
A. Bellaachia Page: 1

Association Rules

1. Objectives .. 2

2. Definitions.. 2

3. Type of Association Rules ... 7

4. Frequent Itemset generation .. 9

5. Apriori Algorithm: Mining Single-Dimension Boolean AR 13

5.1. Join Step:.. 15

5.2. Prune step ... 17

5.3. Example ... 18

5.4. Pseudo-code ... 19

5.5. Challenges .. 19

5.6. Improving the Efficiency of Apriori.............................. 20

6. Mining Frequent Itemsets without Candidate Generation 22

6.1. Mining Frequent patterns using FP-Tree....................... 25

6.2. Major steps to mine FP-trees ... 25

7. Multiple-Level Association Rules ... 31

7.1. Approach .. 31

7.2. Redundancy Filtering... 36

A. Bellaachia Page: 2

1. Objectives

• Increase sales and reduce costs
• What products were often purchased together?

o Beer and diapers?!
• What are the subsequent purchases after buying a PC?
• What kinds of DNA are sensitive to this new drug?
• Can we automatically classify web documents?
• Broad applications:

o Basket data analysis, cross-marketing, catalog
design, sale campaign analysis

o Web log (click stream) analysis, DNA
sequence analysis, etc.

• Example: Items frequently purchased together:
• Bread  PeanutButter

• Why associations:
o Placement
o Advertising
o Sales
o Coupons

2. Definitions

• Finding frequent patterns, associations, correlations, or
causal structures among sets of items or objects in transaction
databases, relational databases, and other information
repositories.

• Frequent pattern: pattern (set of items, sequence, etc.) that
occurs frequently in a database.

• Basic Concepts:

A. Bellaachia Page: 3

o A set of items: I={x1, …, xk}

o Transactions: D={t1,t2, …, tn}, tj ⊆ I

o A k-Itemset: {Ii1,Ii2, …, Iik} ⊆ I

o Support of an itemset: Percentage of transactions that

contain that itemset.

o Large (Frequent) itemset: Itemset whose number of

occurrences is above a threshold.

o Example:

I = { Beer, Bread, Jelly, Milk, PeanutButter}
Support of {Bread,PeanutButter} = 3/5 = 60%

A. Bellaachia Page: 4

• Association Rules
o Implication: X  Y where X,Y ⊆ I and X ∩Y

= ∅;
o Support of AR (s) X  Y:

 Percentage of transactions that contain
X ∪ Y
 Probability that a transaction contains

X∪Y.

o Confidence of AR (a) X  Y:

Customer
buys milk

Customer
buys both

Customer
buys Bread

B, E, F 40

A, D 30

A, C 20

A, B, C 10

Items bought Transaction-id

A. Bellaachia Page: 5

 Ratio of number of transactions that
contain X ∪ Y to the number that contain
X

 Conditional probability that a transaction
having X also contains Y.

o Example:

• For rule A  C:

Support(AC) = P(A∪C) = support({A}∪{C}) = 50%
confidence (A C) = P(C|A)

B, E, F 40

A, D 30

A, C 20

A, B, C 10

Items bought Transaction-id

50% {A, C}

50% {C}

50% {B}

75% {A}

Support Frequent pattern

A. Bellaachia Page: 6

= support({A}∪{C})/support({A}) = 66.6%

• Another Example:

X Y Support Confidence
Bread  Peanutbutter = 3/5 %= 60% = (3/5)/(4/5)%=75%
Peanutbutter  Bread 60% = (3/5)/(3/5)%=100%
Jelly  Milk 0% 0%
Jelly  Peanutbutter =1/5 % = 20% = (1/5)/(1/5) % = 100%

A. Bellaachia Page: 7

• Association Rule Problem:
o Given a set of items I={I1,I2,…,Im} and a

database of transactions D={t1,t2, …, tn}
where ti={Ii1,Ii2, …, Iik} and Iij ∈ I, the
Association Rule Problem is to identify all
association rules X  Y with a minimum
support and confidence.

o NOTE: Support of X  Y is same as support

of X ∪ Y.

• Association Rules techniques:
 Find all frequent itemsets.
 Generate strong association rules from

the frequent itemsets: those rules must
satisfy minimum support and minimum
confidence.

3. Type of Association Rules

• Boolean AR:
o It is a rule that checks whether an item is

present or absent.
o All the examples we have seen so far are

Boolean AR.

• Quantitative AR:

o It describes associations between quantitative
items or attributes.

o Generally, quantitative values are partitioned
into intervals.

o Example:

Age(X,”30..39”) ∧ income(X,”80K..100K”)

A. Bellaachia Page: 8

 buys(X, High Resolution TV)

• Single-Dimension AR:

o It is a rule that references only one dimension.
o Example:

buys(X,”computer”)
 buys(X,”financial_software”)

The single dimension is “buys”

o The following rule is a multi-dimensional AR:

Age(X,”30..39”) ∧ income(X,”80K..100K”)
 buys(X, High Resolution TV)

• Multi-level AR

o It is a set of rules that reference different levels
of abstraction.

o Example:
Age(X,”30..39”)  buys(X, “desktop”)
Age(X,”20..29”)  buys(X, “laptop”)

Laptop  desktop  computer

A. Bellaachia Page: 9

4. Frequent Itemset generation

• Given d items, there are 2d possible candidate itemsets

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

A. Bellaachia Page: 10

• Brute-force approach:
o Each itemset in the lattice is a candidate frequent

itemset
o Count the support of each candidate by scanning

the database

o Match each transaction against every candidate
o Complexity ~ O(NMw) => Expensive since M =

2d !!!

• Complexiy:
o Given d unique items:
o Total number of itemsets = 2d
o Total number of possible association rules:

o If d=6, R = 602 rules

TID Items
1 Bread, Milk
2 Bread, Diaper, Beer, Eggs
3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke

N

Transactions List of
Candidates

M

w

123

j
kd

k
d

R

1dd

1d

1k

kd

1j

+−=
















 −
×







=

+

−

=

−

=
∑ ∑

A. Bellaachia Page: 11

• Frequent Itemset Generation Strategies
o Reduce the number of candidates (M)

 Complete search: M=2d
 Use pruning techniques to reduce M

o Reduce the number of transactions (N)
 Reduce size of N as the size of

itemset increases
o Reduce the number of comparisons (NM)

 Use efficient data structures to store
the candidates or transactions

 No need to match every candidate
against every transaction

A. Bellaachia Page: 12

A. Bellaachia Page: 13

5. Apriori Algorithm: Mining Single-Dimension
Boolean AR

• It is used to mine Boolean, single-level, and single-
dimension ARs.
• Apriori Principle

Found to be
Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Pruned
supersets

A. Bellaachia Page: 14

• Apriori algorithm:

o Uses prior knowledge of frequent itemset
properties.

o It is an iterative algorithm known as level-wise

search.

o The search proceeds level-by-level as follows:

 First determine the set of frequent 1-
itemset; L1

 Second determine the set of frequent 2-
itemset using L1: L2

 Etc.

o The complexity of computing Li is O(n) where

n is the number of transactions in the
transaction database.

o Reduction of search space:

 In the worst case what is the number of
itemsets in a level Li?

 Apriori uses “Apriori Property”:

o Apriori Property:
 It is an anti-monotone property: if a set

cannot pass a test, all of its supersets will
fail the same test as well.

 It is called anti-monotone because the
property is monotonic in the context of
failing a test.

 All nonempty subsets of a frequent
itemset must also be frequent.

 An itemset I is not frequent if it does not
satisfy the minimum support threshold:

A. Bellaachia Page: 15

P(I) < min_sup

 If an item A is added to the itemset I, then

the resulting itemset I ∪ A cannot occur
more frequently than I:

I ∪ A is not frequent

Therefore, P(I ∪ A) < min_sup
• How Apriori algorithm uses “Apriori property”?

o In the computation of the itemsets in Lk using
Lk-1

o It is done in two steps:
 Join
 Prune

5.1. Join Step:
• The set of candidate k-itemsets (element of Lk), Ck,

is generated by joining Lk-1 with itself:

Lk-1 ∞ Lk-1

• Given l1 and l2 of Lk-1

Li=li1,li2,li3,…,li(k-2),li(k-1)
Lj=lj1,lj2,lj3,…,lj(k-2),lj(k-1)

Where Li and Lj are sorted.

• Li and Lj are joined if there are different (no
duplicate generation). Assume the following:

 li1=lj1, li2=lj1, …, li(k-2)=lj(k-2) and li(k-1) < lj(k-1)

• The resulting itemset is:

A. Bellaachia Page: 16

li1,li2,li3,…,li(k-1),lj(k-1)

• Example of Candidate-generation:

L3={abc, abd, acd, ace, bcd}

Self-joining: L3 ∞ L3

abcd from abc and abd
acde from acd and ace

A. Bellaachia Page: 17

5.2. Prune step

• Ck is a superset of Lk  some itemset in Ck may or
may not be frequent.
• Lk: Test each generated itemset against the database:

 Scan the database to determine the count
of each generated itemset and include
those that have a count no less than the
minimum support count.

 This may require intensive computation.

• Use Apriori property to reduce the search space:

 Any (k-1)-itemset that is not frequent
cannot be a subset of a frequent k-
itemset.

 Remove from Ck any k-itemset that has a
(k-1)-subset not in Lk-1 (itemsets that are
not frequent)

 Efficiently implemented: maintain a hash
table of all frequent itemset.

• Example of Candidate-generation and Pruning:

L3={abc, abd, acd, ace, bcd}

Self-joining: L3 ∞ L3

 abcd from abc and abd

acde from acd and ace

 Pruning:

acde is removed because ade is
not in L3

C4={abcd}

A. Bellaachia Page: 18

5.3. Example

Database TDB

1st scan

C1
L1

L2

C2 C2

2nd scan

C3 L3 3rd scan

B, E 40
A, B, C, E 30

B, C, E 20
A, C, D 10
Items Tid

1 {D}
3 {E}

3 {C}
3 {B}
2 {A}

sup Itemset

3 {E}
3 {C}
3 {B}
2 {A}

sup Itemset

{C, E}
{B, E}
{B, C}
{A, E}
{A, C}
{A, B}
Itemset

1 {A, B}
2 {A, C}
1 {A, E}
2 {B, C}
3 {B, E}
2 {C, E}

sup Itemset

2 {A, C}
2 {B, C}
3 {B, E}
2 {C, E}

sup Itemset

{B, C, E}
Itemset

2 {B, C, E}
sup Itemset

A. Bellaachia Page: 19

5.4. Pseudo-code

Ck: Candidate itemset of size k
Lk : frequent itemset of size k

 L1 = {frequent items};
for (k = 1; Lk !=Æ; k++) do

- Ck+1 = candidates generated from Lk;
 - for each transaction t in database do

increment the count of all candidates in Ck+1
that are contained in t;

 endfor;
- Lk+1 = candidates in Ck+1 with min_support

 endfor;
 return ∪k Lk;

5.5. Challenges

• Multiple scans of transaction database
• Huge number of candidates
• Tedious workload of support counting for candidates
• Improving Apriori:

o general ideas
o Reduce passes of transaction database

scans
o Shrink number of candidates
o Facilitate support counting of

candidates
o Easily parallelized

A. Bellaachia Page: 20

5.6. Improving the Efficiency of Apriori

• Several attempts have been introduced to improve the
efficiency of Apriori:
o Hash-based technique

 Hashing itemset counts
 Example:

o Transaction DB:

TID List of Transactions
T100 I1,I2,I5
T200 I2,I4
T300 I2,I3
T400 I1,I2,I4
T500 I1,I3
T600 I2,I3
T700 I1,I3
T800 I1,I2,I3,I5
T900 I1,I2,I3

o Create a hash table for candidate 2-itemsets:

 Generate all 2-itemsets for each

transaction in the transaction DB

 H(x,y) = ((order of x) * 10 + (order of y))
mod 7

A. Bellaachia Page: 21

 A 2-itemset whose corresponding bucket
count is below the support threshold
cannot be frequent.

Bucket @ 0 1 2 3 4 5 6
Bucket
count

2 2 4 2 2 4 4

Content {I1,I4} {I1,I5} {I2,I3} {I2,I4} {I2,I5} {I1,I2} {I1,I3}
 {I3,I5} {I1,I5} {I2,I3} {I2,I4} {I2,I5} {I1,I2} {I1,I3}
 {I2,I3} {I1,I2} {I1,I3}
 {I2,I3} {I1,I2} {I1,I3}

 Remember: support(xy) = percentage

number of transactions that contain x and
y. Therefore, if the minimum support is 3,
then the itemsets in buckets 0, 1, 3, and 4
cannot be frequent and so they should not
be included in C2.

o Transaction reduction

 Reduce the number of transactions scanned in
future iterations.

 A transaction that does not contain any frequent
k-itemsets cannot contain any frequent (k+1)-
itemsets: Do not include such transaction in
subsequent scans.

o Other techniques include:

 Partitioning (partition the data to find candidate
itemsets)

 Sampling (Mining on a subset of the given data)
 Dynamic itemset counting (Adding candidate

itemsets at different points during a scan)

A. Bellaachia Page: 22

6. Mining Frequent Itemsets without Candidate
Generation

• Objectives:
o The bottleneck of Apriori: candidate generation
o Huge candidate sets:

 For 104 frequent 1-itemset, Apriori will generate
107 candidate 2-itemsets.

 To discover a frequent pattern of size 100, e.g.,
{a1, a2, …, a100}, one needs to generate
2100 ≈ 1030 candidates.

o Multiple scans of database:

 Needs (n +1) scans, n is the length of the longest
pattern.

• Principal
o Compress a large database into a compact, Frequent-

Pattern tree (FP-tree) structure
 Highly condensed, but complete for frequent

pattern mining
 Avoid costly database scans

o Develop an efficient, FP-tree-based frequent pattern
mining method
 A divide-and-conquer methodology: decompose

mining tasks into smaller ones
 Avoid candidate generation: sub-database test

only!

A. Bellaachia Page: 23

• Algorithm:

1. Scan DB once, find frequent 1-itemset (single item
pattern)

2. Order frequent items in frequency descending order,
called L order: (in the example below: F(4), c(4),
a(3), etc.)

3. Scan DB again and construct FP-tree
a. Create the root of the tree and label it null or {}
b. The items in each transaction are processed in

the L order (sorted according to descending
support count).

c. Create a branch for each transaction
d. Branches share common prefixes

A. Bellaachia Page: 24

• Example: min_support = 0.5

TID Items bought (Ordered) frequent
items

100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

• Node Structure:

Item count node pointer child pointers parent pointer

{}

f:4 c:1

b:1

p:1

b:1 c:3

a:3

b:1 m:2

p:2 m:1

Header Table

Item Supp. Count Node Link
 f 4
c 4
a 3
b 3
m 3
p 3

A. Bellaachia Page: 25

6.1. Mining Frequent patterns using FP-Tree
• General idea (divide-and-conquer)
o Recursively grow frequent pattern path using the FP-

tree
• Method
o For each item, construct its conditional pattern-base,

and then its conditional FP-tree
o Recursion: Repeat the process on each newly created

conditional FP-tree
o Until the resulting FP-tree is empty, or it contains only

one path (single path will generate all the combinations
of its sub-paths, each of which is a frequent pattern)

6.2. Major steps to mine FP-trees

• Main Steps:
1. Construct conditional pattern base for each node in

the FP-tree
2. Construct conditional FP-tree from each conditional

pattern-base
3. Recursively mine conditional FP-trees and grow

frequent patterns obtained so far If the conditional
FP-tree contains a single path, simply enumerate all
the patterns

• Step 1: From FP-tree to Conditional Pattern Base

 Starting at the frequent header table in the FP-tree
 Traverse the FP-tree by following the link of each

frequent item, starting by the item with the highest
frequency.

 Accumulate all of transformed prefix paths of that
item to form a conditional pattern base

A. Bellaachia Page: 26

A. Bellaachia Page: 27

• Example:

• Properties of FP-tree for Conditional Pattern Base
Construction:
o Node-link property

 For any frequent item ai, all the possible frequent
patterns that contain ai can be obtained by
following ai's node-links, starting from ai's head
in the FP-tree header.

o Prefix path property

Conditional pattern bases
Item Conditional pattern base

c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

{}

f:4 c:1

b:1

p:1

b:1 c:3

a:3

b:1 m:2

p:2 m:1

Header Table

Item Supp. Count Node Link
 f 4
c 4
a 3
b 3
m 3
p 3

A. Bellaachia Page: 28

 To calculate the frequent patterns for a node ai in
a path P, only the prefix sub-path of ai in P need
to be accumulated and its frequency count should
carry the same count as node ai.

• Step 2: Construct Conditional FP-tree
o For each pattern-base

 Accumulate the count for each item in the base
 Construct the FP-tree for the frequent items of the

pattern base
o Example:

m-conditional pattern base: fca:2, fcab:1

{}

f:4 c:1

b:1

p:1

b:1 c:3

a:3

b:1 m:2

p:2 m:1

Header Table

Item Supp. Count Node Link
 f 4
c 4
a 3
b 3
m 3
p 3

All frequent patterns
concerning m:

m,
fm, cm, am,
fcm, fam, cam,
fcam

A. Bellaachia Page: 29

• Mining Frequent Patterns by Creating Conditional Pattern-
Bases:

Item Conditional pattern-base Conditional FP-tree

p {(fcam:2), (cb:1)} {(c:3)}|p

m {(fca:2), (fcab:1)} {(f:3, c:3, a:3)}|m

b {(fca:1), (f:1), (c:1)} Empty
a {(fc:3)} {(f:3, c:3)}|a
c {(f:3)} {(f:3)}|c
f Empty Empty

• Step 3: Recursively mine the conditional FP-tree

{}

f:3

c:3

a:3

m-conditional FP-tree

Cond. pattern base of “am”: (fc:3)

{}

f:3

c:3

am-conditional FP-tree

Cond. pattern base of “cm”: (fa:3) {}

f:3

cm-conditional FP-tree

Cond. pattern base of “cam”: (f:3)

{}

f:3

cam-conditional FP-tree

A. Bellaachia Page: 30

• Why is FP-Tree mining fast?
o The performance study shows FP-growth is an order of

magnitude faster than Apriori
o Reasoning:

 No candidate generation, no candidate test
 Use compact data structure
 Eliminate repeated database scan
 Basic operation is counting and FP-tree building

• FP-Growth vs. Apriori: Scalability with the support
Threshold [Jiawei Han and Micheline Kamber]

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3
Support threshold(%)

R
un

 ti
m

e(
se

c.
)

D1 FP-growth runtime
D1 Apriori runtime

A. Bellaachia Page: 31

7. Multiple-Level Association Rules

• Items often form hierarchy.
• Items at the lower level are expected to have lower
support.
• Rules regarding itemsets at appropriate levels could be
quite useful.
• Transaction database can be encoded based on dimensions
and levels
• We can explore shared multi-level mining

7.1. Approach

• A top-down, progressive deepening approach:
 First find high-level strong rules:

milk  bread [20%, 60%].

Food

bread milk

skim

Sunset Fraser

2% white wheat

A. Bellaachia Page: 32

 Then find their lower-level “weaker” rules:

2% milk  wheat bread [6%, 50%].

• Variations at mining multiple-level association rules.

 Level-crossed association rules:

2% milk  Wonder wheat bread

• Association rules with multiple, alternative hierarchies:

2% milk  Wonder bread

• Two multiple-level mining associations strategies:
 Uniform Support
 Reduced support

• Uniform Support: the same minimum support for all levels

 One minimum support threshold.
 No need to examine itemsets containing any item

whose ancestors do not have minimum support.
 Drawback:

o Lower level items do not occur as
frequently. If support threshold

too high  miss low level associations
too low  generate too many high level assoc.

A. Bellaachia Page: 33

• Reduced Support: reduced minimum support at lower
levels

 There are 4 search strategies:
o Level-by-level independent
o Level-cross filtering by k-itemset
o Level-cross filtering by single item

o Controlled level-cross filtering by
single item

 Level-by-Level independent:

o Full-breadth search
o No background knowledge is used.
o Each node is examined regardless the

frequency of its parent.

 Level-cross filtering by single item:

o An item at the ith level is examined if
and only if its parent node at the (i-1)th
level is frequent.

 Level-cross filtering by k-itemset:
o A k-itemset at the ith level is examined

if and only if its corresponding parent
k-itemset at the (i-1)th level is
frequent.

Milk
[support = 10%]

2% Milk
[support = 6%]

Skim Milk
[support = 4%]

Level 1
min_sup = 5%

Level 2
min_sup = 5%

A. Bellaachia Page: 34

o This restriction is stronger than the one
in level-cross filtering by single item

o They are not usually many k-itemsets
that, when combined, are also
frequent:

 Many valuable patterns can be mined

 Controlled level-cross filtering by single item:

o A variation of the level-cross filtering
by single item: Relax the constraint in
this approach

o Allow the children of items that do not
satisfy the minimum support threshold
to be examined if these items satisfy
the level passage threshold:

level_passage_supp

o level_passage_sup Value: It is

typically set between the min_sup
value of the given level and the
min_sup of the next level.

A. Bellaachia Page: 35

o Example:

Milk
[support = 10%]

2% Milk
[support = 6%]

Skim Milk
[support = 5%]

Level 1
min_sup = 12%
level_passage_sup = 8%

Level 2
min_sup = 4%

A. Bellaachia Page: 36

7.2. Redundancy Filtering

• Some rules may be redundant due to “ancestor”
relationships between items.

• Definition: A rule R1 is an ancestor of a rule, R2, if R1
can be obtained by replacing the items in R2 by their
ancestors in a concept hierarchy.

• Example

R1: milk  wheat bread [support = 8%, confidence = 70%]
R2: 2% milk  wheat bread [support = 2%, confidence = 72%]

Milk in R1 is an ancestor of 2% milk in R2.

• We say the first rule is an ancestor of the second rule.
• A rule is redundant if its support is close to the “expected”
value, based on the rule’s ancestor:

 R2 is redundant since its confidence is close to the

confidence of R1 (kind of expected) and its
support is around 2% = (8% * ¼)

 R2 does not add any additional information.

	1. Objectives
	2. Definitions
	3. Type of Association Rules
	4. Frequent Itemset generation
	5. Apriori Algorithm: Mining Single-Dimension Boolean AR
	5.1. Join Step:
	5.2. Prune step
	5.3. Example
	5.4. Pseudo-code
	5.5. Challenges
	5.6. Improving the Efficiency of Apriori

	6. Mining Frequent Itemsets without Candidate Generation
	6.1. Mining Frequent patterns using FP-Tree
	6.2. Major steps to mine FP-trees

	7. Multiple-Level Association Rules
	7.1. Approach
	7.2. Redundancy Filtering

