Np-complete

♦ Introduction:

- There are two types of problems:
 - ✓ Problems whose time complexity is polynomial: O(logn), O(n), O(nlogn), O(n²), O(n³)
 Examples: searching, sorting, merging, MST, etc.
 - ✓ Problems with exponential time complexity: O(2ⁿ), O(n!), O(nⁿ), etc.

Examples: TSP, n-queen, 0/1knapsack, etc.

- Two classes of algorithms:
 - ✓ P: The set of all problems, which can be solved by deterministic algorithms in polynomial time.
 - NP: The set of all problems which can be solved by nondeterministic algorithms in polynomial time (NP: Nondeterministic Polynomial)

♦ Non-deterministic algorithms:

- Unlike deterministic algorithms, each operation has several outcomes
- Example:

 \checkmark x = choice(1..n);

- \checkmark x may have any value between 1 and n
- ✓ The time of this type of instruction is O(1).
- ✓ If there is a solution, the algorithm will terminate successfully; otherwise, it will terminate unsuccessfully.
- Searching problem:
 - input: A(1..n) and x
 - Output: index j such that A(j)=x if x is in A or j=0 if x does not belong to A.
 - Ndsearch(A(1..n), x)
 Integer j;
 Begin

 J=choice(1..n);
 If A(j) =x
 Then

 Print(j);
 Else
 Print(0);
 Endif;
 - ✓ The complexity is O(1);

Sexample2: clique problem

- Definition: A maximal complete subgraph of a graph G=(V,E) is a clique.
- Input: a graph G=(V,E) and an integer k;
- Output: Determine if G has a clique of size at least k.
- Brute force approach:
 - ✓ The obvious way to solve this problem would be to subject all $\binom{|V|}{k}$ subsets of V with cardinality k to test whether there is a clique.

```
Ndclique(G,k);
Integer I; X[1..n];
Begin
For I=1 to k do
X[I] = choice(1..n);
Endfor;
If(X[1], X[2], ,,,, X[k])) is a clique
Then
print ("SUCCESS");
else
print("FAILURE");
endif;
end;
```

- Satisfiability: has a special role in the theory of computation.
 - Definitions:
 - ✓ A literal is a boolean variable (its value is either true or false).
 - ✓ A logical formula is an expression that can be constructed using literals and the operations AND and OR.
 - ✓ The satisfiability problem is to determine if a logical formula is true for some assignment of truth values to the variables.
 - Example:

$$F = \underbrace{(x_1 \text{ or } x_2)}_{C_1} \text{ and } \underbrace{(\overline{x_2 \text{ or } x_3})}_{C_2} \text{ and } \underbrace{(\overline{x_1 \text{ or } x_2})}_{C_3}$$

where

 $x_i \in \{0,1\}$ 1 $\leq i \leq 3$ and C_i are called clauses

- Is there an assignment of truth values to the variables x_i's that makes the formula F true ("Satisfies " it)?
- For n variables, one should consider 2ⁿ possible assignments.

```
• Ndsatisfiability(E,n)

Integer i;

Begin

For i=1 to n do

x_i = choice(true, false);

Endfor;

If E(x_1, x_1, ..., x_n) is true

Then

Print "success";

Else

Print "Failure";

Endif;

End;
```

• Let n be the number of variables and p be the number of operations ANDs and Ors, the Ndsatisfiability takes O(max(n,p))

Since in general p >> n, we have O(p).

- ♦ NP-Complete problems:
 - The theory of NP-completeness consists of two classes of problems:
 - ✓ NP-complete problems
 - ✓ NP-hard problems
 - NP-hard problems:
 - ✓ If an NP-hard problem can be solved in polynomial time then all NP-complete problems can be solved in polynomial time.

- ✓ In other words: A problem id NP-hard if every problem in NP is transformable to it
- NP-complete problems:
 - ✓ A problem which is NP-complete will have the property that it can be solved in polynomial time iff all other NPcomplete problems can be solved in polynomial time.
 - ✓ In other words: A problem is NPcomplete if it is both NP_hard and NP.
 - Note:
- ✓ NP-complete problems are NP-hard
- ✓ All NP-hard problems are not NPcomplete.
- \triangleleft Open problem: P = NP
 - Definition of reduction: ∝

- ✓ A1 is defined by T and A2, where T is a polynomial transformation
- ✓ A1 = (T,A2) → P1 \propto P2 We say that P1 is reduced to P2.
- ✓ If P2 is polynomial, then P1 is also polynomial.

♦ NP-complete:

A problem is NP-complete:
1) if A is NP
2) every NP problem Q: Q ∝ P

Scook's theorem: Satisfiability is NP-Complete

• Theorem: If $P1 \propto P2$ and $P2 \propto P3 \rightarrow P1 \propto P3$

Proof:

A1

A1

T is polynomial since T1 and T2 are polynomial P1 \propto P3.

System Theorem: Given a problem P, If
1) P is NP and
3) ∃ NP-complete problem Q: Q ∝P
Then P is NP-complete.

Proof:

We have to prove that P is NP and every NP problem R, $R \propto P$

- P is NP be definition

- Let R be in NP

 $R \propto Q$ since Q is NP-complete by definition

And $Q \propto P$ by definition

 $R \propto Q$ and $Q \propto P \rightarrow R \propto P$ for every NP problem R.

Scorollaire:

To prove a new problem P is NP-complete, we first prove that it is NP, and then find an NP-complete problem Q that reduces to P.

Sexample: Node cover problem:

• Definition: Given a graph G=(V,E), a subset S of V is a node

cover of G iff all edges are incident to at least on vertex in S.

 $S = \{1, 2\}$