
DDDyyynnnaaammmiiiccc   PPPrrrooogggrrraaammmmmmiiinnnggg

© Objective:

•� Dynamic programming is applied to optimization
problems.

©Comparison

•� Divide-and-conquer algorithms partition the problem
into independent sub problems.

•� Greedy method generates a single decision "locally
optimal", at each time.

©example:

•� S P: form S→d

•� At any given node i:

S i

n1

n2

nk

l

l

l

i



Q: Which of the ni will be chosen in the S.P. from s to d. ?

Note:   There is no way to make the right choice or
decision at this time & guarantee that future decisions
lead to Optimal Solution.

© Principle of optimality
•� An optimal sequence of decisions has the property that

what ever the initial state and decision are, the remaining
decisions must constitute an optimal decision sequence
with regard to the state resulting from the first decision.

© Principle:

•� A sub solution for an optimal solution is an optimal
solution for the sub problem.

© Dynamic Programming:

•� Uses the principle of optimality.

© Example:

•� All pairs shortest paths.
•� Matrix- chain.
•� Optimal binary search tree.

© General approach:

•� Characterize the structure of an optimal solution.
•� Recursively define the value of an optimal solution.
•� Compute the value of an optimal solution in bottom-up

fashion.



MMMaaatttrrriiixxx---ccchhhaaaiiinnn   mmmuuullltttiiipppllliiicccaaatttiiiooonnn

© Requirements:

•� Input:        A sequence (chain) A1,A2,….,An of n matrices
where Ai has dimension pi-1 x pi  for 1≤i≤n

•� Output:     The product A1 A2 A3…..An such that the total
number of scalar multiplications  is minimized.

© Example

Given these three matrices: A1=(4,2), A2=(2,3), A3=(3,4), let
us compute A1 *A 2 *A 3

∗� S1 = A1 *A 2 *A 3= (A1*A 2) *A 3

 B= A1*A2 takes 4x2x3=24 and B=(4,3)

                  B*A3 takes 4x3x4=48

        Í Cost ((A1*A 2)*A 3)=24+48=72

∗� S2 = A1 *A 2 *A 3= A1*(A 2*A 3)

C= A2*A 3 takes 2x3x4=24 and C(2,4)

          A1*C takes 4x2x4=32

Í Cost (A1*(A 2*A 3))=24+32=56

∗� Compare S1 and S2?



© Characterization of the structure of an optimal solution:

•� An optimal solution of the product A1 A2….An splits the
product between Ak and Ak+1 for some integer k: 1≤k<n

    A1 A2…Ak   and    Ak+1…An

                 C1                        C2

such that
       ((AA))  Cost (A1….An) =   Cost (A1….Ak) // Optimal

      + Cost (Ak+1….An) //Optimal
               + Cost (C1C2).    

Í makes Cost (A1….An) an optimal solution.

© Recursive solution

•� Let m[i,j] be the minimum number of multiplications
needed to compute the product Ai, Ai+1,…,Aj

•� From (A), we have
m[i,j]=m[i,k]+m[k+1,j]+p i-1pkpj

This is if we know the value of k????
Í k can be any value  I≤ k<j

•� To get the optimal value of m[i,j]Í Compute all m[i,j] for
all i≤k<j and find the minimum.







≠+++
=

=
−

<≤
jiif}ppp]j,1k[m]k,i[m{min

jiif0
]j,i[m

jk1i
jki

 



Algorithm:
Procedure matrix_chain
Begin

For i=1 to n do
M[i,i]=0;

End;
For L=2 to n do   /* length of chains: 2-matrices, 3-matrices, etc. */

For i =1 to n-L+1 do    /*n-L+1: position of last chain */
j=i+l-1;
M[i,j] = �;
For k=i to j-1 do

Q = m[i,k]+m[k+1,j]+pi-1pkpj;
If q < m[i,j]
Then

M[i,j] = q;
End if;

End for;
End for;

End for;
End;

Complexity: O(n3).



All pairs shortest paths

© Problem:

á�Input: G=(V,E) is a directed graph
A(1..n,1..n) is the cost matrix of G







∈><><
∉><

=
∞=

Ej,iifj,iofweighttheiswij

Ej,i

ji

wij

0

)j,i(C

á�Output: matrix A(1..n,1..n) such that A(i,j)= the
shortest path from i to j where 1<=I,j<=n

© First method:

•� Apply the single shortest path algorithm for each vertex of V
•� Complexity: O(n3).

© Second method:  Floyd-warshall algorithm

•� Not all C(I,j) >=0;
•� G has no cycle for negative length

Shortest path between 1 and 2: ...

1

2,1,2,1

1

2,1,2,1 321321
−−

1 2

2

-5



©  Intermediate vertex:

•� Definition: An intermediate vertex of a simple path
p=(v1,v2,…vj-1,vj) is any vertex of p other than v1or
vj, that is any vertex in the set {v2,…..vj-1}.

© Characterization of the structure of an optimal solution:

•� p = (i,……..,j)  for every i and every j in G. The
intermediate vertices of p are in {1,2,….,k-1}.

•� Consider the next intermediate vertex k:
         - If k is an intermediate vertex, otherwise it is not considered.

S.t.    p1 = (i,……,k) & p2 = (k,……,j) have their 
intermediate vertices in {1,2,…..,k-1}.

p = p1, p2.

©  Recursive solution:

Ak(i,j)= min (Ak-1(i,j), Ak-1(i,k)+Ak-1(k,j))    For k ≥ 1.

∗ Ak-1(i,j) is the shortest path including only the
intermediate vertices in {1,2,….,k-1}.
∗ Ak(i,j) is the shortest path including only the
intermediate vertices in {1,2,….,k}.



-� Algorithm:
Floy-warshall(cost(1:n),A(1:n)).
integer i,j,k ;

   Begin
      for k =1 to n do.
                for I = 1 to n do.
                          for j =1 to n do.
                                   A(i,j) = min(A(i,j),A(i,k)+A(k,j))
                          end for
                end for
     end for
   end.

Complexity: O(n3).


