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Priority Queue:  Heap Structures

F  Definition:

• A max-heap (min-heap) is a complete BT with the property 
   that the value (priority) of each node is at least as large   

(small) as the values at its children (if they exist).

F  Implementation:

• Sequential representation

F  Example:

    90

     67             85

               30      57      31 24

         11 8     20 2 25

F  Operations:

• Insertion
• Construct heap
• Deletion
• Delete_min (Delete_max)
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F  Insertion of a heap

• Procedure Insert(A[1..n],i)
/* Insert A[i] into the already hear A[1..n] */
Begin

While (I>1) and (A[i]> A[ i
2






]) do

Begin

swap(A[i], A[ i
2






]);

i = i
2







;

Endwhile
End;

• Example:

•• List of elements: 40, 80, 35, 90, 85, 100

•• The heap is empty

•• Insert(40)

        40

•• Insert(80)

        40   80
====>

       80   40

•• Etc.



Abdelghani Bellaachia, Algorithms                                                                                                    -
3 -

F  Construction of a heap

• First method:

•• Procedure construct_heap1(A[1..n])
/* The array will contain the heap */
Integer i;
Begin

For I=2 to n do
Insert (A[1..n],i);

endfor;
end;

•• Analysis:

Theorem: Construct_heap1 takes O(nlogn) in the 
worst case.

Proof:
The worst case is when the elements are 
inserted in ascending order.

The Insert procedure takes O(longn).

Therefore, we have O(nlogn).
End proof.

•• Note: The best case when the elements are inserted in 
descending order. In this case The Insert procedure takes 

O(1). Therefore, Construct_heap takes O(n).

• Second method:

•• Takes the input array as a complete binary tree.

•• Construct the heap level by level from the leaves
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•• Assume that only the value of the root may violate the 
heap property

•• Example:

   100

     119 118

      171  112     151            132

   100

     119 151

      171  112     118            132

   100

     171  151

      119  112     118            132

            171

           100        151

 119       112          118       132
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            171

           119        151

 100       112          118       132

•• Procedure Adjust_heap(A[1..n],i)
/* A new heap is constructed from the value A[i] and the 

/* heaps with roots A[2*i] and A[2*i+1] */
Boolean done=false;
type element;
Begin

j = 2*i; element = A[i];
While ((j≤n) && (!done)) do

/* Let j points to the largest child of A[ j
2







] */

if ((j<n) and (A[j]< A[j+1]))
then j = j + 1;
endif;
if (element ≥ A[j])
then done = TRUE;
else begin

A[ j
2







] = A[j];

j = 2*j;
end;

endif;
endwhile;

A[ j
2







] = element;

End;



Abdelghani Bellaachia, Algorithms                                                                                                    -
6 -

•• Procedure construct_heap2(A[1..n])
/* The array will contain the heap */
Integer i;
Begin

For i=
n
2







 to 1 step -1 do

Adjust_heap (A[1..n],i);
endfor;

end;

•• Analysis:

ü Lemma 1: There are at most 
n

2k-i+1







 nodes  at

level i in an n-element heap where n = 2k.

ü Theorem: Construct_heap2 takes O(n) which
is a tight bound.

Proof:
The total number of iteration of adjust-heap 
procedure is k-i for a node on level i, therefore, 
the total time, T, of Construct-heap2 is:

T = (k i)
n

2k i 1
1 i k

− 



− +

≤ ≤
∑ Using Lemma 1

Take j=k-i, we have 0≤j≤k-1.

Hence,

T = j
n

2
n
2

j2
j 1

0 j k-1

j

0 j k-
+

≤ ≤

−

≤ ≤
∑ ∑=



Abdelghani Bellaachia, Algorithms                                                                                                    -
7 -

Therefore, we have T = O(n).
End proof.
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F  Delete operation
        90

     67             85

               30      57      31 24

         11 8     20 2 25

• Take the content of the root out

• Put the last node in the heap in the root

• Adjust the heap.
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F  Adjust the heap:

• Procedure:
Procedure adjust_heap(A[1..n],i)
/* Move the last value in the heap to the root: i=1*/
Boolean done=false;
type element;
Begin

j = 2i; element = A[i];
While ((j≤n) && (!done))
Begin

/* j points to the largest child of A[ j
2






] */

If ((j<n) && (A[j]<A[j+1]))
then j = j + 1;
endif;
If (element ≥ A[j])
then done = TRUE;
else begin

A[ j
2






] = A[j];  j = 2*j;

end;
endif;

Endwhile;

A[ j
2






] = element;

end;

• Complexity:

•• O(logn) where n is the number of elements in the heap.
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Sorting: HeapSort

F  Motivation:

• The worst case is O(nlogn)

F  procedure:

• Procedure
Procedure Heapsort(A[1..n])
int i;
Begin

construct_heap2(A[1..n])
for i=n to 2 step -1 do

swap(A[1], A[i]);
Adjust_heap((A[1..(i-1)]))

endfor;
end;

• Complexity:

•• Let n be the number of element to be sorted.

•• Heap construction takes O(n)

•• Adjust heap takes O(logn)

•• The for loop takes O(n)

•• Therefore, O(nlogn).
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Sets and Disjoint Set Union

F  Set Representations

l Bit map or Characteristic vector

Ι

Υ

≡ ∧

≡ ∨

l Disadvantages: small set and large value of objects
(Universal set)

l Trees

F  Disjoint sets

l Definition:

± A disjoint set data structure maintains a collection of S 
     of disjoint dynamic sets

l Operations:

± Union: Si & Sj

± Find(i): Find the set containing the element i.

l Problem:

± Develop an efficiency data structure and algorithms to 
     perform a linear sequence of Unions and Finds
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l Representation:

± Sets = Trees
± Name of a set is the root of the tree.

± Each node: 

        

± The root node has a parent field of 0

F  First Algorithm

l Union:

      ± Procedure Union(i,j);
Begin

parent (i) = j;
end;

      ± Complexity: O(1)

l Find:

      ± Function Find(i);
Integer j;
Begin

j=i;
While parent(j) <> 0 do

j = parent(j);
endwhile;
return(j);

end;

      ± Complexity: O(n);

l Analysis: Worst Case Behavior of Union & Find Algorithms:

Parent address

Element
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± Given U(1,2), F(1), U(2,3), F(1), U(3,4), F(1), U(4,5), 
     F(1)

- Initialization:

         1      0        2    0        3     0          4      0         5     0

Union (1,2): Find(1) takes 1

                  2      0

       1

Union (2,3): Find(1) takes 2

                  3      0

       2           

        1

Union (3,4): Find(1) takes 3

                  4    0

        3       

       2

        1

Etc.
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      ± For a sequence of n Unions and n Finds, the total 
number of operations is:

   n + 1 + 2 + 3 +...+(n-1) = 
n(n 1)

2
+

   ===>  O(n2).

Amortized running time is: O(n).
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F  Weighting Rule Algorithm

l Same Find algorithm

l Modified UNION:

      ± Union(i,j): If the number of nodes in tree i is less 
than the number of nodes in tree j, then 
make j the parent of i, otherwise make I 
the parent of j.

      ± Implementation: § Use the parent field of the root as 
a counter.
§ Parent field contains the number 
of elements in th etree (negative).

      ± Procedure Union(i,j);
/* Tree with less nodes becomes the parent */
integer x;
Begin

x = parent(i)+parent(j);
If (parent(i)>parent(j))
then

parent (i) = j;
parent(j) = x;

else
parent(j) = i;
parent(i) = x;

endif;
end;

      ± Analysis: O(1);



Abdelghani Bellaachia, Algorithms                                                                                                    -
16 -

l Analysis: Worst Case Behavior of Union & Find Algorithms:

± Given U(1,2), F(1), U(2,3), F(1), U(3,4), F(1), U(4,5), 
     F(1)

- Initialization:

         1      -1      2    -1       3     -1         4      -1        5     -1

Union (1,2): Find(1) takes 1

                  2     -2

       1     2

Union (2,3): Find(1) takes 1

                  2    -3

       1     2                    3     2

Union (3,4): Find(1) takes 1

                  2    -4

       1     2              3     2          4    2

Etc.
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      ± For a sequence of n Unions and n Finds, the total 
number of operations is:

   n + 1 + 1 +...+1 = 2n-1   ===>  O(n).

Amortized running time is: O(1).


