Divide & Conquer

♦ Introduction:

- It is primarily a recursive method.
- The divide-and-conquer strategy consists:
 - ✓ in breaking a problem into simpler subproblems of the same type,
 - \checkmark next to solve these subproblems,
 - ✓ and finally to merge the obtained results into a solution to the problem.

♦ General approach:

Procedure or function div_conq Begin If the input is small then solve directly and return; else begin Split the input into 2 or more parts. Solve the problem for those smaller parts. Combine the solutions and return; end;

- ✤ Time complexity:
 - i_s : size of the small input. r: number of times the input is split. n_i : the size of each part.

T(n)=C if $n=i_s$

$$T(n) = T_{split} + T_{combine} + \sum T(n_i)$$
 if $n \neq i_s$

Where

- \checkmark T_{combine} is the time to combine the solutions
- ✓ $T(n_i)$ is the time needed by each r part, and
- \checkmark T_{split} is time to split the problem into r parts.
- ✤ Examples
 - Maximum of a sequence of n elements.
 - Closest pair: Given a set of n points (x_i, y_i) the problem asks what is the distance between the two closest points.
 - A brute force approach in which the distances for all the pairs are measured takes O(n²) time.
 - A divide and conquer solution takes T(n) = O(n log n).
 - Binary search.
 - Merge sort.
 - Quick sort.
 - Selection.
 - Matrix multiplication.

✤ Binary search:

- Search trees:
 - ✓ Data structures to support dynamic-set operations
 - ✓ Operations: minimum, maximum, insert, delete, predecessor, successor, and search.
 - ✓ <u>Predecessor (S,x)</u>: An operation that, given an element x whose key is from an ordered set S, returns the next smaller element in S, or NIL if x is the minimum element.
 - ✓ <u>Successor (S,x)</u>: An operation that, given an element x whose key is from an ordered set S, returns the next maximum element in S, or NIL if x is the maximum element.
- <u>Binary search trees:</u>
 - \checkmark binary trees.
 - ✓ All the operations takes O (log n) in a randomly built binary search tree.
 - ✓ Recursive function for searching operation: Input: given a key, k, and the root of BST T. Output: returns the pointer of the node containing k.

Function search (T,k):BeginIf T=nil or k= data (T)Then return T;Else beginIf k < data (T)</td>then return search (left (T),k)else return search (right (T),k)endif;endifEndifEnd.

```
<u>Analysis:</u>

T(n)=T(n/2)+C if n \neq 1

T(n)=C

⇒ <u>O (log n)</u>
```

✤ Merge Sort

- Worst case time complexity is O (n log n)
- Procedure Merge sort (L,h)

```
* A(L,h) is a global array entring h-l+1 \ge 0

* Values which represent the elements to be pertril

Integer mid;

Begin

If l < h

Then begin

mid = (L,h)/2;

call mergesort (1,mid);

call mergesort (mid+1,h);

call merge (1,mid,h);

end

endif

end.
```

• Analysis:

 $\begin{array}{ll} T(n) = 2T(n/2) + n & n > 1 \\ T(n) = 1 & n = 1 \end{array}$

 $\underline{T(n)} = O(n \log n).$

✤ Matrix multiplication

• Brute force method "direct" takes O (n³)

```
✓ Algorithm:

for i:= 1 to N do

for j:=1 to N do

C[i,j] := 0;

for k := 1 to N do

C[i,j] := C[i,j] + A[i,k] * B[k,j]
```

✓ Analysis: $O(N^3)$ multiplications

• Simple Divide and conquer algorithm:

 \checkmark Decompose the matrix into 4 submatrix

✓ Analysis:

T(n)=8 T(n/2)+Cn2	n ≠ 2
T(n)=b	n = 2

Because $\begin{array}{c} C_{11} = A_{11} \ B_{11} + A_{12} \ B_{21} \\ C_{12} = A_{11} \ B_{12} + A_{12} \ B_{22} \\ C_{21} = A_{21} \ B_{11} + A_{22} \ B_{21} \\ C_{22} = A_{21} \ B_{12} + A_{22} \ B_{22} \end{array}$ • Divide and conquer using STRASSEN'S METHOD:

✓ Needs 7 multiplications & 18 additions.

✓ First compute the following:

$$P= (A11+A22) (B11+B22)$$

 $Q= (A21+A22) B11$
 $R= A11 (B12-B22)$
 $S= A22 (B21-B11)$
 $T= (A11+A12) B22$
 $U=(A21-A11) (B11+B12)$
 $V=(A12-A22) (B21+B22)$

C11=P+S-T+VC12=R+TC21=Q+SC22=P+R-Q+U

✓ Analysis: Assume that $n = 2^k$

$$T(n) = b$$
 $n=2$
 $T(n)= 7T(n/2)+a*n^2$ $n>2$

$$\Rightarrow T(n)=O(n^{\log_2 7})=O(n^{2.81})$$