
Abdelghani Bellaachia, Algorithms - 1 -

Greedy Method

Ä Objective:

ÄGeneral approach:

• Given a set of n inputs.
• Find a subset, called feasible solution, of the n

inputs subject to some constraints, and
satisfying a given objective function.

• If the objective function is maximized or
minimized, the feasible solution is optimal.

• It is a locally optimal method.

ÄAlgorithm:

F Step 1: Choose an input from the input set, based on
some criterion. If no more input exit.

F Step 2: Check whether the chosen input yields to a
feasible solution. If no, discard the input and
goto step 1.

F Step 3: Include the input into the solution vector and
update the objective function. Goto step 1.

Abdelghani Bellaachia, Algorithms - 2 -

Optimal merge patterns

Ä Introduction:

• Merge two files each has n & m elements, respectively:
 ⇒ takes O (n+m).

• Given n files
What's the minimum time needed to merge all n
files?

• Example:
 (F1, F2, F3, F4, F5)= (20, 30, 10, 5, 30).

 M1= F1 & F2 ⇒ 20+30 = 50
 M2= M1 & F3 ⇒ 50+10 = 60
 M3= M2 & F4 ⇒ 60+5 = 65
 M4= M3 & F5 ⇒ 65+30 = 95
 270

• Optimal merge pattern: Greedy method.

 Sort the list of files:

(5,10, 20, 30, 30)= (F4, F3, F1, F2, F5)

Abdelghani Bellaachia, Algorithms - 3 -

Merge the first two files:

 (5, 10, 20, 30, 30) è (15, 20, 30, 30)

Merge the next two files:

(15, 20, 30, 30) è (30, 30, 35)

Merge the next two files:

(30, 30, 35) è (35, 60)

Merge the last two files:

(35,60) è (95)

Total time: 15 + 35 + 60 + 95 = 205

⇒ This is called a 2-way merge pattern.

• Problem:

ü Given n sorted files
ü Merge n files in a minimum amount of time.

• Algorithm:

ü We associate with each file a node

Left Weight Right

Abdelghani Bellaachia, Algorithms - 4 -

 ÄExample:

Initial

ü
1 5 1 1 10 1 1 20 1 1 30 1 1 30 1

ü
1 15 1 1 20 1 1 30 1 1 30 1

5 10

ü
1 35 1 1 30 1 1 30 1

15 20

5 10

ü
1 35 1 1 60 1

15 20 30 30

5 10

Abdelghani Bellaachia, Algorithms - 5 -

ü

1 95 1

35 60

15 20 30 30

5 10

• Algorithm:

- Least (L): find a tree in L whose root has the smallest
weight.

- Function : Tree (L,n).
 Integer i;
 Begin
 For i=1 to n -1 do
 Get node (T) /∗ create a node pointed by T ∗/

 Left child (T)= Least (L) /∗ first smallest ∗/
 Right child (T)= Least (L) /∗ second smallest ∗/

 Weight (T) = weight (left child (T))
 + weight (right child (T))

 Insert (L,T); /∗ insert new tree with root T in L ∗/
 End for

 Return (Least (L)) /∗ tree left in L ∗/
 End.

Abdelghani Bellaachia, Algorithms - 6 -

• Analysis:

 T= O (n-1) ∗ max (O (Least), O (Insert)).

 - Case 1 L is not sorted.
 O (Least)= O (n).
 O (Insert)= O (1).

 ⇒ T= O (n2).

 - Case 2 L is sorted.

Case 2.1
 O (Least)= O (1)
 O (Insert)= O (n)

 ⇒ T= O (n2)
 Case 2.2

L is represented as a min-heap. Value in the root
is ≤ the values of its children.

 O (Least)= O (1)
 O (Insert)= O (log n)

 ⇒ T= O (n log n).

Abdelghani Bellaachia, Algorithms - 7 -

Knapsack problem

Ä Problem:
• input:

ü n objects.
ü each object i has a weight wi and a profit pi
ü Knapsack : M

• output:

ü Fill up the Knapsack s.t. the total profit is
maximized.

ü Feasible solution: (x1,… … … .,xn).

Ä Formally,

ü Let xi be the fraction of object i placed in the
Knapsack, O ≤xi ≤ 1. For 1≤ I ≤n.

ü Then :
P = ∑

≤≤ ni1
pi xi

And ∑
≤≤ ni1

wi xi ≤ M

ÄAssumptions:

 - ∑
=

n

1i
iw > M ; not all xi= 1.

 - ∑
≤≤ ni1

wi xi = M

Abdelghani Bellaachia, Algorithms - 8 -

Ä Example:

ü 3 objects (n=3).
ü (w1,w2,w3)=(18,15,10)
ü (p1,p2,p3)=(25,24,15)
ü M=20

Ä Largest-profit strategy: (Greedy method)

ü Pick always the object with largest profit.

ü If the weight of the object exceeds the
remaining Knapsack capacity, take a fraction
of the object to fill up the Knapsack.

ÄExample:

ü P=0 , C=M=20 /∗ remaining capacity ∗/

ü Put object 1 in the Knapsack.

 P=25 Since w1 < M then x1=1
 C=M-18=20-18=2

ü Pick object 2

 Since C< w2 then x2= C/w2=2/15.
 P=25+2/15*24 =25+3.2=28.2

ü Since the Knapsack is full then x3=0.

ü The feasible solution is (1, 2/15,0).

Abdelghani Bellaachia, Algorithms - 9 -

Ä Smallest-weight strategy:

ü be greedy in capacity: do not want to fill the
knapsack quickly.

ü Pick the object with the smallest weight.

ü If the weight of the object exceeds the remaining
knapsack capacity, take a fraction of the object.

ÄExample:

ü cu=M=20

ü Pick object 3
 Since w3 < cu then x3=1
 P= 15 cu =20-10 = 10 , x3 =1

ü Pick object 2
 Since w2 > cu then x2 = 10/15 = 2/3
 P = 15+ 2/3.24
 = 15+ 16 = 31 cu= 0.

ü Since cu=0 then x1=0

ü Feasible solution : (0,2/3,1) p=31.

Abdelghani Bellaachia, Algorithms - 10 -

Ä Largest profit-weight ratio strategy:

ü Order profit-weight ratios of all objects.
ü Pi/wi ≥ (pi+1)/(wi+1) for 1 ≤ i ≤ n-1
ü Pick the object with the largest p/w
ü If the weight of the object exceeds the remaining

knapsack capacity, take a fraction of the object.

ÄExample:
 P1/w1=25/18=1.389
 P2/w2=24/15=1.6
 P3/w3=15/10=1.5

è P2/w2>=P2/w2>= P3/w3

 Cu=20; p=0

ü Pick object 2
Since cu ≥ w2 then x2=1
cu=20-15=5 and p=24

ü Pick object 3
 Since cu<w3 then x3=cu/w3=5/10=1/2

 cu= 0 and P= 24+1/2.15=24+7.5=31.5

ü Feasible solution (0,1,1/2) p=31.5

Abdelghani Bellaachia, Algorithms - 11 -

Minimum Spanning Tree.

ÄDefinition:

 Let G=(V,E) be an undirected connected graph.
 T=(V,E') is a spanning tree iff T is a tree.

ÄExample:

ÄDefinition:

• If each edge of E has a weight, G is called a
weighted graph.

ÄProblem:
• Given an undirected, connected, weighted graph

G=(V,E).
• We wish to find an acyclic subset T ⊆ E that

connects all the vertices and whose total weight:

w(T)= ∑
∈T)v,u(

w(u,v) is minimized.

Where w(u,v) is the weight of edge (u,v).
• T is called a minimum spanning tree of G.

Abdelghani Bellaachia, Algorithms - 12 -

ÄSolution:

• Using greedy method.
• Two algorithms:

ü Prim's algorithm.
ü Kruskal's algorithm.

ÄApproach:

• The tree is built edge by edge.
• Let T be the set of edges selected so far.
• Each time a decision is made:

∗ Include an edge e to T s.t. :
Cost (T)+w (e) is minimized, and
T∪ {e} does not create a cycle.

Ä Prim's algorithm:

• T forms a single tree.
• The edge e added to T is always least-weight edge

connecting the tree, T, to a vertex not in the tree

ÄImplementation:
- To choose the next edge to be included in T,
NEAR (i:n) array is used.

Abdelghani Bellaachia, Algorithms - 13 -

V(T) V(G)-V(T)

NEAR(I)=0
i∈V(T)

NEAR(I)=v s.t. i∈V(T),
v∈V(T) and cost(i,v) is min
among all choices for
NEAR(i).

i

p

n

m

NEAR(I) =p s.t. cost(I,p) is min
cost(I,w) where p<=w<=m

Abdelghani Bellaachia, Algorithms - 14 -

 Procedure PRIM (G, Cost, mincost)
 /∗ Let n be # of vertices ∗/
 Integer NEAR (1:n);
 Integer u,w,p,I;
1. Begin
2. Choose an arbitrary vertex vo.
3. mincost=o; NEAR (vo)=o
4. For each vertex w ≠ vo do
5. NEAR (w)=vo;
6. End for

7. For I=1 to n-1 do /∗ fin n-1 edges of T ∗/
8. Choose a vertex w s.t.
9. cost(w,NEAR(w))= min (cost (u, NEAR(u)))
10. where NEAR (u) ≠ o
11. mincost = mincost+ cost (w, NEAR(w));
12. NEAR (w)=o
13. For each vertex p do
14. if NEAR(p) ≠ o & cost (p, NEAR(p)) > cost (p,w)
15. then NEAR (p)= w;
16. endif
17. end for
18. End for
19. End.

• Analysis:

ü The for loop between 4 and 6 takes O(n).
ü Lines between 8 and 10 take O(n)
ü The For loop between 13 and 17 takes O(n)
ü Finally, the main For loop that starts at line 7 takes

O(n)
ü the overall algorithm takes O(n2).

Abdelghani Bellaachia, Algorithms - 15 -

 ÄExample:

- Let's start form v=1

Abdelghani Bellaachia, Algorithms - 16 -

Kruskal's algorithm

Ä Problem:

• T form a forest.
• The edge e added to T is always least-weight edge in the

graph that connects two distinct trees of T.
• At the end of the algorithm T becomes a single tree.

ÄExample:

Abdelghani Bellaachia, Algorithms - 17 -

Procedure kruskal (G, cost).
Begin

T: forest
T= ∅
while |T| ≤ n-1 & E≠∅ do

choose an edge (v,w)∈E of least weight
delete (v,w) form E
If (v,w) does not create a cycle in T
then

add (v,w) ∈o T
else

discard (v,w);
endif

end while.

 ÄImplementation:

• Choose the edge with the smallest weight:

ü Use min-heap:
- Get the min & read just the heap

takes O (log e).
- Construct the heap takes O (e).

• Be sure that the chosen edge does not create a cycle
in the so far built forest, T:

ü Use union-find:
Once (u,v) is selected.

 Check if Find (u) ≠ Find (v).

Abdelghani Bellaachia, Algorithms - 18 -

• Summary:

ü Min-heap on edges.
ü Union-find on vertices.

• Time complexity O (e log e).

Abdelghani Bellaachia, Algorithms - 19 -

Single Source Shortest Paths.

Ä Requirements:

• Given a weighted digraph G= (V,E) where the weights
are >0.

• A source vertex, vo ∈ V.

• Find the shortest path from vo to all other nodes in G.

• Shortest paths are generated in increasing order: 1,2,3,… ..

Ä Algorithm Description: Dijkstra

• S: Set of vertices (including vo) whose final shortest
paths from the source vo have already been
determined.

• For each node w∈V-S,
Dist (w): the length of the shortest path starting
from vo going through only vertices which

 are in S and ending at w.
 • The next path is generated as follows:

- It's the path of a vertex u which has Dist (u)
minimum among all vertices in V-S

- Put u in S.
• Dist (w) for w in V-S may be decreased going

though u.

Abdelghani Bellaachia, Algorithms - 20 -

Compare Dist (u)+ cost (u,w) with Dist (w).

 ÄAlgorithm:
Procedure SSSP (vo, cost, n)

 Array S (1:n);
 Begin

 /∗ initialization∗/
 For i=1 to n do

 S(i)=o, Dist (i)= cost (vo,i)
 End for.
 S(vo)=1, Dist (vo)=o;
 For i=1 to n-1 do.

Choose u s.t. Dist (u)= min
0)w(S =

 {Dist (w) }

S(u)=1;
 For all w with S(w)=o do.
 Dist (w)= min (Dist (w), Dist (u) +

 Cost (u,w))
 End for.
 end for.

 end.

ü Time complexity: O(n2).

vo u
w

S V-S
DIST(u)

DIST(w)

Abdelghani Bellaachia, Algorithms - 21 -

