
Abdelghani Bellaachia, Algorithms -
1 -

Priority Queue: Heap Structures

F Definition:

• A max-heap (min-heap) is a complete BT with the property
 that the value (priority) of each node is at least as large

(small) as the values at its children (if they exist).

F Implementation:

• Sequential representation

F Example:

 90

 67 85

 30 57 31 24

 11 8 20 2 25

F Operations:

• Insertion
• Construct heap
• Deletion
• Delete_min (Delete_max)

Abdelghani Bellaachia, Algorithms -
2 -

F Insertion of a heap

• Procedure Insert(A[1..n],i)
/* Insert A[i] into the already hear A[1..n] */
Begin

While (I>1) and (A[i]> A[i
2

]) do

Begin

swap(A[i], A[i
2

]);

i = i
2

;

Endwhile
End;

• Example:

•• List of elements: 40, 80, 35, 90, 85, 100

•• The heap is empty

•• Insert(40)

 40

•• Insert(80)

 40 80
====>

 80 40

•• Etc.

Abdelghani Bellaachia, Algorithms -
3 -

F Construction of a heap

• First method:

•• Procedure construct_heap1(A[1..n])
/* The array will contain the heap */
Integer i;
Begin

For I=2 to n do
Insert (A[1..n],i);

endfor;
end;

•• Analysis:

Theorem: Construct_heap1 takes O(nlogn) in the
worst case.

Proof:
The worst case is when the elements are
inserted in ascending order.

The Insert procedure takes O(longn).

Therefore, we have O(nlogn).
End proof.

•• Note: The best case when the elements are inserted in
descending order. In this case The Insert procedure takes

O(1). Therefore, Construct_heap takes O(n).

• Second method:

•• Takes the input array as a complete binary tree.

•• Construct the heap level by level from the leaves

Abdelghani Bellaachia, Algorithms -
4 -

•• Assume that only the value of the root may violate the
heap property

•• Example:

 100

 119 118

 171 112 151 132

 100

 119 151

 171 112 118 132

 100

 171 151

 119 112 118 132

 171

 100 151

 119 112 118 132

Abdelghani Bellaachia, Algorithms -
5 -

 171

 119 151

 100 112 118 132

•• Procedure Adjust_heap(A[1..n],i)
/* A new heap is constructed from the value A[i] and the

/* heaps with roots A[2*i] and A[2*i+1] */
Boolean done=false;
type element;
Begin

j = 2*i; element = A[i];
While ((j≤n) && (!done)) do

/* Let j points to the largest child of A[j
2

] */

if ((j<n) and (A[j]< A[j+1]))
then j = j + 1;
endif;
if (element ≥ A[j])
then done = TRUE;
else begin

A[j
2

] = A[j];

j = 2*j;
end;

endif;
endwhile;

A[j
2

] = element;

End;

Abdelghani Bellaachia, Algorithms -
6 -

•• Procedure construct_heap2(A[1..n])
/* The array will contain the heap */
Integer i;
Begin

For i=
n
2

 to 1 step -1 do

Adjust_heap (A[1..n],i);
endfor;

end;

•• Analysis:

ü Lemma 1: There are at most
n

2k-i+1

 nodes at

level i in an n-element heap where n = 2k.

ü Theorem: Construct_heap2 takes O(n) which
is a tight bound.

Proof:
The total number of iteration of adjust-heap
procedure is k-i for a node on level i, therefore,
the total time, T, of Construct-heap2 is:

T = (k i)
n

2k i 1
1 i k

−

− +

≤ ≤
∑ Using Lemma 1

Take j=k-i, we have 0≤j≤k-1.

Hence,

T = j
n

2
n
2

j2
j 1

0 j k-1

j

0 j k-
+

≤ ≤

−

≤ ≤
∑ ∑=

Abdelghani Bellaachia, Algorithms -
7 -

Therefore, we have T = O(n).
End proof.

Abdelghani Bellaachia, Algorithms -
8 -

F Delete operation
 90

 67 85

 30 57 31 24

 11 8 20 2 25

• Take the content of the root out

• Put the last node in the heap in the root

• Adjust the heap.

Abdelghani Bellaachia, Algorithms -
9 -

F Adjust the heap:

• Procedure:
Procedure adjust_heap(A[1..n],i)
/* Move the last value in the heap to the root: i=1*/
Boolean done=false;
type element;
Begin

j = 2i; element = A[i];
While ((j≤n) && (!done))
Begin

/* j points to the largest child of A[j
2

] */

If ((j<n) && (A[j]<A[j+1]))
then j = j + 1;
endif;
If (element ≥ A[j])
then done = TRUE;
else begin

A[j
2

] = A[j]; j = 2*j;

end;
endif;

Endwhile;

A[j
2

] = element;

end;

• Complexity:

•• O(logn) where n is the number of elements in the heap.

Abdelghani Bellaachia, Algorithms -
10 -

Sorting: HeapSort

F Motivation:

• The worst case is O(nlogn)

F procedure:

• Procedure
Procedure Heapsort(A[1..n])
int i;
Begin

construct_heap2(A[1..n])
for i=n to 2 step -1 do

swap(A[1], A[i]);
Adjust_heap((A[1..(i-1)]))

endfor;
end;

• Complexity:

•• Let n be the number of element to be sorted.

•• Heap construction takes O(n)

•• Adjust heap takes O(logn)

•• The for loop takes O(n)

•• Therefore, O(nlogn).

Abdelghani Bellaachia, Algorithms -
11 -

Sets and Disjoint Set Union

F Set Representations

l Bit map or Characteristic vector

Ι

Υ

≡ ∧

≡ ∨

l Disadvantages: small set and large value of objects
(Universal set)

l Trees

F Disjoint sets

l Definition:

± A disjoint set data structure maintains a collection of S
 of disjoint dynamic sets

l Operations:

± Union: Si & Sj

± Find(i): Find the set containing the element i.

l Problem:

± Develop an efficiency data structure and algorithms to
 perform a linear sequence of Unions and Finds

Abdelghani Bellaachia, Algorithms -
12 -

l Representation:

± Sets = Trees
± Name of a set is the root of the tree.

± Each node:

± The root node has a parent field of 0

F First Algorithm

l Union:

 ± Procedure Union(i,j);
Begin

parent (i) = j;
end;

 ± Complexity: O(1)

l Find:

 ± Function Find(i);
Integer j;
Begin

j=i;
While parent(j) <> 0 do

j = parent(j);
endwhile;
return(j);

end;

 ± Complexity: O(n);

l Analysis: Worst Case Behavior of Union & Find Algorithms:

Parent address

Element

Abdelghani Bellaachia, Algorithms -
13 -

± Given U(1,2), F(1), U(2,3), F(1), U(3,4), F(1), U(4,5),
 F(1)

- Initialization:

 1 0 2 0 3 0 4 0 5 0

Union (1,2): Find(1) takes 1

 2 0

 1

Union (2,3): Find(1) takes 2

 3 0

 2

 1

Union (3,4): Find(1) takes 3

 4 0

 3

 2

 1

Etc.

Abdelghani Bellaachia, Algorithms -
14 -

 ± For a sequence of n Unions and n Finds, the total
number of operations is:

 n + 1 + 2 + 3 +...+(n-1) =
n(n 1)

2
+

 ===> O(n2).

Amortized running time is: O(n).

Abdelghani Bellaachia, Algorithms -
15 -

F Weighting Rule Algorithm

l Same Find algorithm

l Modified UNION:

 ± Union(i,j): If the number of nodes in tree i is less
than the number of nodes in tree j, then
make j the parent of i, otherwise make I
the parent of j.

 ± Implementation: § Use the parent field of the root as
a counter.
§ Parent field contains the number
of elements in th etree (negative).

 ± Procedure Union(i,j);
/* Tree with less nodes becomes the parent */
integer x;
Begin

x = parent(i)+parent(j);
If (parent(i)>parent(j))
then

parent (i) = j;
parent(j) = x;

else
parent(j) = i;
parent(i) = x;

endif;
end;

 ± Analysis: O(1);

Abdelghani Bellaachia, Algorithms -
16 -

l Analysis: Worst Case Behavior of Union & Find Algorithms:

± Given U(1,2), F(1), U(2,3), F(1), U(3,4), F(1), U(4,5),
 F(1)

- Initialization:

 1 -1 2 -1 3 -1 4 -1 5 -1

Union (1,2): Find(1) takes 1

 2 -2

 1 2

Union (2,3): Find(1) takes 1

 2 -3

 1 2 3 2

Union (3,4): Find(1) takes 1

 2 -4

 1 2 3 2 4 2

Etc.

Abdelghani Bellaachia, Algorithms -
17 -

 ± For a sequence of n Unions and n Finds, the total
number of operations is:

 n + 1 + 1 +...+1 = 2n-1 ===> O(n).

Amortized running time is: O(1).

