Graph Traversals

• There are two strategies

- Depth First Search (DFS)
- Breadth First Search (BFS)

• Depth First Search (DFS)

• Procedure:

DFS (G,v)

Begin

visited(v) = TRUE;

For every node x neighbor of v do

If visited x = FALSE

then DFS(G,x)

endif

endfor

End;

Analysis:

- For G=(V,E) where n=|V| and e=|E|, the time complexity is:
 - Adjacency matrix:
 - Since the FOR loop takes O(n) for each vertex, the time complexity is: <u>O(n²)</u>
 - Adjacency list:
 - The FOR loop takes the following:

$$\sum_{i=1}^{n} d_{i} = O(e) \quad \text{where } d_{i} = \text{degree}(v_{i})$$

- The setup of the visited array requires: O(n)
- Therefore, the time complexity is:

O(max(n,e))

• Breadth First Search (BFS)

```
Procedure:
  BFS (v)
  queue Q;
  Begin
      visited(v) = TRUE;
      Make_empty(Q); /* Make the queue empty */
      Add_queue(Q,v);
      While (!Empty_queue(Q)) do
      Begin
           Delete_queue(Q,x);
           For all vertices w adjacent to x do
                If (!visited[w])
                then Begin
                         Add_queue(Q,w);
                         visited[w]=TRUE;
                     end;
           endfor
```

End;

End;

Analysis:

- For G=(V,E) where n=|V| and e=|E|, the time complexity is:

• Adjacency matrix:

- Since the while loop takes O(n) for each vertex, the time complexity is: <u>O(n²)</u>
- Adjacency list:
 - The while loop takes the following:

 $\sum_{i=1}^{n} d_{i} = O(e) \quad \text{where } d_{i} = \text{degree}(v_{i})$

- The setup of the visited array requires: O(n)
- Therefore, the time complexity is:
 <u>O(max(n,e))</u>

• Applications:

- \circ Find a path from Source \rightarrow Destination
 - Use either DFS or BSD
 - Need to store the edges traversed
 - Use depth
 - Use breath
 - Example:

Destination

■ Start at node A: push A in the stack

					Z
				X	Х
			Y	Y	Y
		С	С	С	С
	В	В	В	В	В
A	А	А	А	А	А
DFS on A	DFS on B	DFS on C	DFS on Y	DFS on X	DFS on Z

- Is an undirected graph connected?
 - Think about a DFS based algorithm?
- Check whether an undirected graph is a regular graph. Print the degree of the graph.
- \circ To find out if a graph contains a cycle.

```
How?
boolean DFS(v){
    visited[v] = 1;
     for( each vertex w adjacent to v ){
         if (visited[w] == 0){
             parent[w] = v;
             DFS(w);
          }
        else if(visited[w] == 1 and parent[w] != v)
                            // cycle detected
             return true;
     }
    return false;
                      // no cycle detected in this component
  }
```