Association Rules

1. Objectives .. 2
2. Definitions .. 2
3. Type of Association Rules .. 7
4. Frequent Itemset generation .. 9
5. Apriori Algorithm: Mining Single-Dimension Boolean AR .. 13
 5.1. Join Step: ... 15
 5.2. Prune step ... 17
 5.3. Example ... 18
 5.4. Pseudo-code ... 19
 5.5. Challenges .. 19
 5.6. Improving the Efficiency of Apriori ... 20
6. Mining Frequent Itemsets without Candidate Generation .. 22
 6.1. Mining Frequent patterns using FP-Tree ... 25
 6.2. Major steps to mine FP-trees ... 25
7. Multiple-Level Association Rules .. 31
 7.1. Approach .. 31
 7.2. Redundancy Filtering.. 36
1. Objectives

- Increase sales and reduce costs
- What products were often purchased together?
 - Beer and diapers?!
- What are the subsequent purchases after buying a PC?
- What kinds of DNA are sensitive to this new drug?
- Can we automatically classify web documents?
- Broad applications:
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis
 - Web log (click stream) analysis, DNA sequence analysis, etc.
- Example: Items frequently purchased together:
 - **Bread ➔ PeanutButter**
- Why associations:
 - Placement
 - Advertising
 - Sales
 - Coupons

2. Definitions

- Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.

- Frequent pattern: pattern (set of items, sequence, etc.) that occurs frequently in a database.

- Basic Concepts:
- A set of items: \(I = \{x_1, \ldots, x_k\} \)

- Transactions: \(D = \{t_1, t_2, \ldots, t_n\}, t_j \subseteq I \)

- A k-Itemset: \(\{I_{i1}, I_{i2}, \ldots, I_{ik}\} \subseteq I \)

- Support of an itemset: Percentage of transactions that contain that itemset.

- Large (Frequent) itemset: Itemset whose number of occurrences is above a threshold.

- Example:

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>Bread, Jelly, PeanutButter</td>
</tr>
<tr>
<td>(t_2)</td>
<td>Bread, PeanutButter</td>
</tr>
<tr>
<td>(t_3)</td>
<td>Bread, Milk, PeanutButter</td>
</tr>
<tr>
<td>(t_4)</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>(t_5)</td>
<td>Beer, Milk</td>
</tr>
</tbody>
</table>

\(I = \{ \text{Beer}, \text{Bread}, \text{Jelly}, \text{Milk}, \text{PeanutButter}\} \)
Support of \(\{\text{Bread}, \text{PeanutButter}\} = \frac{3}{5} = 60\% \)
• Association Rules
 o Implication: $X \Rightarrow Y$ where $X, Y \subseteq I$ and $X \cap Y = \emptyset$;
 o Support of AR (s) $X \Rightarrow Y$:
 ▪ Percentage of transactions that contain $X \cup Y$
 ▪ Probability that a transaction contains $X \cup Y$.
 o Confidence of AR (a) $X \Rightarrow Y$:

<table>
<thead>
<tr>
<th>Transaction-id</th>
<th>Items bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A, B, C</td>
</tr>
<tr>
<td>20</td>
<td>A, C</td>
</tr>
<tr>
<td>30</td>
<td>A, D</td>
</tr>
<tr>
<td>40</td>
<td>B, E, F</td>
</tr>
</tbody>
</table>
- Ratio of number of transactions that contain $X \cup Y$ to the number that contain X
- Conditional probability that a transaction having X also contains Y.

- Example:

<table>
<thead>
<tr>
<th>Transaction-id</th>
<th>Items bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A, B, C</td>
</tr>
<tr>
<td>20</td>
<td>A, C</td>
</tr>
<tr>
<td>30</td>
<td>A, D</td>
</tr>
<tr>
<td>40</td>
<td>B, E, F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequent pattern</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>75%</td>
</tr>
<tr>
<td>{B}</td>
<td>50%</td>
</tr>
<tr>
<td>{C}</td>
<td>50%</td>
</tr>
<tr>
<td>{A, C}</td>
<td>50%</td>
</tr>
</tbody>
</table>

- For rule $A \Rightarrow C$:

$$\text{Support}(A \Rightarrow C) = P(A \cup C) = \text{support}(\{A\} \cup \{C\}) = 50\%$$

$$\text{confidence}(A \Rightarrow C) = P(C|A)$$
= support({A}∪{C})/support({A}) = 66.6%

- Another Example:

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>Bread, Jelly, PeanutButter</td>
</tr>
<tr>
<td>t_2</td>
<td>Bread, PeanutButter</td>
</tr>
<tr>
<td>t_3</td>
<td>Bread, Milk, PeanutButter</td>
</tr>
<tr>
<td>t_4</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>t_5</td>
<td>Beer, Milk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$X \Rightarrow Y$</th>
<th>Support</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bread \Rightarrow Peanutbutter</td>
<td>$3/5% = 60%$</td>
<td>$(3/5)/(4/5)% = 75%$</td>
</tr>
<tr>
<td>Peanutbutter \Rightarrow Bread</td>
<td>$60%$</td>
<td>$(3/5)/(3/5)% = 100%$</td>
</tr>
<tr>
<td>Jelly \Rightarrow Milk</td>
<td>$0%$</td>
<td>$0%$</td>
</tr>
<tr>
<td>Jelly \Rightarrow Peanutbutter</td>
<td>$1/5 % = 20%$</td>
<td>$(1/5)/(1/5) % = 100%$</td>
</tr>
</tbody>
</table>
• Association Rule Problem:
 o Given a set of items \(I = \{I_1, I_2, \ldots, I_m\} \) and a database of transactions \(D = \{t_1, t_2, \ldots, t_n\} \) where \(t_i = \{I_{i1}, I_{i2}, \ldots, I_{ik}\} \) and \(I_{ij} \in I \), the Association Rule Problem is to identify all association rules \(X \rightarrow Y \) with a minimum support and confidence.

 o NOTE: Support of \(X \rightarrow Y \) is same as support of \(X \cup Y \).

• Association Rules techniques:
 - Find all frequent itemsets.
 - Generate strong association rules from the frequent itemsets: those rules must satisfy minimum support and minimum confidence.

3. Type of Association Rules

• Boolean AR:
 o It is a rule that checks whether an item is present or absent.
 o All the examples we have seen so far are Boolean AR.

• Quantitative AR:
 o It describes associations between quantitative items or attributes.
 o Generally, quantitative values are partitioned into intervals.
 o Example:

 \[\text{Age}(X, "30..39") \land \text{income}(X, "80K..100K") \]
buys(X, High Resolution TV)

- Single-Dimension AR:
 - It is a rule that references only one dimension.
 - Example:

    ```plaintext
    buys(X,"computer")
    ➔ buys(X,"financial_software")
    ```

 The single dimension is “buys”

 - The following rule is a multi-dimensional AR:

    ```plaintext
    Age(X,"30..39") ∧ income(X,"80K..100K")
    ➔ buys(X, High Resolution TV)
    ```

- Multi-level AR
 - It is a set of rules that reference different levels of abstraction.
 - Example:

    ```plaintext
    Age(X,"30..39") ➔ buys(X, “desktop”)
    Age(X,"20..29") ➔ buys(X, “laptop”)
    ```

 Laptop ➔ desktop ➔ computer
4. Frequent Itemset generation

- Given d items, there are \(2^d\) possible candidate itemsets
• Brute-force approach:
 o Each itemset in the lattice is a candidate frequent itemset
 o Count the support of each candidate by scanning the database

 Transactions

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

 List of Candidates

 - Match each transaction against every candidate
 - Complexity ~ O(NMw) => Expensive since M = 2^d !!!

• Complexity:
 o Given d unique items:
 o Total number of itemsets = 2^d
 o Total number of possible association rules:

 \[R = \sum_{k=1}^{d-l} \binom{d}{k} \times \sum_{j=1}^{d-k} \binom{d-k}{j} \]
 \[= 3^d - 2^{d+1} + 1 \]
 o If d=6, R = 602 rules
Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: $M=2^d$
 - Use pruning techniques to reduce M

- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases

- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction
5. Apriori Algorithm: Mining Single-Dimension Boolean AR

- It is used to mine Boolean, single-level, and single-dimension ARs.
- Apriori Principle
• Apriori algorithm:

 o Uses prior knowledge of frequent itemset properties.

 o It is an iterative algorithm known as level-wise search.

 o The search proceeds level-by-level as follows:
 ‧ First determine the set of frequent 1-itemset; L1
 ‧ Second determine the set of frequent 2-itemset using L1: L2
 ‧ Etc.

 o The complexity of computing Li is $O(n)$ where n is the number of transactions in the transaction database.

 o Reduction of search space:
 ‧ In the worst case what is the number of itemsets in a level Li?
 ‧ Apriori uses “Apriori Property”:

 o Apriori Property:
 ‧ It is an anti-monotone property: if a set cannot pass a test, all of its supersets will fail the same test as well.
 ‧ It is called anti-monotone because the property is monotonic in the context of failing a test.
 ‧ All nonempty subsets of a frequent itemset must also be frequent.
 ‧ An itemset I is not frequent if it does not satisfy the minimum support threshold:
P(I) < min_sup

- If an item A is added to the itemset I, then the resulting itemset I ∪ A cannot occur more frequently than I:
 I ∪ A is not frequent

Therefore, P(I ∪ A) < min_sup

• How Apriori algorithm uses “Apriori property”?
 o In the computation of the itemsets in L_k using L_{k-1}
 o It is done in two steps:
 ▪ Join
 ▪ Prune

5.1. Join Step:

• The set of candidate k-itemsets (element of L_k), C_k, is generated by joining L_{k-1} with itself:

 \[L_{k-1} \bowtie L_{k-1} \]

• Given l_1 and l_2 of L_{k-1}

 \[L_i = l_{i1}, l_{i2}, l_{i3}, \ldots, l_{i(k-2)}, l_{i(k-1)} \]
 \[L_j = l_{j1}, l_{j2}, l_{j3}, \ldots, l_{j(k-2)}, l_{j(k-1)} \]

 Where L_i and L_j are sorted.

• L_i and L_j are joined if there are different (no duplicate generation). Assume the following:

 \[l_{i1} = l_{j1}, \ l_{i2} = l_{j1}, \ldots, \ l_{i(k-2)} = l_{j(k-2)} \text{ and } l_{i(k-1)} < l_{j(k-1)} \]

• The resulting itemset is:
$l_1, l_2, l_3, \ldots, l_{i(k-1)}, l_{j(k-1)}$

- Example of Candidate-generation:

$L_3 = \{abc, abd, acd, ace, bcd\}$

Self-joining: $L_3 \Join L_3$

- $abcd$ from abc and abd
- $acde$ from acd and ace
5.2. Prune step

- \(C_k \) is a superset of \(L_k \) ➔ some itemset in \(C_k \) may or may not be frequent.
- \(L_k \): Test each generated itemset against the database:
 - Scan the database to determine the count of each generated itemset and include those that have a count no less than the minimum support count.
 - This may require intensive computation.

- Use Apriori property to reduce the search space:
 - Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset.
 - Remove from \(C_k \) any k-itemset that has a (k-1)-subset not in \(L_{k-1} \) (itemsets that are not frequent)
 - Efficiently implemented: maintain a hash table of all frequent itemset.

- Example of Candidate-generation and Pruning:

 \[L_3 = \{abc, abd, acd, ace, bcd\} \]

 Self-joining: \(L_3 \bowtie L_3 \)

 - *abcd* from abc and abd
 - *acde* from acd and ace

 Pruning:
 - acde is removed because ade is not in \(L_3 \)
 - \(C_4 = \{abcd\} \)
5.3. Example

Database TDB

<table>
<thead>
<tr>
<th>Tid</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A, C, D</td>
</tr>
<tr>
<td>20</td>
<td>B, C, E</td>
</tr>
<tr>
<td>30</td>
<td>A, B, C, E</td>
</tr>
<tr>
<td>40</td>
<td>B, E</td>
</tr>
</tbody>
</table>

1st scan

C_1

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>2</td>
</tr>
<tr>
<td>{B}</td>
<td>3</td>
</tr>
<tr>
<td>{C}</td>
<td>3</td>
</tr>
<tr>
<td>{D}</td>
<td>1</td>
</tr>
<tr>
<td>{E}</td>
<td>3</td>
</tr>
</tbody>
</table>

L_1

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>2</td>
</tr>
<tr>
<td>{B}</td>
<td>3</td>
</tr>
<tr>
<td>{C}</td>
<td>3</td>
</tr>
<tr>
<td>{E}</td>
<td>3</td>
</tr>
</tbody>
</table>

2nd scan

C_2

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A, B}</td>
<td>1</td>
</tr>
<tr>
<td>{A, C}</td>
<td>2</td>
</tr>
<tr>
<td>{A, E}</td>
<td>1</td>
</tr>
<tr>
<td>{B, C}</td>
<td>2</td>
</tr>
<tr>
<td>{B, E}</td>
<td>3</td>
</tr>
<tr>
<td>{C, E}</td>
<td>2</td>
</tr>
</tbody>
</table>

L_2

<table>
<thead>
<tr>
<th>Itemset</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A, B}</td>
</tr>
<tr>
<td>{A, C}</td>
</tr>
<tr>
<td>{A, E}</td>
</tr>
<tr>
<td>{B, C}</td>
</tr>
<tr>
<td>{B, E}</td>
</tr>
<tr>
<td>{C, E}</td>
</tr>
</tbody>
</table>

3rd scan

C_3

<table>
<thead>
<tr>
<th>Itemset</th>
</tr>
</thead>
<tbody>
<tr>
<td>{B, C, E}</td>
</tr>
</tbody>
</table>

L_3

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{B, C, E}</td>
<td>2</td>
</tr>
</tbody>
</table>
5.4. Pseudo-code

C_k: Candidate itemset of size k
L_k: frequent itemset of size k
$L_1 = \{\text{frequent items}\}$;

for (k = 1; $L_k \neq \emptyset$; k++) do
 - $C_{k+1} =$ candidates generated from L_k;
 - for each transaction t in database do
 increment the count of all candidates in C_{k+1}
 that are contained in t;
 endfor;
 - $L_{k+1} =$ candidates in C_{k+1} with min_support
endfor;
return $\cup_k L_k$;

5.5. Challenges

- Multiple scans of transaction database
- Huge number of candidates
- Tedious workload of support counting for candidates
- Improving Apriori:
 - general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates
 - Easily parallelized
5.6. Improving the Efficiency of Apriori

- Several attempts have been introduced to improve the efficiency of Apriori:
 - Hash-based technique
 - Hashing itemset counts
 - Example:

 - Transaction DB:

TID	List of Transactions
T100	I1, I2, I5
T200	I2, I4
T300	I2, I3
T400	I1, I2, I4
T500	I1, I3
T600	I2, I3
T700	I1, I3
T800	I1, I2, I3, I5
T900	I1, I2, I3

 - Create a hash table for candidate 2-itemsets:
 - Generate all 2-itemsets for each transaction in the transaction DB
 - \(H(x,y) = ((\text{order of } x) \times 10 + (\text{order of } y)) \mod 7 \)
- A 2-itemset whose corresponding bucket count is below the support threshold cannot be frequent.

<table>
<thead>
<tr>
<th>Bucket @</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bucket count</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Content</td>
<td>{I1,I4}</td>
<td>{I1,I5}</td>
<td>{I2,I3}</td>
<td>{I2,I4}</td>
<td>{I2,I5}</td>
<td>{I1,I2}</td>
<td>{I1,I3}</td>
</tr>
<tr>
<td></td>
<td>{I3,I5}</td>
<td>{I1,I5}</td>
<td>{I2,I3}</td>
<td>{I2,I4}</td>
<td>{I2,I5}</td>
<td>{I1,I2}</td>
<td>{I1,I3}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{I2,I3}</td>
<td></td>
<td>{I1,I2}</td>
<td>{I1,I3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>{I2,I3}</td>
<td>{I1,I2}</td>
<td>{I1,I3}</td>
<td></td>
</tr>
</tbody>
</table>

- Remember: support(x \rightarrow y) = percentage number of transactions that contain x and y. Therefore, if the minimum support is 3, then the itemsets in buckets 0, 1, 3, and 4 cannot be frequent and so they should not be included in C_2.

- Transaction reduction
 - Reduce the number of transactions scanned in future iterations.
 - A transaction that does not contain any frequent k-itemsets cannot contain any frequent (k+1)-itemsets: Do not include such transaction in subsequent scans.

- Other techniques include:
 - Partitioning (partition the data to find candidate itemsets)
 - Sampling (Mining on a subset of the given data)
 - Dynamic itemset counting (Adding candidate itemsets at different points during a scan)
6. Mining Frequent Itemsets without Candidate Generation

- Objectives:
 - The bottleneck of *Apriori*: candidate generation
 - Huge candidate sets:
 - For 10^4 frequent 1-itemset, Apriori will generate 10^7 candidate 2-itemsets.
 - To discover a frequent pattern of size 100, e.g., \{a1, a2, \ldots, a100\}, one needs to generate $2^{100} \approx 10^{30}$ candidates.
 - Multiple scans of database:
 - Needs $(n+1)$ scans, n is the length of the longest pattern.

- Principal
 - Compress a large database into a compact, Frequent-Pattern tree (FP-tree) structure
 - Highly condensed, but complete for frequent pattern mining
 - Avoid costly database scans
 - Develop an efficient, FP-tree-based frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation: sub-database test only!
• Algorithm:
 1. Scan DB once, find frequent 1-itemset (single item pattern)
 2. Order frequent items in frequency descending order, called \textit{L order}: (in the example below: F(4), c(4), a(3), etc.)
 3. Scan DB again and construct FP-tree
 a. Create the root of the tree and label it null or \{\}
 b. The items in each transaction are processed in the L order (sorted according to descending support count).
 c. Create a branch for each transaction
 d. Branches share common prefixes
• Example: \(\text{min}_\text{support} = 0.5 \)

<table>
<thead>
<tr>
<th>TID</th>
<th>Items bought</th>
<th>(Ordered) frequent items</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>{f, a, c, d, g, i, m, p}</td>
<td>{f, c, a, m, p}</td>
</tr>
<tr>
<td>200</td>
<td>{a, b, c, f, l, m, o}</td>
<td>{f, c, a, b, m}</td>
</tr>
<tr>
<td>300</td>
<td>{b, f, h, j, o}</td>
<td>{f, b}</td>
</tr>
<tr>
<td>400</td>
<td>{b, c, k, s, p}</td>
<td>{c, b, p}</td>
</tr>
<tr>
<td>500</td>
<td>{a, f, c, e, l, p, m, n}</td>
<td>{f, c, a, m, p}</td>
</tr>
</tbody>
</table>

Node Structure:

<table>
<thead>
<tr>
<th>Item</th>
<th>count</th>
<th>node pointer</th>
<th>child pointers</th>
<th>parent pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.1. Mining Frequent patterns using FP-Tree

- General idea (divide-and-conquer)
 - Recursively grow frequent pattern path using the FP-tree
- Method
 - For each item, construct its conditional pattern-base, and then its conditional FP-tree
 - Recursion: Repeat the process on each newly created conditional FP-tree
 - Until the resulting FP-tree is empty, or it contains only one path (single path will generate all the combinations of its sub-paths, each of which is a frequent pattern)

6.2. Major steps to mine FP-trees

- Main Steps:
 1. Construct conditional pattern base for each node in the FP-tree
 2. Construct conditional FP-tree from each conditional pattern-base
 3. Recursively mine conditional FP-trees and grow frequent patterns obtained so far If the conditional FP-tree contains a single path, simply enumerate all the patterns

- Step 1: From FP-tree to Conditional Pattern Base

 - Starting at the frequent header table in the FP-tree
 - Traverse the FP-tree by following the link of each frequent item, starting by the item with the highest frequency.
 - Accumulate all of transformed prefix paths of that item to form a conditional pattern base
Example:

Header Table

<table>
<thead>
<tr>
<th>Item</th>
<th>Supp. Count</th>
<th>Node Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Conditional pattern bases

<table>
<thead>
<tr>
<th>Item</th>
<th>Conditional pattern base</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>f:3</td>
</tr>
<tr>
<td>a</td>
<td>fc:3</td>
</tr>
<tr>
<td>b</td>
<td>fca:1, f:1, c:1</td>
</tr>
<tr>
<td>m</td>
<td>fca:2, fcab:1</td>
</tr>
<tr>
<td>p</td>
<td>fcam:2, cb:1</td>
</tr>
</tbody>
</table>

- Properties of FP-tree for Conditional Pattern Base Construction:
 - Node-link property
 - For any frequent item a_i, all the possible frequent patterns that contain a_i can be obtained by following a_i's node-links, starting from a_i's head in the FP-tree header.
 - Prefix path property
To calculate the frequent patterns for a node a_i in a path P, only the prefix sub-path of a_i in P need to be accumulated and its frequency count should carry the same count as node a_i.

- Step 2: Construct Conditional FP-tree
 - For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base
 - Example:
 \[m\text{-conditional pattern base: } fca:2, fcab:1 \]

```
<table>
<thead>
<tr>
<th>Item</th>
<th>Supp. Count</th>
<th>Node Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
```

All frequent patterns concerning m: $m, fm, cm, am, fcm, fam, cam, fcam$
- Mining Frequent Patterns by Creating Conditional Pattern-Bases:

<table>
<thead>
<tr>
<th>Item</th>
<th>Conditional pattern-base</th>
<th>Conditional FP-tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>{(fcam:2), (cb:1)}</td>
<td>{(c:3)}</td>
</tr>
<tr>
<td>m</td>
<td>{(fca:2), (fcab:1)}</td>
<td>{(f:3, c:3, a:3)}</td>
</tr>
<tr>
<td>b</td>
<td>{(fca:1), (f:1), (c:1)}</td>
<td>Empty</td>
</tr>
<tr>
<td>a</td>
<td>{(fc:3)}</td>
<td>{(f:3, c:3)}</td>
</tr>
<tr>
<td>c</td>
<td>{(f:3)}</td>
<td>{(f:3)}</td>
</tr>
<tr>
<td>f</td>
<td>Empty</td>
<td>Empty</td>
</tr>
</tbody>
</table>

- Step 3: Recursively mine the conditional FP-tree

```
| {}      | Cond. pattern base of “am”: (fc:3) | f:3 |
| {}      |                                  |     |
| f:3     |                                  | c:3 |
| c:3     |                                  |     |
| a:3     | Cond. pattern base of “cm”: (fa:3) | {} |

am-conditional FP-tree

m-conditional FP-tree

| {}      | Cond. pattern base of “cam”: (f:3) | f:3 |
| {}      |                                  |     |
```

cm-conditional FP-tree

cam-conditional FP-tree
• Why is FP-Tree mining fast?
 o The performance study shows FP-growth is an order of magnitude faster than Apriori
 o Reasoning:
 ▪ No candidate generation, no candidate test
 ▪ Use compact data structure
 ▪ Eliminate repeated database scan
 ▪ Basic operation is counting and FP-tree building

• FP-Growth vs. Apriori: Scalability with the support Threshold [Jiawei Han and Micheline Kamber]
7. Multiple-Level Association Rules

- Items often form hierarchy.
- Items at the lower level are expected to have lower support.
- Rules regarding itemsets at appropriate levels could be quite useful.
- Transaction database can be encoded based on dimensions and levels
- We can explore shared multi-level mining

7.1. Approach

- A top-down, progressive deepening approach:
 - First find high-level strong rules:

 milk \Rightarrow bread [20%, 60%].
• Then find their lower-level “weaker” rules:

\[
2\% \text{ milk } \rightarrow \text{ wheat bread } [6\%, 50\%].
\]

• Variations at mining multiple-level association rules.
 • Level-crossed association rules:

\[
2\% \text{ milk } \rightarrow \text{ Wonder wheat bread}
\]

• Association rules with multiple, alternative hierarchies:

\[
2\% \text{ milk } \rightarrow \text{ Wonder bread}
\]

• Two multiple-level mining associations strategies:
 • Uniform Support
 • Reduced support

• Uniform Support: the same minimum support for all levels

 • One minimum support threshold.
 • No need to examine itemsets containing any item whose ancestors do not have minimum support.
 • Drawback:
 o Lower level items do not occur as frequently. If support threshold too high \(\rightarrow\) miss low level associations
 too low \(\rightarrow\) generate too many high level assoc.
Reduced Support: reduced minimum support at lower levels

- There are 4 search strategies:
 - Level-by-level independent
 - Level-cross filtering by k-itemset
 - Level-cross filtering by single item
 - Controlled level-cross filtering by single item

- **Level-by-Level independent:**
 - Full-breadth search
 - No background knowledge is used.
 - Each node is examined regardless the frequency of its parent.

- **Level-cross filtering by single item:**
 - An item at the ith level is examined if and only if its parent node at the (i-1)th level is frequent.

- **Level-cross filtering by k-itemset:**
 - A k-itemset at the ith level is examined if and only if its corresponding parent k-itemset at the (i-1)th level is frequent.
This restriction is stronger than the one in level-cross filtering by single item.

They are not usually many k-itemsets that, when combined, are also frequent:

Many valuable patterns can be mined

- **Controlled level-cross filtering by single item:**
 - A variation of the level-cross filtering by single item: Relax the constraint in this approach.
 - Allow the children of items that do not satisfy the minimum support threshold to be examined if these items satisfy the level passage threshold:

 \[level_passage_supp \]

 - **level_passage_sup** Value: It is typically set between the min_sup value of the given level and the min_sup of the next level.
Example:

Level 1
min_sup = 12%
level_passage_sup = 8%

Milk
[support = 10%]

Level 2
min_sup = 4%

2% Milk
[support = 6%]

Skim Milk
[support = 5%]
7.2. Redundancy Filtering

- Some rules may be redundant due to “ancestor” relationships between items.

- Definition: A rule R_1 is an ancestor of a rule, R_2, if R_1 can be obtained by replacing the items in R_2 by their ancestors in a concept hierarchy.

- Example

 R_1: milk \rightarrow wheat bread [support = 8%, confidence = 70%]
 R_2: 2% milk \rightarrow wheat bread [support = 2%, confidence = 72%]

 Milk in R_1 is an ancestor of 2% milk in R_2.

- We say the first rule is an ancestor of the second rule.
- A rule is redundant if its support is close to the “expected” value, based on the rule’s ancestor:
 - R_2 is redundant since its confidence is close to the confidence of R_1 (kind of expected) and its support is around 2% = (8% * ¼)
 - R_2 does not add any additional information.