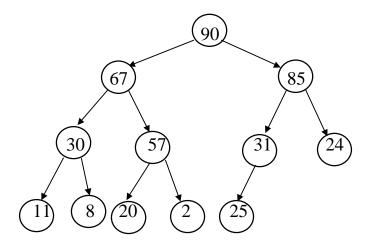
Priority Queue: Heap Structures

Definition:

• A <u>max-heap</u> (<u>min-heap</u>) is a complete BT with the property that the value (priority) of each node is at least as <u>large</u> (<u>small</u>) as the values at its children (if they exist).

F Implementation:

- Sequential representation
- **Example**:



Operations:

- Insertion
- Construct heap
- Deletion
- Delete_min (Delete_max)

The section of a heap

• Procedure Insert(A[1..n],i) /* Insert A[i] into the already hear A[1..n] */ Begin

While (I>1) and (A[i]>A[
$$\left\lfloor \frac{i}{2} \right\rfloor$$
]) do

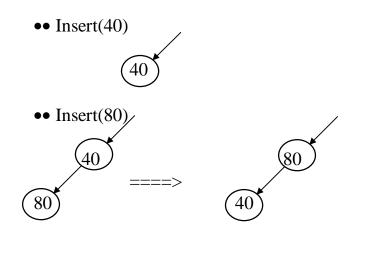
Begin

swap(A[i], A[
$$\left\lfloor \frac{\mathbf{i}}{2} \right\rfloor$$
]);
 $\mathbf{i} = \left\lfloor \frac{\mathbf{i}}{2} \right\rfloor$;
Endwhile

End;

• Example:

- •• List of elements: 40, 80, 35, 90, 85, 100
- •• The heap is empty



_

•• Etc.

Construction of a heap

• First method:

```
    Procedure construct_heap1(A[1..n])
/* The array will contain the heap */
Integer i;
Begin
        For I=2 to n do
            Insert (A[1..n],i);
        endfor;
end;
```

•• Analysis:

Theorem:	Construct_heap1 takes O(nlogn) in the
	worst case.

Proof:

The worst case is when the elements are inserted in ascending order.

_

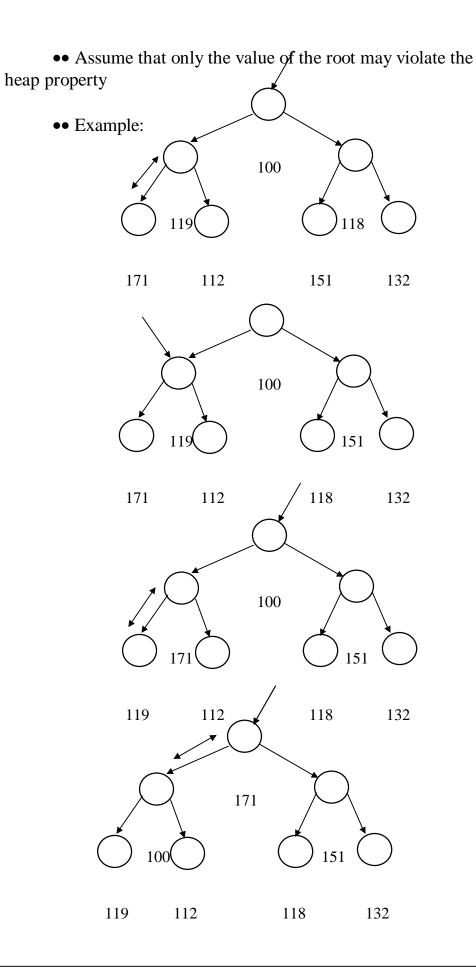
The Insert procedure takes O(longn).

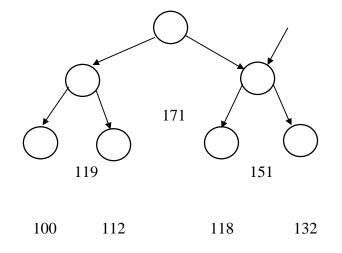
Therefore, we have O(nlogn). **End proof**.

•• <u>Note</u>: The best case when the elements are inserted in descending order. In this case The Insert procedure takes O(1). Therefore, Construct_heap takes O(n).

• Second method:

- •• Takes the input array as a complete binary tree.
- •• Construct the heap level by level from the leaves





• Procedure Adjust_heap(A[1..n],i) /* A new heap is constructed from the value A[i] and the /* heaps with roots A[2*i] and A[2*i+1] */ Boolean done=false; type element; Begin j = 2*i; element = A[i]; While $((j \le n) \&\& (!done))$ do êjú /* Let j points to the largest child of A[if ((j<n) and (A[j]< A[j+1])) then j = j + 1; endif; if (element $\geq A[j]$) then done = TRUE; begin else $A[\hat{e}_{j}\hat{u}] = A[j];$ j = 2*j; end; endif; endwhile; Êjú A[ô,ú = element;

End;

Procedure construct_heap2(A[1..n])
/* The array will contain the heap */
Integer i;
Begin

For $i = \frac{\hat{e}n}{\hat{e}2}\hat{H}$ to 1 step -1 do Adjust_heap (A[1..n],i); endfor;

end;

•• Analysis:

Lemma 1: There are at most $\hat{\mathbf{g}}_{2^{k-i+1}}$ under $\hat{\mathbf{g}}_{2^{k-i+1}}$ nodes at level i in an n-element heap where $n = 2^k$.

Theorem:	Construct_heap2 takes O(n) which
	is a tight bound.

Proof:

The total number of iteration of adjust-heap procedure is k-i for a node on level i, therefore, the total time, T, of Construct-heap2 is:

$$T = \frac{\dot{a}}{150 \text{ Sk}} (\mathbf{k} - \mathbf{i}) \frac{\dot{\mathbf{e}}}{\mathbf{\hat{e}}^{2^{k - i + 1}}} \mathbf{\hat{\mu}}$$
 Using Lemma 1

Take
$$j=k-i$$
, we have $0 \le j \le k-1$.

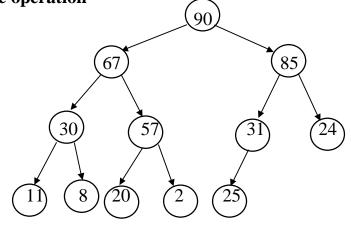
Hence,

$$T = \mathop{a}\limits_{\scriptscriptstyle 0 \mbox{\boldmath \mathfrak{L}}_{j \mbox{\boldmath \mathfrak{L}}^{k-1}$}} j \frac{n}{2^{j+1}} = \frac{n}{2} \mathop{a}\limits_{\scriptscriptstyle 0 \mbox{\boldmath \mathfrak{L}}_{j \mbox{\boldmath \mathfrak{L}}^{k-1}$}} j 2^{-j}$$

Therefore, we have T = O(n). End proof.

-

Telete operation



- Take the content of the root out
- Put the last node in the heap in the root
- Adjust the heap.

The Adjust the heap:

• Procedure:

Procedure adjust_heap(A[1..n],i) /* Move the last value in the heap to the root: i=1*/Boolean done=false; type element; Begin j = 2i; element = A[i]; While $((j \le n) \&\& (!done))$ Begin /* j points to the largest child of A[$\left| \frac{\mathbf{j}}{2} \right|$] */ If ((j<n) && (A[j]<A[j+1])) then j = j + 1; endif; If (element $\geq A[j]$) then done = TRUE; else begin $A\left[\left|\frac{\mathbf{j}}{\mathbf{2}}\right|\right] = A[\mathbf{j}]; \ \mathbf{j} = 2^*\mathbf{j};$ end; endif;

Endwhile;
A[
$$\left\lfloor \frac{\mathbf{j}}{2} \right\rfloor$$
] = element;

end;

• Complexity:

•• O(logn) where n is the number of elements in the heap.

Sorting: HeapSort

The Motivation:

• The worst case is O(nlogn)

Trocedure:

```
• Complexity:
```

- •• Let n be the number of element to be sorted.
- •• Heap construction takes O(n)
- •• Adjust heap takes O(logn)
- •• The for loop takes O(n)
 - •• Therefore, O(nlogn).

Sets and Disjoint Set Union

Get Representations

Bit map or Characteristic vector

Ι ° Ŭ Υ ° Ú

Disadvantages: small set and large value of objects (Universal set)

Trees

Tisjoint sets

Definition:

A disjoint set data structure maintains a collection of S of disjoint dynamic sets

Operations:

Union: $S_i \& S_j$

Find(i): Find the set containing the element i.

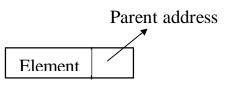
Problem:

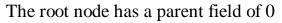
Develop an efficiency data structure and algorithms to perform a linear sequence of Unions and Finds

Representation:

Sets = Trees Name of a set is the root of the tree.

Each node:





Tirst Algorithm

Union:

```
Procedure Union(i,j);
Begin
parent (i) = j;
end;
```

Complexity: O(1)

Find:

```
Function Find(i);

Integer j;

Begin

j=i;

While parent(j) > 0 do

j = parent(j);

endwhile;

return(j);

end;
```

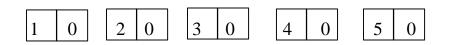
Complexity: O(n);

Analysis: Worst Case Behavior of Union & Find Algorithms:

Given U(1,2), F(1), U(2,3), F(1), U(3,4), F(1), U(4,5), F(1)

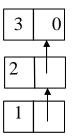
_

- Initialization:

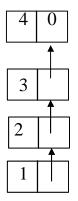


Union (1,2): Find(1) takes 1

Union (2,3): Find(1) takes 2



Union (3,4): Find(1) takes 3



For a sequence of n Unions and n Finds, the total number of operations is:

$$n + 1 + 2 + 3 + ... + (n-1) = \frac{n(n + 1)}{2} = => O(n^2).$$

_

Amortized running time is: O(n).

The Weighting Rule Algorithm

Same Find algorithm

Modified UNION:

Union(i,j): If the number of nodes in tree i is less than the number of nodes in tree j, then make j the parent of i, otherwise make I the parent of j.

Implementation:Use the parent field of the root as
a counter.
Parent field contains the number
of elements in th etree (negative).

Procedure Union(i,j); /* Tree with less nodes becomes the parent */ integer x; Begin x = parent(i)+parent(j);If (parent(i)>parent(j)) then parent (i) = j; parent(j) = x; else parent(j) = i; parent(i) = x; endif;

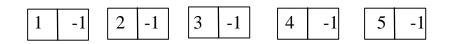
_

Analysis: O(1);

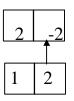
Analysis: Worst Case Behavior of Union & Find Algorithms:

Given U(1,2), F(1), U(2,3), F(1), U(3,4), F(1), U(4,5), F(1)

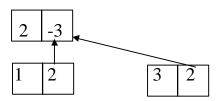
- Initialization:



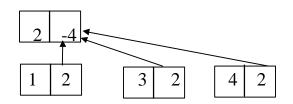
Union (1,2): Find(1) takes 1



Union (2,3): Find(1) takes 1



Union (3,4): Find(1) takes 1



_

Etc.

For a sequence of n Unions and n Finds, the total number of operations is:

n + 1 + 1 + ... + 1 = 2n-1 ===> O(n).

_

Amortized running time is: O(1).