
INTRODUCTION 
 
 
 
Objective: 
 

- Algorithms 
- Techniques 
- Analysis. 

 
 
 
Algorithms: 
                                  
            Definition:     An algorithm is a sequence of computational  

steps that take some value, or set of values, 
as input and produce some value, or set of 
values, as output. 

 
Pseudocode:    An easy way to express the idea of an 

algorithm (very much like C/C++, Java, 
Pascal, Ada, …)  



 
Techniques 

 
 
 

• Divide and Conquer  
 
• The greedy method 
 
• Dynamic programming 
 
• Backtracking 
 
• Branch and Bound 

 
 



Analysis of Algorithms 
                
 
 
 Motivation: 

 
• Estimation of required resources such as memory space, 

computational time, and communication bandwidth. 
 
• Comparison of algorithms.                                                                                                                                                           

 
 
 Model of implementation: 
                         

• One-processor RAM (random-access machine) model. 
 
• Single operations, such arithmetic operations & 

comparison operation, take constant time. 
 
 Cost: 
 

• Time complexity:  
 
 total # of operations as a function of input size, also 

called running time, computing time.    
 

• Space complexity:  
 

 total # memory locations required by the algorithm. 
 



Asymptotic Notation 
 
 
 
 Objective: 
 

• What is the rate of growth of a function? 
 
• What is a good way to tell a user how quickly 

or slowly an algorithm runs?  

 
 
 Definition:  
 

• A theoretical measure of the comparison of the 
execution of an algorithm, given the problem 
size n, which is usually the number of inputs.  

 
 
 To compare the rates of growth: 
 

• Big-O notation: Upper bound 
 
• Omega notation: lower bound 
 
• Theta notation: Exact notation 

 
 
 
 
 
 
 
 
 



1- Big- O notation: 
 
 Definition: F(n)= O(f(n)) if there exist positive 

constants C & n0 such that  F(n)≤c*f(n) when n≥n0  
 
 F(n)  is an upper bound of  F(n). 

 
  Examples: 

 
             F(n)= 3n+2 
 
             What is the big-O of F(n)?  
 

F(n)=O(?) 
 
            For 2≤n          3n+2≤3n+n=4n 
 
            ⇒   F(n)= 3n+2 ≤ 4n ⇒ F(n)=O(n) 
 

Where C=4 and n0=2 
 
         F(n)=62n+n2                  
 

What is the big-O of F(n)?  
 

F(n)=O(?) 
                

For    n2≤2n   is true only when  n≥4 
 

              ⇒ 62n+n2 ≤62n+2n =7*2n 
               

⇒c=7        n0=4         F(n)≤ 7*2n 
               

⇒F(n)= O(2n) 



 
 
 Theorem: If F(n)= am nm+ am-1nm-1 +...+ a1n+a0 
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⇒ F(n) ≤ nm * ∑
=

m

0i
ia      for n≥1 
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⇒ F(n)= O(nm) 

 
 

O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < O(2n) 
 
    
 
 
 



2- Omega notation: 
                  
 Definition:  F(n)= Ω (f(n))  if there exist positive  

constant  c and n0 s.t.  
F(n)  ≥ cf(n)      For all n,   n ≥ no 

 
 f(n) is a lower bound of  F(n) 
 
  Example: 

                                     
F(n)=3n+2 

                           Since  2 ≥ 0  ⇒ 3n+2 ≥ 3n   for  n ≥ 1 
 

Remark that the inequality holds also for n ≥ 0, 
however the definition of Ω requires no > 0 
  
⇒ C=3 ,  no=1  ⇒  F(n) ≥ 3n 
⇒ F(n)= Ω(n) 

                   
 Theorem:  If F(n)= am nm+ am-1nm-1 +...+ a1n+a0 
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 = am nm α 
 
                                     For a very large n, let's say n0, α ≥1 

⇒ F(n) = am nm α ≥ am nm 
 

⇒ F(n)= Ω( nm) 



3- Theta notation: 
 
 Definition: F(n)= θ (f(n))   if there exist positive 

constants C1, C2, and n0 s.t. C1 f(n) ≤ F(n) ≤ C2 f(n)    
for all  n ≥ no 

                   
 F(n) is also called an exact bound of  F(n) 

 
 
 Example1: 

 
        F(n)= 3n+2 

                  We have shown that F(n) ≤ 4n & F(n) ≥ 3n 
 

⇒ 3n ≤ F(n) ≤ 4n 
⇒ C1=3,  C2=4, and n0=2 
⇒ F(n)= θ(n) 

                                 
 Example2: 
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Show that    F(n)= θ (nk+1) 

                                 
Proof: 
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⇒ F(n)= O(nk+1) 
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⇒ F(n) ≥ Ω(nk+1) 

 
⇒  Ω( nk+1) ≤ F(n) ≤ O(nk+1) 
 
⇒    

 
 

F(n)= θ (nk+1) 



 
 
Summary: 
          



4. Properties: 
                                 

     Let       T1(n)= O(f(n)) 
                                   T2(n)= O(g(n)) 
 

1- The sum rule:     
 

 If T(n)= T1(n)+ T2(n) 
               Then  T(n)= O( max (f(n),g(n) ) 
           

Example: 
                                      T(n)= n3+n2 ⇒ T(n)= O(n3) 
 

2- The product rule: 
                 

If T(n)= T1(n) ∗ T2(n) 
                 Then T(n)= O( f(n)∗g(n) ) 
 
           Example: 
                 T(n)= n ∗ n  ⇒  T(n)= O(n2) 
 
3- The scalar rule: 
 
                If T(n)= T1(n) ∗ k    where k is a constant, 
                Then T(n)= O( f(n) ) 
 
            Example: 
                 T(n)= n2 ∗ 

2
1  ⇒  T(n)= O(n2) 

  



 
Be careful 

 
 

 Which is better  F(n)=6n3 or G(n) = 90n2 
 
 

 F(n)/G(n)= 6n3/90n2 =6n/90 =n/15 
 
             Case1:   
                        

15
n  <1 ⇒ n<15 

  
                  ⇒ 6n3<90n2  

 
⇒ F(n) is better. 

            Case2: 
 

15
n  >1 ⇒ n>15 

  
                  ⇒ 6n3>90n2  

 
⇒ G(n) is better. 



Complexity of a Program 
 
 
 Time Complexity: 
                            

• Comments:            no time. 
 
• Declaration:           no time. 
 
• Expressions & assignment statements:     1 time unit a  

O(1) 
 
• Iteration statements: 

 
∗ For i= exp1 toexp2 do        

Begin                       
       Statements // For Loop takes exp2-exp1+1 iterations 
End;                                     
 

∗ While exp do is similar to For Loop. 
 
 

 Space complexity  
 

• The total # of memory locations used in the declaration 
part :    

 Single variable: O(1) 
  Arrays (n:m) : O(nxm) 
 

• In addition to that, the memory needed for execution 
(Recursive programs). 

 
 
 



 
     Total of  5n + 5           ;  therefore  O(n) ; 
      
       PROCEDURE bubble  (VAR a: array_type ) ; 
       VAR     i ,  j  ,  temp   :  INTEGER ; 
        BEGIN 
      1                       FOR  i  := 1   TO  n-1    DO 
      2                                 FOR  j  := n    DOWN TO   i    DO 
      3                                           IF    a[ j-1 ]  >    a [ j ]   THEN BEGIN 
                                                     {swap} 
      4                                                        temp   :=  a [j-1]; 

5 a [j-1]  := a [j] ; 
6 a [j]      := temp 

                                                END 
    END   ( ∗ bubble ∗ ) ;    
 
°       Line  4,5,6    O (max (1,1,1) )   = O (1) 
° move  up line  3 to 6  still  O(1) 
° move  up line  2 to 6  O( (n-i) ∗ 1 ) =  O (n-i) 
° move  up line  1 to 6   ∑  (n-i) =  (n-1)n/2 = n2/2 - n/2 ⇒ 

O(n2) 
 
Later we will see how change it to  O(n log n) 
Seven computing times are : O(1) ;  O( log n) ;O(n); O(n log n); 
O(n2); O(n3); O(2n) 
  
 
° control  := 1 ; 
   WHILE  control ≤ n LOOP 
            …….                                           
               something  O(1) 
    control :=  2  ∗  control ;  
    END LOOP ; 
 



 
° control  := n  ; 

WHILE  control ≠ 0  LOOP 
                ……..                            O(log n) 
              something  O(1) 
         control :=  control /2  ;  control integer 
 END LOOP  ; 

       °  FOR  count  IN  1. . n   LOOP 
                     control :=  1 ; 
                   WHILE   control  ≤ n    LOOP 
                         ……      ……..                 O(n log n) 
                                   something  O(1) 
                                control  := 2 ∗ control  ; 
                    END LOOP  ; 
            END LOOP  ;   

     
       °  FOR  count  IN  1. . n   LOOP 
                     control :=  i ; 
                   WHILE   control  > n    LOOP 
                         ……      ……..                  
                                   something  O(1) 
                                control  := control  div 2; 
                    END LOOP  ; 
            END LOOP  ;   

 
 



 
 
 
     Amortized analysis: 
                  Definition: 
                        It provides an absolute guarantees of the total time 
taken by a sequence of operations. The bound on the total time 
does not refleth the time required for any individual operation, 
some single operations may be very expensive over a long 
sequence of operations, some may take more, some may take less. 
                  Example: 
                        Given a set of  k operations. If it takes O(k f(n) ) to 
perform the k operations then we say that the amortized running 
time is O (f(n) ). 
  



Pseudocode Conventions 
Variables Declarations 
 Integer X,Y; 
 Real  Z; 
 Char C; 
 Boolean flag; 
Assignment  
 X= expression; 
 X= y∗x+3; 
Control Statements 
    If condition: 
          Then  
                  A sequence of statements. 
          Else 
                  A sequence of statements. 
          Endif 
  For loop: 
             For I= 1 to n  do 
                    Sequence of statements. 
             Endfor; 
 While statement: 
              While condition do 
                    Sequence of statements. 
              End while. 
 Loop statement: 
              Loop  
                    Sequence of statements. 
              Until condition. 
 Case statement: 
               Case: 
                      Condition1:   statement1. 
                      Condition2:   statement2. 
                      Condition n:   statement n. 
                      Else        :     statements. 
                End case; 



 Procedures: 
                 Procedure name (parameters) 
                    Declaration 
                    Begin 
                         Statements 
                    End; 
 Functions: 
                 Function name (parameters) 
                    Declaration 
                    Begin 
                          Statements 
                    End; 
   
 
  
 
  
   
 
  
  
  
 
 
 
 



        
 

Recursive Solutions 
 
 
 
Definition: A procedure or function, that calls itself, directly or 
indirectly, is said to be recursive. 
 
General format:  

Algorithm name(parameters) 
Declarations; 
Begin 
 If (trivial case) 
      Then 
  Do trivial operations; 
  Else 
  One or more call name(smaller values of parameters); 
  Do few more operations: process sub-solutions; 
 End if; 
End; 

 
Example: 

  Function  Max-set (S) 
    Integer m1, m2; 
    Begin 
          If the number of elements s of  S=2 
          Then  
                   Return (max(S(1), S(2)) ); 
           Else 
                 Begin  
                          Split S into two subsets; S1,S2; 
                           m1= Max-set (S1) 
                           m2= Max-set (S2) 
                           Return (max (m1,m2) ); 
                            End; 
              Endif 
            End; 



 
 
 
 

Elimination of recursion 
 
 
The standard method of conversion is to simulate the stack of all 
the previous activation records by a local stack. Thus, assume we 
have a recursive algorithm F (p1,p2,….,pn) where pi are 
parameters of F. 
 
(1) Declare a local stack 
(2) Each call F (p1,p2,…..,pn) is replaced by a sequence to:  

(a) Push pi, for l ≤i ≤n, onto the stack. 
(b) Set the new value of each pi. 
(c) Jump to the start of the algorithm. 

(3) At the end of the algorithm (recursive), a sequence is added 
which: 

(a) Test whether the stack is empty, and ends if it is, otherwise, 
(b) Pop all the parameters from the stack. 
(c)  Jump to the statement after the sequence replacing the call. 
 

Example: 
          
           Procedure    C (X: xtype) 
            Begin  
                     If  P(x) then  M(x) 
                     Else  
                        Begin  
                           S1 (x)  
                           C  (F(x) ) 
                           S2 (x) 
                         End 
             End 



            
 
 
 
 
 
 
 
           Non-procedure     C (X: xtype) 
              Label     1,2 ; 
               Var    s:  stack of x type 
                Begin 
                     Clear  s; 
                1: if P(x) then M(x) 
                     else  
                          Begin 
                              S1(x) ; push  x onto s ; x:= F(x); 
                              Goto 1; 
                              2: S2(x) 
                          end;  
                    if  S is not empty then 
                    Begin 
                          pop x from s ; 
                          goto 2 
                    End; 
                 End       {of procedure}; 
 



 
Graphs 

 
Definition: 

• A graph  G consists of two sets, called: 
o Vertices: V 
o Edges   :  E   finite set of pairs of vertices. G= (V,E) 

• G is said to be directed graph if the pairs in E are ordered; 
otherwise, G is an undirected graph. 

• If (u,v) ∈ E  then  u is adjacent to v. 
 

• Undirected graphs: 
o Degree:  The degree of a vertex is the number of its 

adjacent vertices. 
o Theo:  Let G=(V,E), the sum of the degrees of each 

vertex equals 2|E| where |E| is the  #of edges of G. 
 

• Directed graphs: (Digraphs) 
o In-degree: the indegree of a vertex v is the number of 

edges entring it. 
o Outdegree:  A vertex u is the number of edges leaving 

it. 
• Path:  

o A path from v0 to vk is a sequence of vertices 
v0,v1,…..,vk-1,vk   s.t.  

 
(v0,v1), (v1,v2),…….,(vk-1,vk) ∈ E 

 
o The length of a path is the # of edges of the path. 
o A path is simple if all the vertices in the path, except 

possibly the first & the last are distinct. 
o A cycle is a simple path in which the first & the last 

vertices are the same. 
 



• Connected graphs: 
        An undirected graph is connected if every pair of 
vertices is connected by a path. 
° Strongly connected graphs: 
        A directed graph is strongly connected if for every 
two vertices (i,j) there exists a path  
        From I to j & a path from j to i. 
° Complete graph:  
        Is an undirected graph in which every pair of 
vertices is adjacent. 
° Graph representations: 

1) Sequential representation:   - Adjacency matrix. 
2) Linked list representation:   - Linked list. 
 
 

 


