
 Page 1

Graph Traversals

 There are two strategies

o Depth First Search (DFS)

o Breadth First Search (BFS)

 Depth First Search (DFS)

o Procedure:

 DFS (G,v)

 Begin

 visited(v) = TRUE;

 For every node x neighbor of v do

 If visited x = FALSE

 then DFS(G,x)

 endif

 endfor

 End;

 Page 2

 Analysis:

- For G=(V,E) where n= V and e= E , the time

complexity is:

o Adjacency matrix:

 Since the FOR loop takes O(n) for each

vertex, the time complexity is: O(n
2
)

 Adjacency list:

 The FOR loop takes the following:

 d
i

i 1

n
O(e) where d

i
degree(v

i
)

 The setup of the visited array requires:

O(n)

 Therefore, the time complexity is:

O(max(n,e))

 Page 3

o Breadth First Search (BFS)

 Procedure:

 BFS (v)

 queue Q;

 Begin

 visited(v) = TRUE;

 Make_empty(Q); /* Make the queue empty */

 Add_queue(Q,v);

 While (!Empty_queue(Q)) do

 Begin

 Delete_queue(Q,x);

 For all vertices w adjacent to x do

 If (!visitedw)

 then Begin

 Add_queue(Q,w);

 visitedw=TRUE;

 end;

 endfor

 End;

 End;

 Page 4

 Analysis:

- For G=(V,E) where n= V and e= E , the time

complexity is:

o Adjacency matrix:

 Since the while loop takes O(n) for each

vertex, the time complexity is: O(n
2
)

o Adjacency list:

 The while loop takes the following:

 d
i

i 1

n
O(e) where d

i
degree(v

i
)

 The setup of the visited array requires: O(n)

 Therefore, the time complexity is:

O(max(n,e))

 Page 5

 Applications:

o Find a path from Source Destination

 Use either DFS or BSD

 Need to store the edges traversed

- Use depth

- Use breath

 Example:

 Start at node A: push A in the stack

 Z

 X X

 Y Y Y

 C C C C

 B B B B B

A A A A A A

DFS on A DFS on B DFS on C DFS on Y DFS on X DFS on Z

Source

Destination

A Y C

Z B X

 Page 6

o Is an undirected graph connected?

 Think about a DFS based algorithm?

o Check whether an undirected graph is a regular graph. Print the

degree of the graph.

o To find out if a graph contains a cycle.

 How?

boolean DFS(v){

 visited[v] = 1;

 for(each vertex w adjacent to v){

 if (visited[w] == 0){

 parent[w] = v;

 DFS(w);

 }

 else if(visited[w] == 1 and parent[w] != v)

 return true; // cycle detected

 }

 return false; // no cycle detected in this component

}

