Branch and Bound

♦ Definitions:

- Branch and Bound is a state space search method in which all the children of a node are generated before expanding any of its children.
- <u>Live-node</u>: A node that has not been expanded.
- It is similar to backtracking technique but uses BFS-like search.

- Dead-node: A node that has been expanded
- Solution-node

♦ LC-Search (Least Cost Search):

• The selection rule for the next E-node in FIFO or LIFO branch-and-bound is sometimes "blind". i.e. the selection

rule does not give any preference to a node that has a very good chance of getting the search to an answer node quickly.

• The search for an answer node can often be speeded by using an "intelligent" ranking function, also called <u>an</u>

approximate cost function C

- Expanded-node (E-node): is the live node with the best C value
- ✤ Requirements
 - Branching: A set of solutions, which is represented by a node, can be partitioned into mutually exclusive sets. Each subset in the partition is represented by a child of the original node.
 - Lower bounding: An algorithm is available for calculating a lower bound on the cost of any solution in a given subset.

Searching: Least-cost search (LC)

- Cost and approximation
 - ✓ Each node, X, in the search tree is associated with a cost: C(X)
 - ✓ C(X) = cost of reaching the current node, X (E-node), from the root + the cost of reaching an answer node from X.

$$\mathbf{C}(\mathbf{X}) = \mathbf{g}(\mathbf{X}) + \mathbf{h}(\mathbf{X})$$

✓ Get an approximation of C(x), $\stackrel{\land}{C}$ (x) such that $\stackrel{\land}{C}$ (x) ≤C(x), and $\stackrel{\land}{C}$ (x) = C(x) if x is a solution-node.

✓ The approximation part of $\stackrel{\frown}{C}$ (x) is

h(x)=the cost of reaching a solution-node from X, not known.

• Least-cost search:

The next E-node is the one with least C

♦ Example: 8-puzzle

• Cost function: $\hat{C} = g(x) + h(x)$

where

h(x) = the number of misplaced tiles and g(x) = the number of moves so far

• Assumption: move one tile in any direction cost 1.

Note: In case of tie, choose the leftmost node.

♦ Algorithm:

/* live_node_set: set to hold the live nodes at any time */ /* lowcost: variable to hold the cost of the best cost at any given node */

Begin

Lowcost = ∞ ;

While live_node_set $\neq \infty$ do

- choose a branching node, k, such that
- $k \in live_node_set; /* k is a E-node */$
- live_node_set = live_node_set {k};
- Generate the children of node k and the corresponding lower bounds;
 - $S_k = \{(i, z_i): i \text{ is child of } k \text{ and } z_i \text{ its lower bound} \}$
- For each element (i,z_i) in S_k do
 - If $z_i > U$

- then

- Kill child i; /* i is a child node */

- Else

If child i is a solution

Then

 $U = z_i$; current best = child i;

Else

Add child i to live_node_set;

Endif;

Endif;

- Endfor;

Endwhile;

Stravelling Salesman Problem: A Branch and Bound algorithm

- Definition: Find a tour of minimum cost starting from a node S going through other nodes only once and returning to the starting point S.
- Definitions:
 - A row(column) is said to be reduced iff it contains at least one zero and all remaining entries are nonnegative.
 - ✓ A matrix is reduced iff every row and column is reduced.
- **Branching**:
 - ✓ Each node splits the remaining solutions into two groups: those that include a particular edge and those that exclude that edge
 - \checkmark Each node has a lower bound.
 - ✓ Example: Given a graph G=(V,E), let $\langle i,j \rangle \in E$,

- **<u>Bounding</u>**: How to compute the cost of each node?
 - ✓ Subtract of a constant from any row and any column does not change the optimal solution (The path).
 - \checkmark The cost of the path changes but not the path itself.
 - ✓ Let A be the cost matrix of a G=(V,E).
 - ✓ The cost of each node in the search tree is computed as follows:
 - Let R be a node in the tree and A(R) its reduced matrix
 - The cost of the child (R), S:
 - Set row i and column j to infinity
 - Set A(j,1) to infinity
 - Reduced S and let RCL be the reduced cost.
 - C(S) = C(R) + RCL + A(i,j)
 - ✓ Get the reduced matrix A' of A and let L be the value subtracted from A.
 - \checkmark L: represents the lower bound of the path solution
 - \checkmark The cost of the path is exactly reduced by L.
- What to determine the branching edge?
 - The rule favors a solution through left subtree rather than right subtree, i.e., the matrix is reduced by a dimension.

- Note that the right subtree only sets the branching edge to infinity.
- Pick the edge that causes the greatest increase in the lower bound of the right subtree, i.e., the lower bound of the root of the right subtree is greater.
- Example:
 - The reduced cost matrix is done as follows:
 - Change all entries of row i and column j to infinity
 - Set A(j,1) to infinity (assuming the start node is 1)
 - Reduce all rows first and then column of the resulting matrix

• Given the following cost matrix:

• State Space Tree:

- The TSP starts from node 1: <u>Node 1</u>
 - Reduced Matrix: To get the lower bound of the path starting at node 1
 - Row # 1: reduce by 10

inf	10	2	0 (0 1	L -
15	inf	1	6	4	2
3	5	inf	2	4	
19	6	18	in	f :	3
L 16	4	7	16	in	f.

• Row #2: reduce 2

inf	10	20	0 (1
13	inf	14	ł 2	0
3	5	inf	2	4
19	6	18	inf	3
- 16	4	7	16	inf _

• Row #3: reduce by 2

inf	10	2	0 (0 1	1
13	inf	1	4	2	0
1	3	inf	0	2	
19	6	18	in	f	3
16	4	7	16	in	f.

• Row # 4: Reduce by 3:

	linf	10	20	0 0	1
	13	inf	1	42	0
	1	3	inf	0	2
	16	3	15	inf	_0
	16	7	7	16	inf
Row	L 10 # /\• K	4 Pedu	r ce hi	то л Л	ւույ
NOW	<i>π</i> 1	Cuu		у т	
	inf	10	20	0 0	1
	13	inf	1	42	0
	1	3	inf	0	2
	16	3	15	inf	0
	12	0	3	12	inf
Colu	mn 1:	Red	uce	by 1	
	-				-
	inf	10	20	0 0	1
	12	inf	1	42	0
	0	3	inf	0	2
	15	3	15	inf	0
	11	0	3	12	inf

- Column 2: It is reduced.
- Column 3: Reduce by 3

$$\begin{bmatrix} inf & 10 & 17 & 0 & 1 \\ 12 & inf & 11 & 2 & 0 \\ 0 & 3 & inf & 0 & 2 \\ 15 & 3 & 12 & inf & 0 \\ 11 & 0 & 0 & 12 & inf \end{bmatrix}$$

- Column 4: It is reduced.
- Column 5: It is reduced.
- The reduced cost is: RCL = 25
- So the cost of node 1 is:
 - Cost(1) = 25
- The reduced matrix is:

```
cost(1) = 25
inf
     10
          17
              0
                  1
    inf
12
          11
              2
                  0
    3 inf
             0
                 2
 0
15
    3
        12
            inf
                  0
            12
        0
                inf _
     0
- 11
```

- <u>Choose to go to vertex 2: Node 2</u>
 - Cost of edge <1,2> is: A(1,2) = 10
 - Set row #1 = inf since we are choosing edge <1,2>
 - Set column # 2 = inf since we are choosing edge <1,2>
 - Set A(2,1) = inf
 - The resulting cost matrix is:

[in]	fi	nf	inf	inf	inf	
	inf	inf	· 11	2	0	
	0	inf	inf	0	2	
	15	inf	12	inf	0	
	11	inf	0	12	inf	

- The matrix is reduced:RCL = 0
- The cost of node 2 (Considering vertex 2 from vertex 1) is:
 - Cost(2) = cost(1) + A(1,2) = 25 + 10 = 35

- Choose to go to vertex 3: Node 3
 - Cost of edge <1,3> is: A(1,3) = 17 (In the reduced matrix
 - Set row #1 = inf since we are starting from node 1
 - Set column # 3 = inf since we are choosing edge
 <1,3>
 - Set A(3,1) = inf
 - The resulting cost matrix is:

in	fi	inf	inf	inf	inf	
	12	inf	inf	f 2	0	
	inj	f 3	inf	0	2	
	15	3	inf	inf	0	
L	11	0	inf	12	inf	

- Reduce the matrix:
 - o Rows are reduced
 - The columns are reduced except for column # 1:
 - Reduce column 1 by 11:

inf		inf	inf	inf	inf	
	1	inf	inj	f 2	0	
	in	f 3	inj	f 0	2	
	4	3	inf	inf	0	
	0	0	inf	12	inf	_

- The lower bound is:RCL = 11
- The cost of going through node 3 is:

 $\circ \cos(3) = \cos(1) + RCL + A(1,3) = 25 + 11 + 17$ = 53

- Choose to go to vertex 4: Node 4
 - Remember that the cost matrix is the one that was reduced at the starting vertex 1
 - Cost of edge <1,4> is: A(1,4) = 0
 - Set row #1 = inf since we are starting from node 1
 - Set column # 4 = inf since we are choosing edge <1,4>
 - Set $A(4,1) = \inf$
 - The resulting cost matrix is:

inf a	inf	inf	inf	inf
12	inf	11	inf	0
0	3	inf	inf	2
inf	3	12	inf	0
- 11	0	0	inf i	inf .

• Reduce the matrix:

- Rows are reduced
- Columns are reduced
- The lower bound is: RCL = 0
- The cost of going through node 4 is:
 - cost(4) = cost(1) + RCL + A(1,4) = 25 + 0+ 0 = 25

- Choose to go to vertex 5: Node 5
 - Remember that the cost matrix is the one that was reduced at starting vertex 1
 - Cost of edge <1,5> is: A(1,5) = 1
 - Set row #1 = inf since we are starting from node 1
 - Set column # 5 = inf since we are choosing edge
 <1,5>
 - Set $A(5,1) = \inf$
 - The resulting cost matrix is:

Ī	nf	inf	inf	in	f inj	f
	12	inf	11	2	inf	
	0	3	inf	0	inf	
	15	3	12	inf	inf	
L	in	f = 0	0	12	inf	-

- Reduce the matrix:
 - Reduce rows:
 - Reduce row #2: Reduce by 2

inf	inf	inf	in	f inf	_
10	inj	f 9	0	inf	
0	3	inf	0	inf	
15	3	12	inf	inf	
in	f = 0	0	12	inf	_
D 1			1	1 2	

• Reduce row #4: Reduce by 3

$$\begin{bmatrix} inf & inf & inf & inf \\ 10 & inf & 9 & 0 & inf \\ 0 & 3 & inf & 0 & inf \\ 12 & 0 & 9 & inf & inf \\ inf & 0 & 0 & 12 & inf \end{bmatrix}$$

- Columns are reduced
- The lower bound is:
 - RCL = 2 + 3 = 5
- $\circ\,$ The cost of going through node 5 is:
 - cost(5) = cost(1) + RCL + A(1,5) = 25 + 5 + 1 = 31

- In summary:
 - So the live nodes we have so far are:
 - 2: cost(2) = 35, path: 1->2
 - 3: cost(3) = 53, path: 1->3
 - 4: cost(4) = 25, path: 1->4
 - 5: cost(5) = 31, path: 1->5
 - Explore the node with the lowest cost: Node 4 has a cost of 25
 - Vertices to be explored from node 4: 2, 3, and 5
 - Now we are starting from the cost matrix at node 4 is:

$$Cost(4) = 25$$

$$\begin{bmatrix} inf & inf & inf & inf \\ 12 & inf & 11 & inf & 0 \\ 0 & 3 & inf & inf & 2 \\ inf & 3 & 12 & inf & 0 \\ 11 & 0 & 0 & inf & inf \end{bmatrix}$$

- <u>Choose to go to vertex 2: Node 6 (path is 1->4->2)</u>
 - Cost of edge <4,2> is: A(4,2) = 3
 - Set row #4 = inf since we are considering edge <4,2>
 - Set column # 2 = inf since we are considering edge <4,2>
 - Set $A(2,1) = \inf$
 - The resulting cost matrix is:

inf	inf	inf	inf	inf
inf	inf	11	inf	0
0	inf	inf	inf	2
inf	inf	inf	inf	inf
L 11	inf	0	inf	inf _

• Reduce the matrix:

- Rows are reduced
- Columns are reduced
- The lower bound is: RCL = 0
- The cost of going through node 2 is:
 - cost(6) = cost(4) + RCL + A(4,2) = 25 + 0 + 3 = 28

- <u>Choose to go to vertex 3: Node 7 (</u> path is 1->4->3)
 - Cost of edge <4,3> is: A(4,3) = 12
 - Set row #4 = inf since we are considering edge <4,3>
 - Set column # 3 = inf since we are considering edge <4,3>
 - Set $A(3,1) = \inf$
 - The resulting cost matrix is:

	inf	inf	inf	inf	inf
	12	inf	inf	inf	0
l	inf	3	inf	inf	2
	inf	inf	inf	inf	inf
	. 11	0	inf	inf	inf .
				2	~

- Reduce the matrix:
 - Reduce row #3: by 2:

Reduce column # 1: by 11

inf	inf	inf	inf	inf
1	inf	inf	inf	0
inj	f 1	inf	inf	0
inf	inf	inf	inf	inf
0	0	inf	inf	inf _

- The lower bound is: RCL = 13
- So the RCL of node 7 (Considering vertex 3 from vertex 4) is:
 - Cost(7) = cost(4) + RCL + A(4,3) = 25 + 13+ 12 = 50
- <u>Choose to go to vertex 5: Node 8 (</u> path is 1->4->5)
 - Cost of edge <4,5> is: A(4,5) = 0
 - Set row #4 = inf since we are considering edge <4,5>
 - Set column # 5 = inf since we are considering edge <4,5>
 - \circ Set A(5,1) = inf
 - The resulting cost matrix is:

inf	inf	inf	inf	inf
12	inf	11	inf	inf
0	3	inf	inf	inf
inf	inf	inf	' inf	inf
in	f = 0	0	inf	inf _

- Reduce the matrix:
 - Reduced row 2: by 11

infinfinfinfinf1inf0infinf03infinfinfinfinfinfinfinfinf00infinf

- Columns are reduced
- The lower bound is: RCL = 11
- So the cost of node 8 (Considering vertex 5 from vertex 4) is:
 - Cost(8) = cost(4) + RCL + A(4,5) = 25 + 11+ 0 = 36

- In summary:
 - So the live nodes we have so far are:
 - 2: cost(2) = 35, path: 1->2
 - 3: cost(3) = 53, path: 1->3
 - 5: cost(5) = 31, path: 1->5
 - 6: cost(6) = 28, path: 1->4->2
 - 7: cost(7) = 50, path: 1->4->3
 - 8: cost(8) = 36, path: 1->4->5
 - Explore the node with the lowest cost: Node 6 has a cost of 28
 - Vertices to be explored from node 6: 3 and 5
 - Now we are starting from the cost matrix at node6 is:

$$Cost(6) = 28$$

$$\begin{bmatrix} inf & inf & inf & inf & inf \\ inf & inf & 11 & inf & 0 \\ 0 & inf & inf & inf & 2 \\ inf & inf & inf & inf & inf \\ 11 & inf & 0 & inf & inf \end{bmatrix}$$

- <u>Choose to go to vertex 3: Node 9 (</u> path is 1->4->2->3
)
 - Cost of edge <2,3> is: A(2,3) = 11
 - Set row #2 = inf since we are considering edge <2,3>
 - Set column # 3 = inf since we are considering edge <2,3>
 - Set $A(3,1) = \inf$
 - The resulting cost matrix is:

inf	inf	inf	inf	inf
inf	inf	inf	inf	inf
inf	inf	inf	inf	2
inf	inf	inf	inf	inf
11	inf	inf	inf	inf]

- Reduce the matrix:
 - Reduce row #3: by 2

inf	inf	inf	inf	inf
inf	inf	inf	inf	inf
inf	inf	inf	inf	0
inf	inf	inf	inf	inf
L 11	inf	inf	inf	inf _

• Reduce column # 1: by 11

inf	inf	inf	inf	inf]
inf	inf	inf	inf	inf	
inf	inf	inf	inf	0	
inf	inf	inf	inf	inf	
0	inf	inf	inf	inf .	

- The lower bound is: RCL = 2 + 11 = 13
- So the cost of node 9 (Considering vertex 3 from vertex 2) is:
 - Cost(9) = cost(6) + RCL + A(2,3) = 28 + 13 + 11 = 52
- <u>Choose to go to vertex 5: Node 10 (</u> path is 1->4->2->5)
 - Cost of edge <2,5> is: A(2,5) = 0
 - Set row #2 = inf since we are considering edge <2,3>
 - Set column # 3 = inf since we are considering edge <2,3>
 - Set $A(5,1) = \inf$
 - The resulting cost matrix is:

inf	inf	inf	inf	inf
inf	inf	inf	inf	inf
0	inf	inf	inf	inf
inf	inf	inf	inf	inf
l inj	f inf	0	inf	inf

- Reduce the matrix:
 - Rows reduced
 - Columns reduced
- The lower bound is: RCL = 0
- So the cost of node 10 (Considering vertex 5 from vertex 2) is:
 - Cost(10) = cost(6) + RCL + A(2,3) = 28 + 0
 + 0 = 28

- In summary:
 - So the live nodes we have so far are:
 - 2: cost(2) = 35, path: 1->2
 - 3: cost(3) = 53, path: 1->3
 - 5: cost(5) = 31, path: 1->5
 - 7: cost(7) = 50, path: 1->4->3
 - 8: cost(8) = 36, path: 1->4->5
 - 9: cost(9) = 52, path: 1->4->2->3
 - 10: cost(2) = 28, path: 1->4->2->5
 - Explore the node with the lowest cost: Node 10 has a cost of 28
 - Vertices to be explored from node 10: 3
 - Now we are starting from the cost matrix at node 10 is:

- <u>Choose to go to vertex 3: Node 11 (</u> path is 1->4->2->5->3)
 - Cost of edge <5,3> is: A(5,3) = 0
 - Set row #5 = inf since we are considering edge <5,3>
 - Set column # 3 = inf since we are considering edge <5,3>
 - Set $A(3,1) = \inf$
 - The resulting cost matrix is:

inf	inf	inf	inf	inf
inf	inf	inf	inf	inf
inf	inf	inf	inf	inf
inf	inf	inf	inf	inf
linf	inf	inf	inf	inf _

- Reduce the matrix:
 - Rows reduced
 - Columns reduced
- The lower bound is: RCL = 0
- So the cost of node 11 (Considering vertex 5 from vertex 3) is:
 - Cost(11) = cost(10) + RCL + A(5,3) = 28 + 0 + 0 = 28