
INTRODUCTION

Objective:

- Algorithms
- Techniques
- Analysis.

Algorithms:

 Definition: An algorithm is a sequence of computational

steps that take some value, or set of values,
as input and produce some value, or set of
values, as output.

Pseudocode: An easy way to express the idea of an

algorithm (very much like C/C++, Java,
Pascal, Ada, …)

Techniques

• Divide and Conquer

• The greedy method

• Dynamic programming

• Backtracking

• Branch and Bound

Analysis of Algorithms

 Motivation:

• Estimation of required resources such as memory space,

computational time, and communication bandwidth.

• Comparison of algorithms.

 Model of implementation:

• One-processor RAM (random-access machine) model.

• Single operations, such arithmetic operations &

comparison operation, take constant time.

 Cost:

• Time complexity:

 total # of operations as a function of input size, also

called running time, computing time.

• Space complexity:

 total # memory locations required by the algorithm.

Asymptotic Notation

 Objective:

• What is the rate of growth of a function?

• What is a good way to tell a user how quickly

or slowly an algorithm runs?

 Definition:

• A theoretical measure of the comparison of the
execution of an algorithm, given the problem
size n, which is usually the number of inputs.

 To compare the rates of growth:

• Big-O notation: Upper bound

• Omega notation: lower bound

• Theta notation: Exact notation

1- Big- O notation:

 Definition: F(n)= O(f(n)) if there exist positive

constants C & n0 such that F(n)≤c*f(n) when n≥n0

 F(n) is an upper bound of F(n).

 Examples:

 F(n)= 3n+2

 What is the big-O of F(n)?

F(n)=O(?)

 For 2≤n 3n+2≤3n+n=4n

 ⇒ F(n)= 3n+2 ≤ 4n ⇒ F(n)=O(n)

Where C=4 and n0=2

 F(n)=62n+n2

What is the big-O of F(n)?

F(n)=O(?)

For n2≤2n is true only when n≥4

 ⇒ 62n+n2 ≤62n+2n =7*2n

⇒c=7 n0=4 F(n)≤ 7*2n

⇒F(n)= O(2n)

 Theorem: If F(n)= am nm+ am-1nm-1 +...+ a1n+a0

 = ∑
=

m

0i

i
ina

 Then f(n)= O(nm)

Proof:

 F(n) ≤ ∑
=

m

0i

i
i na ≤ nm * ∑

=

−m

0i

mi
i na

 Since ni-m ≤ 1 ⇒ |ai| ni-m ≤ |ai|

⇒ ∑
=

−m

0i

mi
i na ≤ ∑

=

m

0i
ia

⇒ F(n) ≤ nm * ∑
=

m

0i
ia for n≥1

⇒ F(n) ≤ nm * c where c= ∑
=

m

0i
ia

⇒ F(n)= O(nm)

O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < O(2n)

2- Omega notation:

 Definition: F(n)= Ω (f(n)) if there exist positive

constant c and n0 s.t.
F(n) ≥ cf(n) For all n, n ≥ no

 f(n) is a lower bound of F(n)

 Example:

F(n)=3n+2

 Since 2 ≥ 0 ⇒ 3n+2 ≥ 3n for n ≥ 1

Remark that the inequality holds also for n ≥ 0,
however the definition of Ω requires no > 0

⇒ C=3 , no=1 ⇒ F(n) ≥ 3n
⇒ F(n)= Ω(n)

 Theorem: If F(n)= am nm+ am-1nm-1 +...+ a1n+a0

 = ∑
=

m

0i

i
ina and am > 0

 Then F(n)= Ω (nm)

 Proof:

F(n)= am nm]n...n1[m1 −− +++
m

0

m

1-m
a
a

a
a

 = am nm α

 For a very large n, let's say n0, α ≥1

⇒ F(n) = am nm α ≥ am nm

⇒ F(n)= Ω(nm)

3- Theta notation:

 Definition: F(n)= θ (f(n)) if there exist positive

constants C1, C2, and n0 s.t. C1 f(n) ≤ F(n) ≤ C2 f(n)
for all n ≥ no

 F(n) is also called an exact bound of F(n)

 Example1:

 F(n)= 3n+2

 We have shown that F(n) ≤ 4n & F(n) ≥ 3n

⇒ 3n ≤ F(n) ≤ 4n
⇒ C1=3, C2=4, and n0=2
⇒ F(n)= θ(n)

 Example2:

F(n) = ∑
=

n

0i

ki

Show that F(n)= θ (nk+1)

Proof:

 F(n)= ∑
=

n

0i

ki ≤ ∑
=

n

0i

kn = n * nk= nk+1

⇒ F(n)= O(nk+1)

F(n) = ∑
=

n

0i

ki

 = kn...k)1
2
n(k)

2
n(k)1

2
n(...k21 +++++−+++

 = α+β

where

α = k)
2
n(k)1

2
n(...k21 +−+++

β = kn...k)1
2
n(+++

⇒ β = kn...k)1

2
n(+++ ≥

2
n*k)

2
n(k)

2
n(...k)

2
n(=++

⇒ F(n) ≥
2
n*k)

2
n(= 1k2

1kn
+

+

⇒ F(n) ≥ Ω(nk+1)

⇒ Ω(nk+1) ≤ F(n) ≤ O(nk+1)

⇒

F(n)= θ (nk+1)

Summary:

4. Properties:

 Let T1(n)= O(f(n))
 T2(n)= O(g(n))

1- The sum rule:

 If T(n)= T1(n)+ T2(n)
 Then T(n)= O(max (f(n),g(n))

Example:
 T(n)= n3+n2 ⇒ T(n)= O(n3)

2- The product rule:

If T(n)= T1(n) ∗ T2(n)
 Then T(n)= O(f(n)∗g(n))

 Example:
 T(n)= n ∗ n ⇒ T(n)= O(n2)

3- The scalar rule:

 If T(n)= T1(n) ∗ k where k is a constant,
 Then T(n)= O(f(n))

 Example:
 T(n)= n2 ∗

2
1 ⇒ T(n)= O(n2)

Be careful

 Which is better F(n)=6n3 or G(n) = 90n2

 F(n)/G(n)= 6n3/90n2 =6n/90 =n/15

 Case1:

15
n <1 ⇒ n<15

 ⇒ 6n3<90n2

⇒ F(n) is better.

 Case2:

15
n >1 ⇒ n>15

 ⇒ 6n3>90n2

⇒ G(n) is better.

Complexity of a Program

 Time Complexity:

• Comments: no time.

• Declaration: no time.

• Expressions & assignment statements: 1 time unit a

O(1)

• Iteration statements:

∗ For i= exp1 toexp2 do

Begin
 Statements // For Loop takes exp2-exp1+1 iterations
End;

∗ While exp do is similar to For Loop.

 Space complexity

• The total # of memory locations used in the declaration
part :

 Single variable: O(1)
 Arrays (n:m) : O(nxm)

• In addition to that, the memory needed for execution
(Recursive programs).

 Total of 5n + 5 ; therefore O(n) ;

 PROCEDURE bubble (VAR a: array_type) ;
 VAR i , j , temp : INTEGER ;
 BEGIN
 1 FOR i := 1 TO n-1 DO
 2 FOR j := n DOWN TO i DO
 3 IF a[j-1] > a [j] THEN BEGIN
 {swap}
 4 temp := a [j-1];

5 a [j-1] := a [j] ;
6 a [j] := temp

 END
 END (∗ bubble ∗) ;

° Line 4,5,6 O (max (1,1,1)) = O (1)
° move up line 3 to 6 still O(1)
° move up line 2 to 6 O((n-i) ∗ 1) = O (n-i)
° move up line 1 to 6 ∑ (n-i) = (n-1)n/2 = n2/2 - n/2 ⇒

O(n2)

Later we will see how change it to O(n log n)
Seven computing times are : O(1) ; O(log n) ;O(n); O(n log n);
O(n2); O(n3); O(2n)

° control := 1 ;
 WHILE control ≤ n LOOP
 …….
 something O(1)
 control := 2 ∗ control ;
 END LOOP ;

° control := n ;

WHILE control ≠ 0 LOOP
 …….. O(log n)
 something O(1)
 control := control /2 ; control integer
 END LOOP ;

 ° FOR count IN 1. . n LOOP
 control := 1 ;
 WHILE control ≤ n LOOP
 …… …….. O(n log n)
 something O(1)
 control := 2 ∗ control ;
 END LOOP ;
 END LOOP ;

 ° FOR count IN 1. . n LOOP
 control := i ;
 WHILE control > n LOOP
 …… ……..
 something O(1)
 control := control div 2;
 END LOOP ;
 END LOOP ;

 Amortized analysis:
 Definition:
 It provides an absolute guarantees of the total time
taken by a sequence of operations. The bound on the total time
does not refleth the time required for any individual operation,
some single operations may be very expensive over a long
sequence of operations, some may take more, some may take less.
 Example:
 Given a set of k operations. If it takes O(k f(n)) to
perform the k operations then we say that the amortized running
time is O (f(n)).

Pseudocode Conventions
Variables Declarations
 Integer X,Y;
 Real Z;
 Char C;
 Boolean flag;
Assignment
 X= expression;
 X= y∗x+3;
Control Statements
 If condition:
 Then
 A sequence of statements.
 Else
 A sequence of statements.
 Endif
 For loop:
 For I= 1 to n do
 Sequence of statements.
 Endfor;
 While statement:
 While condition do
 Sequence of statements.
 End while.
 Loop statement:
 Loop
 Sequence of statements.
 Until condition.
 Case statement:
 Case:
 Condition1: statement1.
 Condition2: statement2.
 Condition n: statement n.
 Else : statements.
 End case;

 Procedures:
 Procedure name (parameters)
 Declaration
 Begin
 Statements
 End;
 Functions:
 Function name (parameters)
 Declaration
 Begin
 Statements
 End;

Recursive Solutions

Definition: A procedure or function, that calls itself, directly or
indirectly, is said to be recursive.

General format:

Algorithm name(parameters)
Declarations;
Begin
 If (trivial case)
 Then
 Do trivial operations;
 Else
 One or more call name(smaller values of parameters);
 Do few more operations: process sub-solutions;
 End if;
End;

Example:

 Function Max-set (S)
 Integer m1, m2;
 Begin
 If the number of elements s of S=2
 Then
 Return (max(S(1), S(2)));
 Else
 Begin
 Split S into two subsets; S1,S2;
 m1= Max-set (S1)
 m2= Max-set (S2)
 Return (max (m1,m2));
 End;
 Endif
 End;

Elimination of recursion

The standard method of conversion is to simulate the stack of all
the previous activation records by a local stack. Thus, assume we
have a recursive algorithm F (p1,p2,….,pn) where pi are
parameters of F.

(1) Declare a local stack
(2) Each call F (p1,p2,…..,pn) is replaced by a sequence to:

(a) Push pi, for l ≤i ≤n, onto the stack.
(b) Set the new value of each pi.
(c) Jump to the start of the algorithm.

(3) At the end of the algorithm (recursive), a sequence is added
which:

(a) Test whether the stack is empty, and ends if it is, otherwise,
(b) Pop all the parameters from the stack.
(c) Jump to the statement after the sequence replacing the call.

Example:

 Procedure C (X: xtype)
 Begin
 If P(x) then M(x)
 Else
 Begin
 S1 (x)
 C (F(x))
 S2 (x)
 End
 End

 Non-procedure C (X: xtype)
 Label 1,2 ;
 Var s: stack of x type
 Begin
 Clear s;
 1: if P(x) then M(x)
 else
 Begin
 S1(x) ; push x onto s ; x:= F(x);
 Goto 1;
 2: S2(x)
 end;
 if S is not empty then
 Begin
 pop x from s ;
 goto 2
 End;
 End {of procedure};

Graphs

Definition:

• A graph G consists of two sets, called:
o Vertices: V
o Edges : E finite set of pairs of vertices. G= (V,E)

• G is said to be directed graph if the pairs in E are ordered;
otherwise, G is an undirected graph.

• If (u,v) ∈ E then u is adjacent to v.

• Undirected graphs:
o Degree: The degree of a vertex is the number of its

adjacent vertices.
o Theo: Let G=(V,E), the sum of the degrees of each

vertex equals 2|E| where |E| is the #of edges of G.

• Directed graphs: (Digraphs)
o In-degree: the indegree of a vertex v is the number of

edges entring it.
o Outdegree: A vertex u is the number of edges leaving

it.
• Path:

o A path from v0 to vk is a sequence of vertices
v0,v1,…..,vk-1,vk s.t.

(v0,v1), (v1,v2),…….,(vk-1,vk) ∈ E

o The length of a path is the # of edges of the path.
o A path is simple if all the vertices in the path, except

possibly the first & the last are distinct.
o A cycle is a simple path in which the first & the last

vertices are the same.

• Connected graphs:
 An undirected graph is connected if every pair of
vertices is connected by a path.
° Strongly connected graphs:
 A directed graph is strongly connected if for every
two vertices (i,j) there exists a path
 From I to j & a path from j to i.
° Complete graph:
 Is an undirected graph in which every pair of
vertices is adjacent.
° Graph representations:

1) Sequential representation: - Adjacency matrix.
2) Linked list representation: - Linked list.

