The K-Medoids Clustering Algorithm From "means" to "medoids"

Introduction

- K-Medoids (also called as PAM: Partitioning Around Medoid) algorithm was proposed in 1987 by Kaufman and Rousseeuw
- o K-medoids clustering is a variant of K-means
- o It is more robust to noises and outliers: A medoid is less influenced by outliers
- o Instead of using the mean point as the center of a cluster, K-medoids uses an actual point (Medoid) in the cluster to represent it.
- A medoid can be defined as the point in the cluster, whose dissimilarities with all the other points in the cluster is minimum.
- The dissimilarity of the medoid(Ci) and object(Pi) is calculated by using the Manhattan distance:

$$E = |Pi - Ci|$$

• PAM Algorithm:

- o The medoid of a set is the object with the least distance to all others.
 - The most central, most representative object
- o *k*-medoids objective function: total deviation criterion (absolute errors)

$$TD = \sum_{i=1}^{k} \sum_{x_j \in C_i} dist(x_j, m_i)$$

where mi is the medoid of cluster Ci.

- \circ As with k-means, the k-medoid problem is NP-hard
- o Algorithm:
 - 1. Given k
 - 2. Randomly pick k instances as initial medoids
 - 3. Assign each instance to the nearest medoid x

- 4. Calculate the objective function
 - The sum of dissimilarities of all instances to their nearest medoids
- 5. For each medoid m, for each data point O which is not a medoid (or choose randomly a data point that is not a medoid):
 - i. Swap m and O, associate each data point to the closest medoid, recompute the cost
 - ii. If the total cost is more than that of the previous step, undo the swap

o Time Analysis:

 $O(k(n-k)^2)$ for each iteration

where n is # of data and k is # of clusters

• Example:

o Given the following dataset:

Item #	X	Y	Dissimilarity from C1(6,7)	Dissimilarity from C2(7,9)	Cluster
0	5	6	5-6 + 6-7 =2	5-7 + 6-9 =5	C1
1	4	5	4-6 + 5-7 =4	4-7 + 5-9 =7	C1
2	4	7	4-6 + 7-7 =2	4-7 + 7-9 =5	C1
3	6	7	-	-	

4	7	8	7-6 + 8-7 =2	7-7 + 8-9 =1	C2
5	7	9	-	-	
6	8	4	8-6 + 4-7 =5	8-7 + 4-9 =6	C1
7	8	9	8-6 + 9-7 =4	8-7 + 9-9 =1	C2
8	4	9	4-6 + 9-7 =4	4-7 + 9-9 =3	C2

- 1. Randomly select two medoids: C1=(6.7) and C2=(7,9)
- 2. Calculate Cost:

Manhattan Distance:

The Manhattan distance of two points (x1,y1) and (x2,y2) is:

Mdist
$$((x1,y1), (x2,y2)) = |x1-x2|+|y1-y2|$$

3. Calculate the total cost of the current cluster:

$$C1 = \{(5,6), (4,5), (4,7), (6,7), (8,4)\}$$

Note that (6,7) is the medoid of C1

$$C2 = \{(7,8), (7,9), (8,9), (4,9)\}$$

Note that (7,9) is the medoid of C2

Total Cost =
$$Cost(c, x) = \sum_{i} |c_i - x_i|$$

Total Cost =
$$Cost((6,7),(5,6)) + Cost((6,7),(4,5)) +$$

$$Cost((6,7),(4,7)) + Cost((6,7),(8,4)) + Cost((7,9),(7,8)) + Cost((7,9),(8,9)) + Cost((7,9),(4,9)) = 2+4+2+5+1+1+3=18$$

4. Choose randomly another data point O different from C1 and C2 and randomly replace it with either C1 or C2

Let assume we picked O = (5,6) and replace C1. Now the two medoids are O=(5,6) and C2=(7,9)

Item #	X	Y	Dissimilarity from O(6,7)	Dissimilarity from C2(7,9)	Cluster
0	5	6	-	-	O
1	4	5	4-5 + 5-6 =2	4-7 + 5-9 =7	О
2	4	7	4-5 + 7-6 =2	4-7 + 7-9 =5	О
3	6	7	6-5 + 7-6 =2	5-7 + 7-9 =4	O
4	7	8	7-5 + 8-6 =4	7-7 + 8-9 =1	C2
5	7	9	-	-	C2
6	8	4	8-5 + 4-6 =5	8-7 + 4-9 =6	О
7	8	9	8-5 + 9-6 =6	8-7 + 9-9 =1	C2
8	4	9	4-5 + 9-6 =6	4-7 + 9-9 =3	C2

5. Calculate the total cost of the current cluster:

Total Cost =
$$Cost(c, x) = \sum_{i} |c_i - x_i|$$

6. Cost of swapping of medoid C1 with O is:

$$S = current total cost - Previous Total cost = 17-18 = -1 < 0$$

Swapping C1 with O gives us a better clustering. So, the medoids are O and C2 instead of C1 and C2

• Advantages:

- o It is simple to understand and easy to implement
- o K-medoid algorithm is fast and converges in a fixed number of steps
- K-medoid is less sensitive to outliers than another partitioning algorithm

• Disadvantages:

- K-medoid is not suitable for clustering non-spherical (arbitrary shaped) groups of objects
- o It may give different results for different runs on the same dataset because the first k medoids are chosen randomly.
- PAM works efficiently for small data sets but does not scale well for large data sets.