
Branch and Bound 
 
 
 
 Definitions: 
 

• Branch and Bound is a state space search method in which 
all the children of a node are generated before expanding 
any of its children.  
 

• Live-node: A node that has not been expanded. 
 
• It is similar to backtracking technique but uses BFS-like 

search. 
 
 
 
 
 
 
 
 
 

 
 

• Dead-node: A node that has been expanded 
• Solution-node 

 
 
 LC-Search (Least Cost Search): 
 

• The selection rule for the next E-node in FIFO or LIFO 
branch-and-bound is sometimes “blind”. i.e. the selection 
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Live Node: 2, 3, 4, and 5 

FIFO Branch & Bound (BFS) 
Children of E-node are 
inserted in a queue. 

LIFO Branch & Bound (D-Search) 
Children of E-node are inserted in a 
stack. 



rule does not give any preference to a node that has a very 
good chance of getting the search to an answer node quickly. 
 

• The search for an answer node can often be speeded by using 
an “intelligent” ranking function, also called an 

approximate cost function C
^

  
 

• Expanded-node (E-node): is the live node with the best C
^

 
value 

 
 
 Requirements 
 

• Branching: A set of solutions, which is represented by a 
node, can be partitioned into mutually exclusive  sets. 
Each subset in the partition is represented by a child of the 
original node.  

 
 

• Lower bounding:  An algorithm is available for calculating 
a lower bound on the cost of any solution in a given 
subset. 

 
 Searching: Least-cost search (LC) 
 

• Cost and approximation 
 

 Each node, X, in the search tree is associated with a 
cost: C(X) 

 
 C(X) = cost of reaching the current node, X (E-

node),  from the root + the cost of reaching an 
answer node from X. 



 
C(X) = g(X) + h(X) 
 

 Get an approximation of C(x), C
^

 (x) such that  

C
^

 (x) ≤C(x), and  

C
^

 (x) = C(x) if x is a solution-node. 
 

 The approximation part of C
^

 (x) is  
 

h(x)=the cost of reaching a solution-node from X,  
not known. 

 
• Least-cost search: 

The next E-node is the one with least C
^

 
 
 
 Example: 8-puzzle  
 

• Cost function: C
^

 = g(x) +h(x)  
 

where  
    h(x) = the number of misplaced tiles 
     and   g(x) = the number of moves so far 
 

• Assumption: move one tile in any direction cost 1. 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: In case of tie, choose the leftmost node. 
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 Algorithm: 
/* live_node_set: set to hold the live nodes at any time */ 
/* lowcost: variable to hold the cost of the best cost at any 
given node */ 
Begin 

  Lowcost = ∞; 
  While live_node_set ≠∞ do 

-   choose a branching node, k, such that  
 k ∈live_node_set; /* k is a E-node */ 
- live_node_set= live_node_set - {k}; 
- Generate the children of node k and the 

corresponding lower bounds; 
Sk={(i,zi): i is child of k and zi its lower  
        bound} 

- For each element (i,zi) in Sk do  
- If zi > U  
- then  

- Kill child i; /* i is a child node */ 
- Else  

  If child i is a solution 
  Then  
   U =zi; current best = child i; 
  Else  
   Add child i to live_node_set; 
  Endif; 

Endif; 
        -  Endfor; 
  Endwhile; 



 Travelling Salesman Problem: A Branch and Bound algorithm 
 

• Definition: Find a tour of minimum cost starting from a 
node S going through other nodes only once and returning 
to the starting point S. 

 
• Definitions:  

 
 A row(column) is said to be reduced iff it contains at 

least one zero and all remaining entries are non-
negative. 

 
 A matrix is reduced iff every row and column is 

reduced. 
 

• Branching: 
                                       

 Each node splits the remaining solutions into two 
groups: those that include a particular edge and 
those that exclude that edge 

 
 Each node has a lower bound. 

 
 Example: Given a graph G=(V,E), let <i,j> ∈ E, 
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• Bounding: How to compute the cost of each node? 
 

 Subtract of a constant from any row and any column 
does not change the optimal solution (The path). 

 
 The cost of the path changes but not the path itself. 

 
 Let A be the cost matrix of a G=(V,E). 

 

 The cost of each node in the search tree is computed 
as follows: 

 
• Let R be a node in the tree and A(R) its 

reduced matrix 
• The cost of the child (R), S: 

• Set row i and column j to infinity 
• Set A(j,1) to infinity  
• Reduced S and let RCL be the 

reduced cost. 
• C(S) = C(R) + RCL+A(i,j) 

 
  

 Get the reduced matrix A' of A and let L be the 
value subtracted from A. 

 L: represents the lower bound of the path solution 
 The cost of the path is exactly reduced by L. 

 
 

• What to determine the branching edge?  
 

 The rule favors a solution through left subtree 
rather than right subtree, i.e., the matrix is reduced 
by a dimension.  

 



 Note that the right subtree only sets the branching 
edge to infinity.  

 
 Pick the edge that causes the greatest increase in 

the lower bound of the right subtree, i.e., the 
lower bound of the root of the right subtree is 
greater. 

 
 

• Example: 
o The reduced cost matrix is done as follows: 

- Change all entries of row i and column j to 
infinity 

- Set A(j,1) to infinity (assuming the start node is 1) 

- Reduce all rows first and then column of the 
resulting matrix 
 

 
 



• Given the following cost matrix: 

 
 

• State Space Tree: 
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• The TSP starts from node 1: Node 1 
o Reduced Matrix: To get the lower bound of the 

path starting at node 1 
 Row # 1: reduce by 10 

 
 

 Row #2: reduce 2 

 
 

 Row #3: reduce by 2 

 
 
 
 
 



 Row # 4: Reduce by 3: 

 
 Row # 4: Reduce by 4 

 
 Column 1: Reduce by 1 

 
 

 Column 2: It is reduced.  
 Column 3: Reduce by 3 

 
 
 
 

 ⎣
⎢
⎢
⎢
⎢
⎡

    
𝑖𝑛𝑓 10  17 0 1  
12 𝑖𝑛𝑓  11 2 0 

0 3  𝑖𝑛𝑓 0 2 
15 3  12 𝑖𝑛𝑓 0 
11 0  0 12 𝑖𝑛𝑓 ⎦

⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎡

    
𝑖𝑛𝑓 10  17 0 1  
12 𝑖𝑛𝑓  11 2 0 

0 3  𝑖𝑛𝑓 0 2 
15 3  12 𝑖𝑛𝑓 0 
11 0  0 12 𝑖𝑛𝑓 ⎦

⎥
⎥
⎥
⎥
⎤

 



 Column 4: It is reduced.  
 Column 5: It is reduced.  
 The reduced cost is: RCL = 25 
 So the cost of node 1 is: 

• Cost(1) = 25 
 The reduced matrix is:  

 
 
 
   
  

⎣
⎢
⎢
⎢
⎢
⎡

    
𝑖𝑛𝑓 10  17 0 1  
12 𝑖𝑛𝑓  11 2 0 

0 3  𝑖𝑛𝑓 0 2 
15 3  12 𝑖𝑛𝑓 0 
11 0  0 12 𝑖𝑛𝑓 ⎦

⎥
⎥
⎥
⎥
⎤

 

cost(1) = 25 



 
• Choose to go to vertex 2: Node 2 

- Cost of edge <1,2> is: A(1,2) = 10 
- Set row #1 = inf  since we are choosing edge <1,2> 
- Set column # 2 = inf  since we are choosing edge 

<1,2> 
- Set A(2,1) = inf 
- The resulting cost matrix is:  

 
 

- The matrix is reduced: 
o RCL = 0 

- The cost of node 2 (Considering vertex 2 from 
vertex 1) is:  

  Cost(2) = cost(1) + A(1,2) = 25 + 10 = 35 
 



 
• Choose to go to vertex 3: Node 3 

- Cost of edge <1,3> is: A(1,3) = 17 (In the reduced 
matrix 

- Set row #1 = inf since we are starting from node 1 
- Set column # 3 = inf since we are choosing edge 

<1,3> 
- Set A(3,1) = inf 
- The resulting cost matrix is:  

 
• Reduce the matrix: 
o Rows are reduced 
o The columns are reduced except for column # 1: 

 Reduce column 1 by 11: 

 
 

• The lower bound is:  
o RCL = 11   

• The cost of going through node 3 is:  



o cost(3) = cost(1) + RCL + A(1,3) = 25 + 11 + 17 
= 53 

 



 
• Choose to go to vertex 4: Node 4 

o Remember that the cost matrix is the one that was 
reduced at the starting vertex 1 

o Cost of edge <1,4> is: A(1,4) = 0 
o Set row #1 = inf since we are starting from node 

1 
o Set column # 4 = inf since we are choosing edge 

<1,4> 
o Set A(4,1) = inf 
o The resulting cost matrix is:  

 
o Reduce the matrix: 

 Rows are reduced 
 Columns are reduced  

o The lower bound is: RCL = 0  
o The cost of going through node 4 is:  

 cost(4) = cost(1) + RCL +  A(1,4) = 25 + 0 
+ 0 = 25 



 
• Choose to go to vertex 5: Node 5 

o Remember that the cost matrix is the one that was 
reduced at starting vertex 1 

o Cost of edge <1,5> is: A(1,5) = 1 
o Set row #1 = inf since we are starting from node 

1 
o Set column # 5 = inf since we are choosing edge 

<1,5> 
o Set A(5,1) = inf 
o The resulting cost matrix is:  

 
o Reduce the matrix: 

 Reduce rows: 
• Reduce row #2: Reduce by 2 

 
• Reduce row #4: Reduce by 3 



 
 Columns are reduced  

 
o The lower bound is:  

 RCL = 2 + 3 = 5  
o The cost of going through node 5 is:  

 cost(5) = cost(1) + RCL + A(1,5) = 25 + 5 + 
1 = 31 

 
 



 
• In summary: 
o So the live nodes we have so far are:  

 2: cost(2) = 35, path: 1->2 
 3: cost(3) = 53, path: 1->3 
 4: cost(4) = 25, path: 1->4 
 5: cost(5) = 31, path: 1->5 

o Explore the node with the lowest cost: Node 4 
has a cost of 25 

o Vertices to be explored from node 4: 2, 3, and 5 
o Now we are starting from the cost matrix at node 

4 is: 
 
 
 
 
 
 
 
 

 
⎣
⎢
⎢
⎢
⎢
⎡

    
𝑖𝑛𝑓 𝑖𝑛𝑓  𝑖𝑛𝑓 𝑖𝑛𝑓 𝑖𝑛𝑓  

12 𝑖𝑛𝑓  11 𝑖𝑛𝑓 0 
0 3  𝑖𝑛𝑓 𝑖𝑛𝑓 2 
𝑖𝑛𝑓 3  12 𝑖𝑛𝑓 0 
11 0  0 𝑖𝑛𝑓 𝑖𝑛𝑓 ⎦

⎥
⎥
⎥
⎥
⎤

 

Cost(4) = 25 

 



 
• Choose to go to vertex 2: Node 6 (path is 1->4->2) 

o Cost of edge <4,2> is: A(4,2) = 3 
o Set row #4 = inf since we are considering edge 

<4,2> 
o Set column # 2 = inf since we are considering 

edge <4,2> 
o Set A(2,1) = inf 
o The resulting cost matrix is:  

 
 

o Reduce the matrix: 
 Rows are reduced 
 Columns are reduced  

o The lower bound is: RCL = 0  
o The cost of going through node 2 is:  

 cost(6) = cost(4) + RCL + A(4,2) = 25 + 0 + 
3 = 28 



 
• Choose to go to vertex 3: Node 7 ( path is 1->4->3 ) 

o Cost of edge <4,3> is: A(4,3) = 12 
o Set row #4 = inf since we are considering edge 

<4,3> 
o Set column # 3 = inf since we are considering 

edge <4,3> 
o Set A(3,1) = inf 
o The resulting cost matrix is:  

 
o Reduce the matrix: 

 Reduce row #3: by 2: 

 
 Reduce column # 1: by 11 



 
o The lower bound is: RCL = 13  
o So the RCL of node 7 (Considering vertex 3 from 

vertex 4) is:  
 Cost(7) = cost(4) + RCL + A(4,3) = 25 + 13 

+ 12 = 50 
 

• Choose to go to vertex 5: Node 8 ( path is 1->4->5 ) 
o Cost of edge <4,5> is: A(4,5) = 0 
o Set row #4 = inf since we are considering edge 

<4,5> 
o Set column # 5 = inf since we are considering 

edge <4,5> 
o Set A(5,1) = inf 
o The resulting cost matrix is:  

 
o Reduce the matrix: 

 Reduced row 2: by 11  



 
 

 Columns are reduced  
o The lower bound is: RCL = 11  
o So the cost of node 8 (Considering vertex 5 from 

vertex 4) is:  
 Cost(8) = cost(4) + RCL + A(4,5) = 25 + 11 

+ 0 = 36 
 

 



 
• In summary: 
o So the live nodes we have so far are:  

 2: cost(2) = 35, path: 1->2 
 3: cost(3) = 53, path: 1->3 
 5: cost(5) = 31, path: 1->5 
 6: cost(6) = 28, path: 1->4->2 
 7: cost(7) = 50, path: 1->4->3 
 8: cost(8) = 36, path: 1->4->5 

 
o Explore the node with the lowest cost: Node 6 

has a cost of 28 
o Vertices to be explored from node 6: 3 and 5 
o Now we are starting from the cost matrix at node 

6 is: 
 
 

 
 
 
 
 
 

 
⎣
⎢
⎢
⎢
⎢
⎡

    
𝑖𝑛𝑓 𝑖𝑛𝑓  𝑖𝑛𝑓 𝑖𝑛𝑓 𝑖𝑛𝑓  
𝑖𝑛𝑓 𝑖𝑛𝑓  11 𝑖𝑛𝑓 0 
0 𝑖𝑛𝑓  𝑖𝑛𝑓 𝑖𝑛𝑓 2 

𝑖𝑛𝑓 𝑖𝑛𝑓  𝑖𝑛𝑓 𝑖𝑛𝑓 𝑖𝑛𝑓 
11 𝑖𝑛𝑓  0 𝑖𝑛𝑓 𝑖𝑛𝑓 ⎦

⎥
⎥
⎥
⎥
⎤

 

Cost(6) = 28 



 
• Choose to go to vertex 3: Node 9 ( path is 1->4->2->3 

) 
o Cost of edge <2,3> is: A(2,3) = 11 
o Set row #2 = inf since we are considering edge 

<2,3> 
o Set column # 3 = inf since we are considering 

edge <2,3> 
o Set A(3,1) = inf 
o The resulting cost matrix is:  

 

 
 

o Reduce the matrix: 
 Reduce row #3: by 2  

 
 
 

 Reduce column # 1: by 11  
 



 
 

o The lower bound is: RCL = 2 +11 = 13  
o So the cost of node 9 (Considering vertex 3 from 

vertex 2) is:  
 Cost(9) = cost(6) + RCL + A(2,3) = 28 + 13 

+ 11 = 52 
 

• Choose to go to vertex 5: Node 10 ( path is 1->4->2-
>5 ) 
o Cost of edge <2,5> is: A(2,5) = 0 
o Set row #2 = inf since we are considering edge 

<2,3> 
o Set column # 3 = inf since we are considering 

edge <2,3> 
o Set A(5,1) = inf 
o The resulting cost matrix is:  

 
 



o Reduce the matrix: 
 Rows reduced 
 Columns reduced 

o The lower bound is: RCL = 0  
o So the cost of node 10 (Considering vertex 5 

from vertex 2) is:  
 Cost(10) = cost(6) + RCL + A(2,3) = 28 + 0 

+ 0 = 28 

 



 
• In summary: 
o So the live nodes we have so far are:  

 2: cost(2) = 35, path: 1->2 
 3: cost(3) = 53, path: 1->3 
 5: cost(5) = 31, path: 1->5 
 7: cost(7) = 50, path: 1->4->3 
 8: cost(8) = 36, path: 1->4->5 
 9: cost(9) = 52, path: 1->4->2->3 
 10: cost(2) = 28, path: 1->4->2->5 

 
o Explore the node with the lowest cost: Node 10 

has a cost of 28 
o Vertices to be explored from node 10: 3 
o Now we are starting from the cost matrix at node 

10 is: 

 
 



 
• Choose to go to vertex 3: Node 11 ( path is 1->4->2-

>5->3 ) 
o Cost of edge <5,3> is: A(5,3) = 0 
o Set row #5 = inf since we are considering edge 

<5,3> 
o Set column # 3 = inf since we are considering 

edge <5,3> 
o Set A(3,1) = inf 
o The resulting cost matrix is:  

 
 

o Reduce the matrix: 
 Rows reduced 
 Columns reduced 

o The lower bound is: RCL = 0  
o So the cost of node 11 (Considering vertex 5 

from vertex 3) is:  
 Cost(11) = cost(10) + RCL + A(5,3) = 28 + 

0 + 0 = 28 
` 


