database TDB 

1st scan 

C1 
L1 

L2 

C2 C2 

2nd scan 

C3 L3 3rd scan 

B, E 40 
A, B, C, E 30 

B, C, E 20 
A, C, D 10 
Items Tid 

1 {D} 
3 {E} 

3 {C} 
3 {B} 
2 {A} 

sup Itemset 

3 {E} 
3 {C} 
3 {B} 
2 {A} 

sup Itemset 

{C, E} 
{B, E} 
{B, C} 
{A, E} 
{A, C} 
{A, B} 
Itemset 

1 {A, B} 
2 {A, C} 
1 {A, E} 
2 {B, C} 
3 {B, E} 
2 {C, E} 

sup Itemset 

2 {A, C} 
2 {B, C} 
3 {B, E} 
2 {C, E} 

sup Itemset 

{B, C, E} 
Itemset 

2 {B, C, E} 
sup Itemset 
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5.4. Pseudo-code 
 

Ck: Candidate itemset of size k 
Lk : frequent itemset of size k 

 L1 = {frequent items}; 
for (k = 1; Lk !=Æ; k++) do 

- Ck+1 = candidates generated from Lk; 
      - for each transaction t in database do 

increment the count of all candidates in Ck+1                            
that are contained in t; 

   endfor; 
- Lk+1  = candidates in Ck+1 with min_support 

     endfor; 
 return ∪k Lk; 
 
 
  
5.5. Challenges 
 

• Multiple scans of transaction database 
• Huge number of candidates 
• Tedious workload of support counting for candidates 
• Improving Apriori:  

o general ideas 
o Reduce passes of transaction database 

scans 
o Shrink number of candidates 
o Facilitate support counting of 

candidates 
o Easily parallelized 
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5.6. Improving the Efficiency of Apriori 
 

• Several attempts have been introduced to improve the 
efficiency of Apriori: 
o Hash-based technique  

 Hashing itemset counts 
 Example: 
 
 

o Transaction DB:  
 

TID List of Transactions 
T100 I1,I2,I5 
T200 I2,I4 
T300 I2,I3 
T400 I1,I2,I4 
T500 I1,I3 
T600 I2,I3 
T700 I1,I3 
T800 I1,I2,I3,I5 
T900 I1,I2,I3 

 
 
 

o Create a hash table for candidate 2-itemsets:  
 
 Generate all 2-itemsets for each 

transaction in the transaction DB 
 

 H(x,y) = ((order of x) * 10 + (order of y)) 
mod 7 
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 A 2-itemset whose corresponding bucket 
count is below the support threshold 
cannot be frequent. 

 
 

Bucket @ 0 1 2 3 4 5 6 
Bucket 
count 

2 2 4 2 2 4 4 

Content {I1,I4} {I1,I5} {I2,I3} {I2,I4} {I2,I5} {I1,I2} {I1,I3} 
 {I3,I5} {I1,I5} {I2,I3} {I2,I4} {I2,I5} {I1,I2} {I1,I3} 
   {I2,I3}   {I1,I2} {I1,I3} 
   {I2,I3}   {I1,I2} {I1,I3} 

 
 Remember: support(xy) = percentage 

number of transactions that contain x and 
y. Therefore, if the minimum support is 3, 
then the itemsets in buckets 0, 1, 3, and 4 
cannot be frequent and so they should not 
be included in C2. 

 
 
o Transaction reduction  

 Reduce the number of transactions scanned in 
future iterations. 

 A transaction that does not contain any frequent 
k-itemsets cannot contain any frequent (k+1)-
itemsets: Do not include such transaction in 
subsequent scans.  

 
o Other techniques include:  

 Partitioning (partition the data to find candidate 
itemsets) 

 Sampling (Mining on a subset of the given data) 
 Dynamic itemset counting (Adding candidate 

itemsets at different points during a scan) 
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6. Mining Frequent Itemsets without Candidate 
Generation 
 

• Objectives: 
o The bottleneck of Apriori: candidate generation 
o Huge candidate sets: 

 For 104 frequent 1-itemset, Apriori will generate 
107 candidate 2-itemsets. 

 To discover a frequent pattern of size 100, e.g., 
{a1, a2, …, a100}, one needs to generate  
2100 ≈ 1030 candidates. 

o Multiple scans of database:  

 Needs (n +1) scans, n is the length of the longest 
pattern. 

 
• Principal 
o Compress a large database into a compact, Frequent-

Pattern tree (FP-tree) structure 
 Highly condensed, but complete for frequent 

pattern mining 
 Avoid costly database scans 

o Develop an efficient, FP-tree-based frequent pattern 
mining method 
 A divide-and-conquer methodology: decompose 

mining tasks into smaller ones 
 Avoid candidate generation: sub-database test 

only! 
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• Algorithm:  

1. Scan DB once, find frequent 1-itemset (single item 
pattern) 

2. Order frequent items in frequency descending order, 
called L order: (in the example below: F(4), c(4), 
a(3), etc.) 

3. Scan DB again and construct FP-tree 
a. Create the root of the tree and label it null or {} 
b. The items in each transaction are processed in 

the L order (sorted according to descending 
support count). 

c. Create a branch for each transaction 
d. Branches share common prefixes   
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• Example:  min_support = 0.5 
 

TID Items bought   (Ordered) frequent 
items 

100 {f, a, c, d, g, i, m, p} {f, c, a, m, p} 
200 {a, b, c, f, l, m, o} {f, c, a, b, m} 
300 {b, f, h, j, o} {f, b} 
400 {b, c, k, s, p} {c, b, p} 
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Node Structure: 

 
Item count node pointer child pointers parent pointer 

{} 

f:4 c:1 

b:1 

p:1 

b:1 c:3 

a:3 

b:1 m:2 

p:2 m:1 

Header Table 
 
Item  Supp. Count Node Link  
 f  4 
c  4 
a  3 
b  3 
m  3 
p  3 
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6.1. Mining Frequent patterns using FP-Tree 
• General idea (divide-and-conquer) 
o Recursively grow frequent pattern path using the FP-

tree 
• Method  
o For each item, construct its conditional pattern-base, 

and then its conditional FP-tree 
o Recursion: Repeat the process on each newly created 

conditional FP-tree  
o Until the resulting FP-tree is empty, or it contains only 

one path (single path will generate all the combinations 
of its sub-paths, each of which is a frequent pattern) 

 
6.2. Major steps to mine FP-trees 
 

• Main Steps: 
1. Construct conditional pattern base for each node in 

the FP-tree 
2. Construct conditional FP-tree from each conditional 

pattern-base 
3. Recursively mine conditional FP-trees and grow 

frequent patterns obtained so far If the conditional 
FP-tree contains a single path, simply enumerate all 
the patterns 

 
• Step 1: From FP-tree to Conditional Pattern Base 

 
 Starting at the frequent header table in the FP-tree 
 Traverse the FP-tree by following the link of each 

frequent item, starting by the item with the highest 
frequency. 

 Accumulate all of transformed prefix paths of that 
item to form a conditional pattern base 
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• Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
• Properties of FP-tree for Conditional Pattern Base 
Construction: 
o  Node-link property 

 For any frequent item ai, all the possible frequent 
patterns that contain ai can be obtained by 
following ai's node-links, starting from ai's head 
in the FP-tree header. 

o Prefix path property 

Conditional pattern bases 
Item Conditional pattern base 

c  f:3 
a fc:3 
b fca:1, f:1, c:1 
m  fca:2, fcab:1 
p fcam:2, cb:1 

{} 

f:4 c:1 

b:1 

p:1 

b:1 c:3 

a:3 

b:1 m:2 

p:2 m:1 

Header Table 
 
Item  Supp. Count Node Link  
 f  4 
c  4 
a  3 
b  3 
m  3 
p  3 
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 To calculate the frequent patterns for a node ai in 
a path P, only the prefix sub-path of ai in P need 
to be accumulated and its frequency count should 
carry the same count as node ai. 

 
• Step 2: Construct Conditional FP-tree  
o For each pattern-base 

 Accumulate the count for each item in the base 
 Construct the FP-tree for the frequent items of the 

pattern base 
o Example: 

m-conditional pattern base: fca:2, fcab:1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{} 

f:4 c:1 

b:1 

p:1 

b:1 c:3 

a:3 

b:1 m:2 

p:2 m:1 

Header Table 
 
Item  Supp. Count Node Link  
 f  4 
c  4 
a  3 
b  3 
m  3 
p  3 

All frequent patterns 
concerning m: 

m,  
fm, cm, am,  
fcm, fam, cam,  
fcam 



A. Bellaachia     Page: 29 

 

• Mining Frequent Patterns by Creating Conditional Pattern-
Bases: 

 
Item Conditional pattern-base Conditional FP-tree 

p {(fcam:2), (cb:1)} {(c:3)}|p 

m {(fca:2), (fcab:1)} {(f:3, c:3, a:3)}|m 

b {(fca:1), (f:1), (c:1)} Empty 
a {(fc:3)} {(f:3, c:3)}|a 
c {(f:3)} {(f:3)}|c 
f Empty Empty 

 
• Step 3: Recursively mine the conditional FP-tree 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{} 

f:3 

c:3 

a:3 

m-conditional FP-tree 

Cond. pattern base of “am”: (fc:3) 

{} 

f:3 

c:3 

am-conditional FP-tree 

Cond. pattern base of “cm”: (fa:3) {} 

f:3 

cm-conditional FP-tree 

Cond. pattern base of “cam”: (f:3) 

{} 

f:3 

cam-conditional FP-tree 
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• Why is FP-Tree mining fast?  
o The performance study shows FP-growth is an order of 

magnitude faster than Apriori 
o Reasoning: 

  No candidate generation, no candidate test 
 Use compact data structure 
 Eliminate repeated database scan 
 Basic operation is counting and FP-tree building 

 
 

• FP-Growth vs. Apriori: Scalability with the support 
Threshold [Jiawei Han and Micheline Kamber] 
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7. Multiple-Level Association Rules 
 

• Items often form hierarchy. 
• Items at the lower level are expected to have lower 
support. 
• Rules regarding itemsets at appropriate levels could be 
quite useful. 
• Transaction database can be encoded based on dimensions 
and levels 
• We can explore shared multi-level mining 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7.1. Approach  
 

• A top-down, progressive deepening approach: 
 First find high-level strong rules: 

 
milk  bread  [20%, 60%]. 

Food 

bread milk 

skim 

Sunset Fraser 

2% white wheat 
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 Then find their lower-level “weaker” rules: 

 
2% milk   wheat bread [6%, 50%]. 

 
• Variations at mining multiple-level association rules. 

 Level-crossed association rules: 
 

2% milk   Wonder wheat bread 
 

• Association rules with multiple, alternative hierarchies: 
 
2% milk   Wonder bread 
 

• Two multiple-level mining associations strategies: 
 Uniform Support 
 Reduced support 

 
• Uniform Support: the same minimum support for all levels 

 
 One minimum support threshold.    
 No need to examine itemsets containing any item 

whose ancestors do not have minimum support. 
 Drawback:  

o Lower level items do not occur as 
frequently. If support threshold  

 
too high  miss low level associations 
too low  generate too many high level assoc. 
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• Reduced Support: reduced minimum support at lower 
levels 

 There are 4 search strategies: 
o Level-by-level independent 
o Level-cross filtering by k-itemset 
o Level-cross filtering by single item 

o Controlled level-cross filtering by 
single item 

 
 Level-by-Level independent: 

o Full-breadth search 
o No background knowledge is used. 
o Each node is examined regardless the 

frequency of its parent. 
 
 Level-cross filtering by single item: 

o An item at the ith level is examined if 
and only if its parent node at the (i-1)th 
level is frequent. 

 Level-cross filtering by k-itemset: 
o A k-itemset at the ith level is examined 

if and only if its corresponding parent 
k-itemset at the (i-1)th level is 
frequent. 

Milk 
[support = 10%] 

2% Milk  
[support = 6%] 

Skim Milk  
[support = 4%] 

Level 1 
min_sup = 5% 

Level 2 
min_sup = 5% 
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o This restriction is stronger than the one 
in level-cross filtering by single item 

o They are not usually many k-itemsets 
that, when combined, are also 
frequent: 

 
 Many valuable patterns can be mined 

 
 Controlled level-cross filtering by single item: 

o A variation of the level-cross filtering 
by single item: Relax the constraint in 
this approach 

o Allow the children of items that do not 
satisfy the minimum support threshold 
to be examined if these items satisfy 
the level passage threshold:  

 
level_passage_supp 

 
o level_passage_sup Value: It is 

typically set between the min_sup 
value of the given level and the 
min_sup of the next level. 
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o Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Milk 
[support = 10%] 

2% Milk  
[support = 6%] 

Skim Milk  
[support = 5%] 

Level 1 
min_sup = 12% 
level_passage_sup = 8% 

Level 2 
min_sup = 4% 
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7.2. Redundancy Filtering 
 

• Some rules may be redundant due to “ancestor” 
relationships between items. 
 
• Definition: A rule R1 is an ancestor of a rule, R2, if R1 
can be obtained by replacing the items in R2 by their 
ancestors in a concept hierarchy. 
 
• Example 

 
R1: milk  wheat bread [support = 8%, confidence = 70%] 
R2: 2% milk  wheat bread [support = 2%, confidence = 72%] 

 
Milk in R1 is an ancestor of 2% milk in R2. 

 
• We say the first rule is an ancestor of the second rule. 
• A rule is redundant if its support is close to the “expected” 
value, based on the rule’s ancestor: 

 
 R2 is redundant since its confidence is close to the 

confidence of R1 (kind of expected) and its 
support is around 2% = (8% * ¼)  

 R2 does not add any additional information.  
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