
Branch and Bound

 Definitions:

• Branch and Bound is a state space search method in which
all the children of a node are generated before expanding
any of its children.

• Live-node: A node that has not been expanded.

• It is similar to backtracking technique but uses BFS-like

search.

• Dead-node: A node that has been expanded
• Solution-node

 LC-Search (Least Cost Search):

• The selection rule for the next E-node in FIFO or LIFO
branch-and-bound is sometimes “blind”. i.e. the selection

1

2 3 4 5

6 7 8 9

1

2 3 4 5

6 7 8 9

1

2 3 4 5

Live Node: 2, 3, 4, and 5

FIFO Branch & Bound (BFS)
Children of E-node are
inserted in a queue.

LIFO Branch & Bound (D-Search)
Children of E-node are inserted in a
stack.

rule does not give any preference to a node that has a very
good chance of getting the search to an answer node quickly.

• The search for an answer node can often be speeded by using
an “intelligent” ranking function, also called an

approximate cost function C
^

• Expanded-node (E-node): is the live node with the best C
^

value

 Requirements

• Branching: A set of solutions, which is represented by a
node, can be partitioned into mutually exclusive sets.
Each subset in the partition is represented by a child of the
original node.

• Lower bounding: An algorithm is available for calculating
a lower bound on the cost of any solution in a given
subset.

 Searching: Least-cost search (LC)

• Cost and approximation

 Each node, X, in the search tree is associated with a
cost: C(X)

 C(X) = cost of reaching the current node, X (E-

node), from the root + the cost of reaching an
answer node from X.

C(X) = g(X) + h(X)

 Get an approximation of C(x), C
^

 (x) such that

C
^

 (x) ≤C(x), and

C
^

 (x) = C(x) if x is a solution-node.

 The approximation part of C
^

 (x) is

h(x)=the cost of reaching a solution-node from X,
not known.

• Least-cost search:

The next E-node is the one with least C
^

 Example: 8-puzzle

• Cost function: C
^

 = g(x) +h(x)

where
 h(x) = the number of misplaced tiles
 and g(x) = the number of moves so far

• Assumption: move one tile in any direction cost 1.

Note: In case of tie, choose the leftmost node.

1 2 3
5 6
7 8 4

1 2 3
5 8 6
 7 4

Initial State Final State

532
^
C =+=

1 2 3
5 8 6
 7 4

1 2 3
5 6
7 8 4

1 2 3
5 6 4
7 8

1 2 3
5 6
7 8 4

1 2
5 6 3
7 8 4

1 2 3
5 8 6
7 4

1 2 3
 5 6
7 8 4

1 3
5 2 6
7 8 4

1 2 3
5 8 6
7 4

312
^
C =+=

541
^
C =+=

321
^
C =+= 541

^
C =+=

532
^
C =+=

303
^
C =+=

523
^
C =+=

 Algorithm:
/* live_node_set: set to hold the live nodes at any time */
/* lowcost: variable to hold the cost of the best cost at any
given node */
Begin

 Lowcost = ∞;
 While live_node_set ≠∞ do

- choose a branching node, k, such that
 k ∈live_node_set; /* k is a E-node */
- live_node_set= live_node_set - {k};
- Generate the children of node k and the

corresponding lower bounds;
Sk={(i,zi): i is child of k and zi its lower
 bound}

- For each element (i,zi) in Sk do
- If zi > U
- then

- Kill child i; /* i is a child node */
- Else

 If child i is a solution
 Then
 U =zi; current best = child i;
 Else
 Add child i to live_node_set;
 Endif;

Endif;
 - Endfor;
 Endwhile;

 Travelling Salesman Problem: A Branch and Bound algorithm

• Definition: Find a tour of minimum cost starting from a
node S going through other nodes only once and returning
to the starting point S.

• Definitions:

 A row(column) is said to be reduced iff it contains at

least one zero and all remaining entries are non-
negative.

 A matrix is reduced iff every row and column is

reduced.

• Branching:

 Each node splits the remaining solutions into two
groups: those that include a particular edge and
those that exclude that edge

 Each node has a lower bound.

 Example: Given a graph G=(V,E), let <i,j> ∈ E,

All Solutions

Solutions with <i,j> Solutions without <i,j>

L1

L

L2

• Bounding: How to compute the cost of each node?

 Subtract of a constant from any row and any column
does not change the optimal solution (The path).

 The cost of the path changes but not the path itself.

 Let A be the cost matrix of a G=(V,E).

 The cost of each node in the search tree is computed
as follows:

• Let R be a node in the tree and A(R) its

reduced matrix
• The cost of the child (R), S:

• Set row i and column j to infinity
• Set A(j,1) to infinity
• Reduced S and let RCL be the

reduced cost.
• C(S) = C(R) + RCL+A(i,j)

 Get the reduced matrix A' of A and let L be the
value subtracted from A.

 L: represents the lower bound of the path solution
 The cost of the path is exactly reduced by L.

• What to determine the branching edge?

 The rule favors a solution through left subtree
rather than right subtree, i.e., the matrix is reduced
by a dimension.

 Note that the right subtree only sets the branching
edge to infinity.

 Pick the edge that causes the greatest increase in

the lower bound of the right subtree, i.e., the
lower bound of the root of the right subtree is
greater.

• Example:
o The reduced cost matrix is done as follows:

- Change all entries of row i and column j to
infinity

- Set A(j,1) to infinity (assuming the start node is 1)

- Reduce all rows first and then column of the
resulting matrix

• Given the following cost matrix:

• State Space Tree:

Vertex = 3 Vertex = 5

6 7 8

10

4 5 35 53 25

Vertex = 2 Vertex = 5 Vertex = 3

3

Vertex = 2 Vertex = 5
Vertex = 4 Vertex = 3

28 50 36

52 28

25 1

2 31

9

11 28

Vertex = 3

• The TSP starts from node 1: Node 1
o Reduced Matrix: To get the lower bound of the

path starting at node 1
 Row # 1: reduce by 10

 Row #2: reduce 2

 Row #3: reduce by 2

 Row # 4: Reduce by 3:

 Row # 4: Reduce by 4

 Column 1: Reduce by 1

 Column 2: It is reduced.
 Column 3: Reduce by 3

 ⎣
⎢
⎢
⎢
⎢
⎡

𝑖𝑛𝑓 10 17 0 1
12 𝑖𝑛𝑓 11 2 0

0 3 𝑖𝑛𝑓 0 2
15 3 12 𝑖𝑛𝑓 0
11 0 0 12 𝑖𝑛𝑓 ⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡

𝑖𝑛𝑓 10 17 0 1
12 𝑖𝑛𝑓 11 2 0

0 3 𝑖𝑛𝑓 0 2
15 3 12 𝑖𝑛𝑓 0
11 0 0 12 𝑖𝑛𝑓 ⎦

⎥
⎥
⎥
⎥
⎤

 Column 4: It is reduced.
 Column 5: It is reduced.
 The reduced cost is: RCL = 25
 So the cost of node 1 is:

• Cost(1) = 25
 The reduced matrix is:

⎣
⎢
⎢
⎢
⎢
⎡

𝑖𝑛𝑓 10 17 0 1
12 𝑖𝑛𝑓 11 2 0

0 3 𝑖𝑛𝑓 0 2
15 3 12 𝑖𝑛𝑓 0
11 0 0 12 𝑖𝑛𝑓 ⎦

⎥
⎥
⎥
⎥
⎤

cost(1) = 25

• Choose to go to vertex 2: Node 2

- Cost of edge <1,2> is: A(1,2) = 10
- Set row #1 = inf since we are choosing edge <1,2>
- Set column # 2 = inf since we are choosing edge

<1,2>
- Set A(2,1) = inf
- The resulting cost matrix is:

- The matrix is reduced:
o RCL = 0

- The cost of node 2 (Considering vertex 2 from
vertex 1) is:

 Cost(2) = cost(1) + A(1,2) = 25 + 10 = 35

• Choose to go to vertex 3: Node 3

- Cost of edge <1,3> is: A(1,3) = 17 (In the reduced
matrix

- Set row #1 = inf since we are starting from node 1
- Set column # 3 = inf since we are choosing edge

<1,3>
- Set A(3,1) = inf
- The resulting cost matrix is:

• Reduce the matrix:
o Rows are reduced
o The columns are reduced except for column # 1:

 Reduce column 1 by 11:

• The lower bound is:
o RCL = 11

• The cost of going through node 3 is:

o cost(3) = cost(1) + RCL + A(1,3) = 25 + 11 + 17
= 53

• Choose to go to vertex 4: Node 4

o Remember that the cost matrix is the one that was
reduced at the starting vertex 1

o Cost of edge <1,4> is: A(1,4) = 0
o Set row #1 = inf since we are starting from node

1
o Set column # 4 = inf since we are choosing edge

<1,4>
o Set A(4,1) = inf
o The resulting cost matrix is:

o Reduce the matrix:

 Rows are reduced
 Columns are reduced

o The lower bound is: RCL = 0
o The cost of going through node 4 is:

 cost(4) = cost(1) + RCL + A(1,4) = 25 + 0
+ 0 = 25

• Choose to go to vertex 5: Node 5

o Remember that the cost matrix is the one that was
reduced at starting vertex 1

o Cost of edge <1,5> is: A(1,5) = 1
o Set row #1 = inf since we are starting from node

1
o Set column # 5 = inf since we are choosing edge

<1,5>
o Set A(5,1) = inf
o The resulting cost matrix is:

o Reduce the matrix:

 Reduce rows:
• Reduce row #2: Reduce by 2

• Reduce row #4: Reduce by 3

 Columns are reduced

o The lower bound is:

 RCL = 2 + 3 = 5
o The cost of going through node 5 is:

 cost(5) = cost(1) + RCL + A(1,5) = 25 + 5 +
1 = 31

• In summary:
o So the live nodes we have so far are:

 2: cost(2) = 35, path: 1->2
 3: cost(3) = 53, path: 1->3
 4: cost(4) = 25, path: 1->4
 5: cost(5) = 31, path: 1->5

o Explore the node with the lowest cost: Node 4
has a cost of 25

o Vertices to be explored from node 4: 2, 3, and 5
o Now we are starting from the cost matrix at node

4 is:

⎣
⎢
⎢
⎢
⎢
⎡

𝑖𝑛𝑓 𝑖𝑛𝑓 𝑖𝑛𝑓 𝑖𝑛𝑓 𝑖𝑛𝑓

12 𝑖𝑛𝑓 11 𝑖𝑛𝑓 0
0 3 𝑖𝑛𝑓 𝑖𝑛𝑓 2
𝑖𝑛𝑓 3 12 𝑖𝑛𝑓 0
11 0 0 𝑖𝑛𝑓 𝑖𝑛𝑓 ⎦

⎥
⎥
⎥
⎥
⎤

Cost(4) = 25

• Choose to go to vertex 2: Node 6 (path is 1->4->2)

o Cost of edge <4,2> is: A(4,2) = 3
o Set row #4 = inf since we are considering edge

<4,2>
o Set column # 2 = inf since we are considering

edge <4,2>
o Set A(2,1) = inf
o The resulting cost matrix is:

o Reduce the matrix:
 Rows are reduced
 Columns are reduced

o The lower bound is: RCL = 0
o The cost of going through node 2 is:

 cost(6) = cost(4) + RCL + A(4,2) = 25 + 0 +
3 = 28

• Choose to go to vertex 3: Node 7 (path is 1->4->3)

o Cost of edge <4,3> is: A(4,3) = 12
o Set row #4 = inf since we are considering edge

<4,3>
o Set column # 3 = inf since we are considering

edge <4,3>
o Set A(3,1) = inf
o The resulting cost matrix is:

o Reduce the matrix:

 Reduce row #3: by 2:

 Reduce column # 1: by 11

o The lower bound is: RCL = 13
o So the RCL of node 7 (Considering vertex 3 from

vertex 4) is:
 Cost(7) = cost(4) + RCL + A(4,3) = 25 + 13

+ 12 = 50

• Choose to go to vertex 5: Node 8 (path is 1->4->5)
o Cost of edge <4,5> is: A(4,5) = 0
o Set row #4 = inf since we are considering edge

<4,5>
o Set column # 5 = inf since we are considering

edge <4,5>
o Set A(5,1) = inf
o The resulting cost matrix is:

o Reduce the matrix:

 Reduced row 2: by 11

 Columns are reduced
o The lower bound is: RCL = 11
o So the cost of node 8 (Considering vertex 5 from

vertex 4) is:
 Cost(8) = cost(4) + RCL + A(4,5) = 25 + 11

+ 0 = 36

• In summary:
o So the live nodes we have so far are:

 2: cost(2) = 35, path: 1->2
 3: cost(3) = 53, path: 1->3
 5: cost(5) = 31, path: 1->5
 6: cost(6) = 28, path: 1->4->2
 7: cost(7) = 50, path: 1->4->3
 8: cost(8) = 36, path: 1->4->5

o Explore the node with the lowest cost: Node 6

has a cost of 28
o Vertices to be explored from node 6: 3 and 5
o Now we are starting from the cost matrix at node

6 is:

⎣
⎢
⎢
⎢
⎢
⎡

𝑖𝑛𝑓 𝑖𝑛𝑓 𝑖𝑛𝑓 𝑖𝑛𝑓 𝑖𝑛𝑓
𝑖𝑛𝑓 𝑖𝑛𝑓 11 𝑖𝑛𝑓 0
0 𝑖𝑛𝑓 𝑖𝑛𝑓 𝑖𝑛𝑓 2

𝑖𝑛𝑓 𝑖𝑛𝑓 𝑖𝑛𝑓 𝑖𝑛𝑓 𝑖𝑛𝑓
11 𝑖𝑛𝑓 0 𝑖𝑛𝑓 𝑖𝑛𝑓 ⎦

⎥
⎥
⎥
⎥
⎤

Cost(6) = 28

• Choose to go to vertex 3: Node 9 (path is 1->4->2->3

)
o Cost of edge <2,3> is: A(2,3) = 11
o Set row #2 = inf since we are considering edge

<2,3>
o Set column # 3 = inf since we are considering

edge <2,3>
o Set A(3,1) = inf
o The resulting cost matrix is:

o Reduce the matrix:
 Reduce row #3: by 2

 Reduce column # 1: by 11

o The lower bound is: RCL = 2 +11 = 13
o So the cost of node 9 (Considering vertex 3 from

vertex 2) is:
 Cost(9) = cost(6) + RCL + A(2,3) = 28 + 13

+ 11 = 52

• Choose to go to vertex 5: Node 10 (path is 1->4->2-
>5)
o Cost of edge <2,5> is: A(2,5) = 0
o Set row #2 = inf since we are considering edge

<2,3>
o Set column # 3 = inf since we are considering

edge <2,3>
o Set A(5,1) = inf
o The resulting cost matrix is:

o Reduce the matrix:
 Rows reduced
 Columns reduced

o The lower bound is: RCL = 0
o So the cost of node 10 (Considering vertex 5

from vertex 2) is:
 Cost(10) = cost(6) + RCL + A(2,3) = 28 + 0

+ 0 = 28

• In summary:
o So the live nodes we have so far are:

 2: cost(2) = 35, path: 1->2
 3: cost(3) = 53, path: 1->3
 5: cost(5) = 31, path: 1->5
 7: cost(7) = 50, path: 1->4->3
 8: cost(8) = 36, path: 1->4->5
 9: cost(9) = 52, path: 1->4->2->3
 10: cost(2) = 28, path: 1->4->2->5

o Explore the node with the lowest cost: Node 10

has a cost of 28
o Vertices to be explored from node 10: 3
o Now we are starting from the cost matrix at node

10 is:

• Choose to go to vertex 3: Node 11 (path is 1->4->2-

>5->3)
o Cost of edge <5,3> is: A(5,3) = 0
o Set row #5 = inf since we are considering edge

<5,3>
o Set column # 3 = inf since we are considering

edge <5,3>
o Set A(3,1) = inf
o The resulting cost matrix is:

o Reduce the matrix:
 Rows reduced
 Columns reduced

o The lower bound is: RCL = 0
o So the cost of node 11 (Considering vertex 5

from vertex 3) is:
 Cost(11) = cost(10) + RCL + A(5,3) = 28 +

0 + 0 = 28
`

