
Abdelghani Bellaachia, Algorithms                                                                                                    - 1 -

Greedy Method

Ä Objective:

ÄGeneral approach:

• Given a set of n inputs.
• Find a subset, called feasible solution, of the n

inputs subject to some constraints, and
satisfying a given objective function.

• If the objective function is maximized or
minimized, the feasible solution is optimal.

• It is a locally optimal method.

ÄAlgorithm:

F  Step 1: Choose an input from the input set, based on
some criterion. If no more input exit.

F  Step 2: Check whether the chosen input yields to a
feasible solution. If no, discard the input and
goto step 1.

F  Step 3: Include the input into the solution vector and
update the objective function. Goto step 1.
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Optimal merge patterns

Ä Introduction:

• Merge two files each has n &  m elements, respectively:
            ⇒  takes   O (n+m).

• Given n files
What's the minimum time needed to merge all n
files?

• Example:
                        (F1, F2, F3, F4, F5)= (20, 30, 10, 5, 30).

                  M1= F1 &  F2 ⇒  20+30  = 50
                  M2= M1 &  F3 ⇒  50+10  = 60
                  M3= M2 &  F4 ⇒  60+5    = 65
                  M4= M3 &  F5 ⇒  65+30  = 95
                                             270

• Optimal merge pattern: Greedy method.

                             Sort the list of files:

(5,10, 20, 30, 30)= (F4, F3, F1, F2, F5)
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Merge the first two files:

                          (5, 10, 20, 30, 30) è   (15, 20, 30, 30)

Merge the next two files:

(15, 20, 30, 30) è  (30, 30, 35)

Merge the next two files:

(30, 30, 35) è  ( 35, 60)

Merge the last two files:

(35,60) è  ( 95)

Total time: 15 + 35 + 60 + 95 = 205

⇒  This is called a 2-way merge pattern.

• Problem:

ü Given n sorted files
ü Merge n files in a minimum amount of time.

• Algorithm:

ü We associate with each file a node

Left Weight Right
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         ÄExample:

Initial

ü 
1 5 1 1 10 1 1 20 1 1 30 1 1 30 1

ü 
1 15 1 1 20 1 1 30 1 1 30 1

5 10

ü 
1 35 1 1 30 1 1 30 1

15 20

5 10

ü 
1 35 1 1 60 1

15 20 30 30

5 10
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ü 

1 95 1

35 60

15 20 30 30

5 10

• Algorithm:

- Least (L): find a tree in L whose root has the smallest
weight.

- Function :    Tree (L,n).
            Integer i;
              Begin
                    For  i=1 to n -1 do
                           Get node (T)       /∗ create a node pointed by T  ∗/

             Left child (T)=   Least (L)       /∗ first smallest ∗/
             Right child (T)= Least (L)    /∗ second smallest ∗/

              Weight (T)  = weight (left child (T))
 + weight (right child (T))

                            Insert (L,T);      /∗  insert new tree with root T in L ∗/
      End for

                  Return (Least (L))   /∗ tree left in L ∗/
             End.
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• Analysis:

     T= O (n-1) ∗ max (O (Least), O (Insert)).

  - Case 1    L is not sorted.
                   O (Least)= O (n).
                   O (Insert)= O (1).

              ⇒  T= O (n2).

  - Case 2    L is sorted.

Case 2.1
                      O (Least)= O (1)
                      O (Insert)= O (n)

                ⇒   T= O (n2)
        Case 2.2

L is represented as a min-heap. Value in the root
is ≤ the values of its children.

                     O (Least)= O (1)
                     O (Insert)= O (log n)

                ⇒   T= O (n log n).
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Knapsack problem

Ä Problem:
• input:

ü n objects.
ü each object i has a  weight wi and a profit pi
ü Knapsack : M

• output:

ü Fill up the Knapsack s.t. the total profit is
maximized.

ü Feasible solution:  (x1,… … … .,xn).

Ä Formally,

ü Let xi be the fraction of object i placed in the
Knapsack, O ≤xi ≤ 1.   For  1≤ I ≤n.

ü Then :
P = ∑

≤≤ ni1
pi xi

And      ∑
≤≤ ni1

wi xi  ≤ M

ÄAssumptions:

             - ∑
=

n

1i
iw > M   ;   not all   xi= 1.

             - ∑
≤≤ ni1

wi xi  = M
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Ä Example:

ü 3 objects  (n=3).
ü (w1,w2,w3)=(18,15,10)
ü (p1,p2,p3)=(25,24,15)
ü M=20

Ä Largest-profit strategy: (Greedy method)

ü Pick always the object with largest profit.

ü If the weight of the object exceeds the
remaining Knapsack capacity, take a fraction
of the object to fill up the Knapsack.

ÄExample:

ü P=0 , C=M=20      /∗  remaining capacity ∗/

ü Put object 1 in the Knapsack.

           P=25   Since w1 < M   then  x1=1
           C=M-18=20-18=2

ü Pick object 2

            Since   C< w2  then  x2= C/w2=2/15.
            P=25+2/15*24 =25+3.2=28.2

ü Since the Knapsack is full then  x3=0.

ü The feasible solution is    (1, 2/15,0).
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Ä Smallest-weight strategy:    

ü be greedy in capacity: do not want to fill the
knapsack quickly.

ü Pick the object with the smallest weight.

ü If the weight of the object exceeds the remaining
knapsack capacity, take a fraction of the object.

ÄExample:

ü cu=M=20

ü Pick object 3
            Since w3 < cu  then  x3=1
            P= 15          cu =20-10 = 10 , x3 =1

ü Pick object 2
            Since w2 > cu  then  x2 = 10/15 = 2/3
            P = 15+ 2/3.24
               = 15+ 16 = 31             cu= 0.

ü Since  cu=0 then x1=0

ü Feasible solution :        (0,2/3,1)             p=31.
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Ä Largest profit-weight ratio strategy:

ü Order profit-weight ratios of all objects.
ü Pi/wi ≥ (pi+1)/(wi+1) for 1 ≤ i ≤ n-1
ü Pick the object with the largest  p/w
ü If the weight of the object exceeds the remaining

knapsack capacity, take a fraction of the object.

ÄExample:
             P1/w1=25/18=1.389
             P2/w2=24/15=1.6
             P3/w3=15/10=1.5

è  P2/w2>=P2/w2>= P3/w3

             Cu=20; p=0

ü Pick object 2
Since cu ≥ w2 then x2=1
cu=20-15=5 and p=24

ü Pick object 3
                     Since cu<w3 then x3=cu/w3=5/10=1/2

   cu= 0 and  P= 24+1/2.15=24+7.5=31.5

ü Feasible solution  (0,1,1/2)             p=31.5
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Minimum Spanning Tree.

ÄDefinition:

  Let G=(V,E) be an undirected connected graph.
   T=(V,E') is a spanning tree iff T is a tree.

ÄExample:

ÄDefinition:

• If each edge of E has a weight, G is called a
weighted graph.

ÄProblem:
• Given an undirected, connected, weighted graph

G=(V,E).
• We wish to find an acyclic subset T ⊆  E that

connects all the vertices and whose total weight:

w(T)= ∑
∈T)v,u(

w(u,v) is minimized.

Where w(u,v) is the weight of edge (u,v).
• T is called a minimum spanning tree of G.
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ÄSolution:

• Using greedy method.
• Two algorithms:

ü Prim's algorithm.
ü Kruskal's algorithm.

ÄApproach:

• The tree is built edge by edge.
• Let T be the set of edges selected so far.
• Each time a decision is made:

∗ Include an edge e to T s.t. :
Cost (T)+w (e) is minimized, and
T∪ {e} does not create a cycle.

Ä Prim's algorithm:

• T forms a single tree.
• The edge e added to T is always least-weight edge

connecting the tree, T, to a vertex not in the tree

ÄImplementation:
- To choose the next edge to be included in T,
NEAR (i:n) array is used.
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V(T) V(G)-V(T)

NEAR(I)=0
i∈V(T)

NEAR(I)=v s.t. i∈V(T),
v∈V(T) and cost(i,v) is min
among all choices for
NEAR(i).

i

p

n

m

NEAR(I) =p s.t. cost(I,p) is min
cost(I,w) where p<=w<=m
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  Procedure PRIM (G, Cost, mincost)
     /∗ Let n be # of vertices ∗/
     Integer NEAR (1:n);
     Integer u,w,p,I;
1. Begin
2. Choose an arbitrary vertex vo.
3. mincost=o; NEAR (vo)=o
4. For each vertex w ≠ vo do
5. NEAR (w)=vo;
6. End for

7. For I=1 to n-1 do  /∗ fin n-1 edges of T ∗/
8. Choose a vertex w s.t.
9. cost(w,NEAR(w) )= min (cost (u, NEAR(u)) )
10. where NEAR (u) ≠ o
11. mincost = mincost+ cost (w, NEAR(w));
12. NEAR (w)=o
13. For each vertex p do
14. if  NEAR(p) ≠ o &  cost (p, NEAR(p) ) > cost (p,w)
15. then  NEAR (p)= w;
16. endif
17. end for
18. End for
19. End.

• Analysis:

ü The for loop between 4 and 6 takes O(n).
ü Lines between 8 and 10 take O(n)
ü The For loop between 13 and 17 takes O(n)
ü Finally, the main For loop that starts at line 7 takes

O(n)
ü the overall algorithm takes O(n2).
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   ÄExample:

- Let's start form v=1



Abdelghani Bellaachia, Algorithms                                                                                                    - 16 -

Kruskal's algorithm

Ä Problem:

• T form a forest.
• The edge e added to T is always least-weight edge in the

graph that connects two distinct trees of T.
• At the end of the algorithm T becomes a single tree.

ÄExample:
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Procedure kruskal (G, cost).
Begin

T: forest
T= ∅
while |T| ≤ n-1 &  E≠∅  do

choose an edge (v,w)∈E of least weight
delete (v,w) form E
If (v,w) does not create a cycle in T
then

add (v,w) ∈o  T
else

discard (v,w);
endif

end while.

 ÄImplementation:

• Choose the edge with the smallest weight:

ü Use min-heap:
- Get the min &  read just the heap

takes O (log e).
- Construct the heap takes O (e).

• Be sure that the chosen edge does not create a cycle
in the so far built forest, T:

ü Use union-find:
Once (u,v) is selected.

            Check if Find (u) ≠ Find (v).
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• Summary:

ü Min-heap on edges.
ü Union-find on vertices.

• Time complexity O (e log e).
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Single Source Shortest Paths.

Ä Requirements:

• Given a weighted digraph G= (V,E) where the weights
are >0.

• A source vertex, vo  ∈   V.

• Find the shortest path from vo to all other nodes in G.

• Shortest paths are generated in increasing order: 1,2,3,… ..

Ä Algorithm Description: Dijkstra

• S: Set of vertices (including vo) whose final shortest
paths from the source vo have already been
determined.

• For each node w∈V-S,
Dist (w): the length of the shortest path starting
from vo going through only vertices which

                       are in S and ending at w.
 • The next path is generated as follows:

- It's the path of a vertex u which has Dist (u)
minimum among all vertices in V-S

- Put u in S.
• Dist (w) for w in V-S may be decreased going

though u.
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Compare Dist (u)+ cost (u,w) with Dist (w).

      ÄAlgorithm:
Procedure SSSP (vo, cost, n)

              Array  S (1:n);
            Begin

   /∗ initialization∗/
                 For i=1 to n do

    S(i)=o, Dist (i)= cost (vo,i)
  End for.
  S(vo)=1, Dist (vo)=o;
  For i=1 to n-1 do.

Choose u  s.t.   Dist (u)= min
0)w(S =

 {Dist (w) }

S(u)=1;
      For all w with S(w)=o do.
            Dist (w)= min (Dist (w), Dist (u) +

    Cost (u,w) )
       End for.
  end for.

           end.

ü Time complexity:     O(n2).

vo u
w

S V-S
DIST(u)

DIST(w)
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