
Software Engineering Abdelghani Bellaachia Page 1

Np-completeNp-complete

Ä Introduction:

• There are two types of problems:

ü Problems whose time complexity is
polynomial: O(logn), O(n), O(nlogn),
O(n 2), O(n 3)

Examples: searching, sorting, merging,
MST, etc.

ü Problems with exponential time
complexity: O(2n), O(n!), O(n n), etc.

Examples: TSP, n-queen, 0/1knapsack,
etc.

• Two classes of algorithms:

ü P: The set of all problems, which can be
solved by deterministic algorithms in
polynomial time.

ü NP: The set of all problems which can be
solved by nondeterministic algorithms in
polynomial time (NP: Nondeterministic
Polynomial)

Software Engineering Abdelghani Bellaachia Page 2

Ä Non-deterministic algorithms:

• Unlike deterministic algorithms, each operation has
several outcomes

• Example:
ü x = choice(1..n);

ü x may have any value between 1 and n

ü The time of this type of instruction is O(1).

ü If there is a solution, the algorithm will
terminate successfully; otherwise, it will
terminate unsuccessfully.

Ä Example1: Searching problem:
• input: A(1..n) and x
• Output: index j such that A(j)=x if x is in A or j=0 if x

does not belong to A.

• Ndsearch(A(1..n), x)
Integer j;
Begin

J=choice(1..n);
If A(j) =x
Then

Print(j);
Else

Print(0);
Endif;

End;

ü The complexity is O(1);

Software Engineering Abdelghani Bellaachia Page 3

ÄExample2: clique problem

• Definition: A maximal complete subgraph of a graph
G=(V,E) is a clique.

• Input: - a graph G=(V,E) and an integer k;
• Output: Determine if G has a clique of size at least k.

• Brute force approach:

ü The obvious way to solve this problem would be to

subject all

k

|V|
subsets of V with cardinality k to

test whether there is a clique.

• Ndclique(G,k);
Integer I; X[1..n];
Begin

For I=1 to k do
X[I] = choice(1..n);

Endfor;
If(X[1], X[2], ,,,, X[k])) is a clique
Then

print ("SUCCESS");
else

print("FAILURE");
endif;

end;

Software Engineering Abdelghani Bellaachia Page 4

Ä Example3: Satisfiability: has a special role in the theory of
computation.

• Definitions:
ü A literal is a boolean variable (its value is

either true or false).

ü A logical formula is an expression that can be
constructed using literals and the operations
AND and OR.

ü The satisfiability problem is to determine if a
logical formula is true for some assignment of
truth values to the variables.

• Example:

434214342143421
321 C

)2xor1x(and

C

)3xor2x(and

C

)2xor1x(F =

where xi ∈{0,1} 1≤i≤3 and
Ci are called clauses

• Is there an assignment of truth values to the variables xi's
that makes the formula F true ("Satisfies " it)?

• For n variables, one should consider 2n possible
assignments.

Software Engineering Abdelghani Bellaachia Page 5

• Ndsatisfiability(E,n)
Integer i;
Begin

For i=1 to n do
xi = choice(true, false);

Endfor;
If E(x1

 , x1, …, xn) is true
Then

Print "success";
Else

Print "Failure";
Endif;

End;

• Let n be the number of variables and p be the number of
operations ANDs and Ors, the Ndsatisfiability takes
O(max(n,p))

Since in general p>>n, we have O(p).

Ä NP-Complete problems:

• The theory of NP-completeness consists of two classes of
problems:

ü NP-complete problems
ü NP-hard problems

• NP-hard problems:
ü If an NP-hard problem can be solved in

polynomial time then all NP-complete
problems can be solved in polynomial
time.

Software Engineering Abdelghani Bellaachia Page 6

ü In other words: A problem id NP-hard if
every problem in NP is transformable to
it

• NP-complete problems:

ü A problem which is NP-complete will
have the property that it can be solved in
polynomial time iff all other NP-
complete problems can be solved in
polynomial time.

ü In other words: A problem is NP-
complete if it is both NP_hard and NP.

• Note:
ü NP-complete problems are NP-hard
ü All NP-hard problems are not NP-

complete.

Ä Open problem: P
?
=NP

• Definition of reduction: ∝

A1

P1
P1

Is reduced to

T A2

Software Engineering Abdelghani Bellaachia Page 7

ü A1 is defined by T and A2, where T is a
polynomial transformation

ü A1 ≡ (T,A2) è P1 ∝ P2
We say that P1 is reduced to P2.

ü If P2 is polynomial, then P1 is also
polynomial.

Ä NP-complete:
• A problem is NP-complete:

1) if A is NP
2) every NP problem Q: Q ∝ P

Ä Cook's theorem: Satisfiability is NP-Complete

• Theorem: If P1 ∝ P2 and P2 ∝ P3 è P1∝P3

Proof:

P1
P2

T1 A2

A1

P1
P3

T2 A3

A2

Software Engineering Abdelghani Bellaachia Page 8

 T is polynomial since T1 and T2 are polynomial P1 ∝ P3.

P1
P2

T1

A2

A3T2
P3

A1

P1
A3T2

P3

A1

T1

T

Software Engineering Abdelghani Bellaachia Page 9

Ä Theorem: Given a problem P, If
1) P is NP and
3) ∃ NP-complete problem Q: Q ∝P

Then P is NP-complete.

Proof:
We have to prove that P is NP and every NP problem
R, R ∝ P

- P is NP be definition
- Let R be in NP

R ∝ Q since Q is NP-complete by definition

And Q∝P by definition

R ∝Q and Q ∝ P è R ∝ P for every NP problem R.

Ä Corollaire:
To prove a new problem P is NP-complete, we first prove
that it is NP, and then find an NP-complete problem Q that
reduces to P.

SAT

k-clique 3-satisfiability

Vertex cover

Undirect HC

Direct HC

TSP

Software Engineering Abdelghani Bellaachia Page 10

ÄExample: Node cover problem:

• Definition: Given a graph G=(V,E), a subset S of V is a
node

cover of G iff all edges are incident to at least on
vertex in S.

S = {1,2}

1

5 4

2

3

