Branch and Bound

(Definitions:

· Branch and Bound is a state space search method in which all the children of a node are generated before expanding any of its children.

· Live-node: A node that has not been expanded.
· It is similar to backtracking technique but uses BFS-like search.

[image: image36.wmf]3

1

2

^

C

=

+

=

[image: image37.wmf]5

4

1

^

C

=

+

=

[image: image38.wmf]3

2

1

^

C

=

+

=

[image: image39.wmf]5

4

1

^

C

=

+

=

[image: image40.wmf]5

3

2

^

C

=

+

=

[image: image41.wmf]5

3

2

^

C

=

+

=

· Dead-node: A node that has been expanded
· Solution-node

(LC-Search (Least Cost Search):
· The selection rule for the next E-node in FIFO or LIFO branch-and-bound is sometimes “blind”. i.e. the selection rule does not give any preference to a node that has a very good chance of getting the search to an answer node quickly.
· The search for an answer node can often be speeded by using an “intelligent” ranking function, also called an approximate cost function
[image: image1.wmf]C

^

· Expanded-node (E-node): is the live node with the best
[image: image2.wmf]C

^

 value
(Requirements

· Branching: A set of solutions, which is represented by a node, can be partitioned into mutually exclusive sets. Each subset in the partition is represented by a child of the original node.

· Lower bounding: An algorithm is available for calculating a lower bound on the cost of any solution in a given subset.

(Searching: Least-cost search (LC)

· Cost and approximation

· Each node, X, in the search tree is associated with a cost: C(X)

· C(X) = cost of reaching the current node, X (E-node), from the root + the cost of reaching an answer node from X.

C(X) = g(X) + h(X)

· Get an approximation of C(x),
[image: image3.wmf]C

^

 (x) such that

[image: image4.wmf]C

^

 (x) (C(x), and

[image: image5.wmf]C

^

 (x) = C(x) if x is a solution-node.

· The approximation part of
[image: image6.wmf]C

^

 (x) is

h(x)=the cost of reaching a solution-node from X,

not known.

· Least-cost search:

The next E-node is the one with least
[image: image7.wmf]C

^

(Example: 8-puzzle

· Cost function:
[image: image8.wmf]C

^

 = g(x) +h(x)

where

h(x) = the number of misplaced tiles

and g(x) = the number of moves so far

· Assumption: move one tile in any direction cost 1.

[image: image42.wmf]3

0

3

^

C

=

+

=

[image: image43.wmf]5

2

3

^

C

=

+

=

Note: In case of tie, choose the leftmost node.

(Algorithm:

/* live_node_set: set to hold the live nodes at any time */

/* lowcost: variable to hold the cost of the best cost at any given node */

Begin

Lowcost = (;

While live_node_set ((do

- choose a branching node, k, such that

 k (live_node_set; /* k is a E-node */

· live_node_set= live_node_set - {k};

· Generate the children of node k and the corresponding lower bounds;

Sk={(i,zi): i is child of k and zi its lower

 bound}

· For each element (i,zi) in Sk do

· If zi > U

· then

· Kill child i; /* i is a child node */

· Else

If child i is a solution

Then

U =zi; current best = child i;

Else

Add child i to live_node_set;

Endif;

Endif;

- Endfor;

Endwhile;

(Travelling Salesman Problem: A Branch and Bound algorithm
· Definition: Find a tour of minimum cost starting from a node S going through other nodes only once and returning to the starting point S.

· Definitions:

· A row(column) is said to be reduced iff it contains at least one zero and all remaining entries are non-negative.

· A matrix is reduced iff every row and column is reduced.

· Branching:

· Each node splits the remaining solutions into two groups: those that include a particular edge and those that exclude that edge

· Each node has a lower bound.

· Example: Given a graph G=(V,E), let <i,j> (E,

[image: image44.png]inf 10 17 0 1
12 inf 11 2 0
0 3 inf 0 2
15 3 12 inf 0
11 0 0 12 inf

· Bounding: How to compute the cost of each node?

· Subtract of a constant from any row and any column does not change the optimal solution (The path).

· The cost of the path changes but not the path itself.

· Let A be the cost matrix of a G=(V,E).

· The cost of each node in the search tree is computed as follows:

· Let R be a node in the tree and A(R) its reduced matrix

· The cost of the child (R), S:

· Set row i and column j to infinity

· Set A(j,1) to infinity
· Reduced S and let RCL be the reduced cost.
· C(S) = C(R) + RCL+A(i,j)
· Get the reduced matrix A' of A and let L be the value subtracted from A.

· L: represents the lower bound of the path solution

· The cost of the path is exactly reduced by L.

· What to determine the branching edge?

· The rule favors a solution through left subtree rather than right subtree, i.e., the matrix is reduced by a dimension.

· Note that the right subtree only sets the branching edge to infinity.

· Pick the edge that causes the greatest increase in the lower bound of the right subtree, i.e., the lower bound of the root of the right subtree is greater.

· Example:

· The reduced cost matrix is done as follows:
· Change all entries of row i and column j to infinity
· Set A(j,1) to infinity (assuming the start node is 1)

· Reduce all rows first and then column of the resulting matrix
· Given the following cost matrix:

[image: image9.png]inf 20 30 10 11
15 inf 16 4 2
3 5 inf 2 4
19 6 18 inf 3
16 4 7 16 inf

· State Space Tree:
[image: image45.png]inf 10 17 0 1
12 inf 11 2 0
0 3 inf 0 2
15 3 12 inf 0
11 0 0 12 inf

· The TSP starts from node 1: Node 1
· Reduced Matrix: To get the lower bound of the path starting at node 1

· Row # 1: reduce by 10

[image: image10.png]inf 10 20 0 1
15 inf 16 4 2
3 5 inf 2 4
19 6 18 inf 3
16 4 7 16 inf

· Row #2: reduce 2

[image: image11.png]inf 10 20 0 1
13 inf 14 2 0
3 5 inf 2 4
19 6 18 inf 3
16 4 7 16 inf

· Row #3: reduce by 2

[image: image12.png]inf 10 20 0 1
13 inf 14 2 0
1 3 inf 0 2
19 6 18 inf 3
16 4 7 16 inf

· Row # 4: Reduce by 3:

[image: image13.png]inf 10 20 0 1
13 inf 14 2 0
1 3 inf 0 2
16 3 15 inf 0
16 4 7 16 inf

· Row # 4: Reduce by 4
[image: image14.png]inf 10 20 0 1
13 inf 14 2 0
1 3 inf 0 2
16 3 15 inf 0
12 0 3 12 inf

· Column 1: Reduce by 1

[image: image15.png]inf 10

12
0
15

11

inf
3
3
0

20 0

15

3

1

14 2 0
inf 0 2
inf 0

12

inf

· Column 2: It is reduced.

· Column 3: Reduce by 3

[image: image46.png]inf 10 17 0 1
12 inf 11 2 0
0 3 inf 0 2
15 3 12 inf 0
11 0 0 12 inf

[image: image47.png]inf inf inf inf inf
12 inf 11 inf 0
0 3 inf inf 2
inf 3 12 inf 0
11 0 0 inf inf

· Column 4: It is reduced.

· Column 5: It is reduced.

· The reduced cost is: RCL = 25

· So the cost of node 1 is:

· Cost(1) = 25

· The reduced matrix is:
[image: image48.png]inf inf inf inf inf
inf inf 11 inf 0
0 inf inf inf 2

inf inf inf inf inf
11 inf 0 inf inf

· Choose to go to vertex 2: Node 2
· Cost of edge <1,2> is: A(1,2) = 10

· Set row #1 = inf since we are choosing edge <1,2>

· Set column # 2 = inf since we are choosing edge <1,2>

· Set A(2,1) = inf

· The resulting cost matrix is:

[image: image16.png]inf inf inf inf inf
inf inf 11 2 0
0 inf inf 0 2
15 inf 12 inf 0
11 inf 0 12 inf

· The matrix is reduced:

· RCL = 0
· The cost of node 2 (Considering vertex 2 from vertex 1) is:

· Cost(2) = cost(1) + A(1,2) = 25 + 10 = 35

· Choose to go to vertex 3: Node 3
· Cost of edge <1,3> is: A(1,3) = 17 (In the reduced matrix
· Set row #1 = inf since we are starting from node 1

· Set column # 3 = inf since we are choosing edge <1,3>

· Set A(3,1) = inf

· The resulting cost matrix is:

[image: image17.png]inf inf inf inf inf
12 inf inf 2 0
inf 3 inf 0 2
15 3 inf inf 0
11 0 inf 12 inf

· Reduce the matrix:

· Rows are reduced

· The columns are reduced except for column # 1:

· Reduce column 1 by 11:

[image: image18.png]inf inf inf inf inf
1 inf inf 2 0
inf 3 inf 0 2
4 3 inf inf 0
0 0 inf 12 inf

· The lower bound is:
· RCL = 11
· The cost of going through node 3 is:
· cost(3) = cost(1) + RCL + A(1,3) = 25 + 11 + 17 = 53

· Choose to go to vertex 4: Node 4
· Remember that the cost matrix is the one that was reduced at the starting vertex 1

· Cost of edge <1,4> is: A(1,4) = 0

· Set row #1 = inf since we are starting from node 1

· Set column # 4 = inf since we are choosing edge <1,4>

· Set A(4,1) = inf

· The resulting cost matrix is:

[image: image19.png]inf inf inf inf inf
12 inf 11 inf 0
0 3 inf inf 2
inf 3 12 inf 0
11 0 0 inf inf

· Reduce the matrix:

· Rows are reduced

· Columns are reduced

· The lower bound is: RCL = 0
· The cost of going through node 4 is:
· cost(4) = cost(1) + RCL + A(1,4) = 25 + 0 + 0 = 25

· Choose to go to vertex 5: Node 5
· Remember that the cost matrix is the one that was reduced at starting vertex 1

· Cost of edge <1,5> is: A(1,5) = 1

· Set row #1 = inf since we are starting from node 1

· Set column # 5 = inf since we are choosing edge <1,5>

· Set A(5,1) = inf

· The resulting cost matrix is:

[image: image20.png]inf inf inf inf inf
12 inf 11 2 inf
0 3 inf 0 inf
15 3 12 inf inf
inf 0 0 12 inf

· Reduce the matrix:

· Reduce rows:

· Reduce row #2: Reduce by 2
[image: image21.png]inf inf inf inf inf
10 inf 9 0 inf
0 3 inf 0 inf
15 3 12 inf inf
inf 0 0 12 inf

· Reduce row #4: Reduce by 3
[image: image22.png]inf inf inf inf inf
10 inf 9 0 inf
0 3 inf 0 inf
12 0 9 inf inf
inf 0 0 12 inf

· Columns are reduced

· The lower bound is:
· RCL = 2 + 3 = 5

· The cost of going through node 5 is:
· cost(5) = cost(1) + RCL + A(1,5) = 25 + 5 + 1 = 31

· In summary:

· So the live nodes we have so far are:

· 2: cost(2) = 35, path: 1->2

· 3: cost(3) = 53, path: 1->3

· 4: cost(4) = 25, path: 1->4

· 5: cost(5) = 31, path: 1->5
· Explore the node with the lowest cost: Node 4 has a cost of 25
· Vertices to be explored from node 4: 2, 3, and 5
· Now we are starting from the cost matrix at node 4 is:

· Choose to go to vertex 2: Node 6 (path is 1->4->2)
· Cost of edge <4,2> is: A(4,2) = 3

· Set row #4 = inf since we are considering edge <4,2>

· Set column # 2 = inf since we are considering edge <4,2>

· Set A(2,1) = inf

· The resulting cost matrix is:
[image: image23.png]inf inf inf inf inf
inf inf 11 inf 0
0 inf inf inf 2

inf inf inf inf inf
11 inf 0 inf inf

· Reduce the matrix:

· Rows are reduced

· Columns are reduced

· The lower bound is: RCL = 0

· The cost of going through node 2 is:
· cost(6) = cost(4) + RCL + A(4,2) = 25 + 0 + 3 = 28

· Choose to go to vertex 3: Node 7 (path is 1->4->3)
· Cost of edge <4,3> is: A(4,3) = 12
· Set row #4 = inf since we are considering edge <4,3>

· Set column # 3 = inf since we are considering edge <4,3>

· Set A(3,1) = inf

· The resulting cost matrix is:
[image: image24.png]inf inf inf inf inf
12 inf inf inf 0
inf 3 inf inf 2

inf inf inf inf inf
11 0 inf inf inf

· Reduce the matrix:

· Reduce row #3: by 2:
[image: image25.png]inf inf inf inf inf
12 inf inf inf 0
inf 1 inf inf 0

inf inf inf inf inf
11 0 inf inf inf

· Reduce column # 1: by 11
[image: image26.png]inf inf inf inf inf
1 inf inf inf 0
inf 1 inf inf 0

inf inf inf inf inf
0 0 inf inf inf

· The lower bound is: RCL = 13
· So the RCL of node 7 (Considering vertex 3 from vertex 4) is:
· Cost(7) = cost(4) + RCL + A(4,3) = 25 + 13 + 12 = 50
· Choose to go to vertex 5: Node 8 (path is 1->4->5)
· Cost of edge <4,5> is: A(4,5) = 0
· Set row #4 = inf since we are considering edge <4,5>

· Set column # 5 = inf since we are considering edge <4,5>

· Set A(5,1) = inf

· The resulting cost matrix is:
[image: image27.png]inf inf inf inf inf
12 inf 11 inf inf
0 3 inf inf inf

inf inf inf inf inf
inf 0 0 inf inf

· Reduce the matrix:

· Reduced row 2: by 11

[image: image28.png]inf inf inf inf inf
1 inf 0 inf inf
0 3 inf inf inf

inf inf inf inf inf
inf 0 0 inf inf

· Columns are reduced

· The lower bound is: RCL = 11
· So the cost of node 8 (Considering vertex 5 from vertex 4) is:
· Cost(8) = cost(4) + RCL + A(4,5) = 25 + 11 + 0 = 36
· In summary:

· So the live nodes we have so far are:

· 2: cost(2) = 35, path: 1->2

· 3: cost(3) = 53, path: 1->3

· 5: cost(5) = 31, path: 1->5

· 6: cost(6) = 28, path: 1->4->2

· 7: cost(7) = 50, path: 1->4->3

· 8: cost(8) = 36, path: 1->4->5
· Explore the node with the lowest cost: Node 6 has a cost of 28
· Vertices to be explored from node 6: 3 and 5
· Now we are starting from the cost matrix at node 6 is:

· Choose to go to vertex 3: Node 9 (path is 1->4->2->3)
· Cost of edge <2,3> is: A(2,3) = 11
· Set row #2 = inf since we are considering edge <2,3>

· Set column # 3 = inf since we are considering edge <2,3>

· Set A(3,1) = inf

· The resulting cost matrix is:
[image: image29.png]inf inf inf inf inf
inf inf inf inf inf
inf inf inf inf 2
inf inf inf inf inf
11 inf inf inf inf

· Reduce the matrix:

· Reduce row #3: by 2

[image: image30.png]inf inf inf inf inf
inf inf inf inf inf
inf inf inf inf 0
inf inf inf inf inf
11 inf inf inf inf

· Reduce column # 1: by 11

[image: image31.png]

[image: image32.png]inf inf inf inf inf
inf inf inf inf inf
inf inf inf inf 0
inf inf inf inf inf
0 inf inf inf inf

· The lower bound is: RCL = 2 +11 = 13
· So the cost of node 9 (Considering vertex 3 from vertex 2) is:
· Cost(9) = cost(6) + RCL + A(2,3) = 28 + 13 + 11 = 52

· Choose to go to vertex 5: Node 10 (path is 1->4->2->5)
· Cost of edge <2,5> is: A(2,5) = 0
· Set row #2 = inf since we are considering edge <2,3>

· Set column # 3 = inf since we are considering edge <2,3>

· Set A(5,1) = inf

· The resulting cost matrix is:
[image: image33.png]inf inf inf inf inf
inf inf inf inf inf
0 inf inf inf inf
inf inf inf inf inf
inf inf 0 inf inf

· Reduce the matrix:

· Rows reduced

· Columns reduced
· The lower bound is: RCL = 0
· So the cost of node 10 (Considering vertex 5 from vertex 2) is:
· Cost(10) = cost(6) + RCL + A(2,3) = 28 + 0 + 0 = 28
· In summary:

· So the live nodes we have so far are:

· 2: cost(2) = 35, path: 1->2

· 3: cost(3) = 53, path: 1->3

· 5: cost(5) = 31, path: 1->5

· 7: cost(7) = 50, path: 1->4->3

· 8: cost(8) = 36, path: 1->4->5

· 9: cost(9) = 52, path: 1->4->2->3

· 10: cost(2) = 28, path: 1->4->2->5

· Explore the node with the lowest cost: Node 10 has a cost of 28
· Vertices to be explored from node 10: 3
· Now we are starting from the cost matrix at node 10 is:

[image: image34.png]inf inf inf inf inf
inf inf inf inf inf
0 inf inf inf inf
inf inf inf inf inf
inf inf 0 inf inf

· Choose to go to vertex 3: Node 11 (path is 1->4->2->5->3)
· Cost of edge <5,3> is: A(5,3) = 0
· Set row #5 = inf since we are considering edge <5,3>

· Set column # 3 = inf since we are considering edge <5,3>

· Set A(3,1) = inf

· The resulting cost matrix is:
[image: image35.png]inf
inf
inf
inf
inf

inf
inf
inf
inf
inf

inf
inf
inf
inf
inf

inf
inf
inf
inf
inf

inf
inf
inf
inf
inf

· Reduce the matrix:

· Rows reduced

· Columns reduced
· The lower bound is: RCL = 0
· So the cost of node 11 (Considering vertex 5 from vertex 3) is:
· Cost(11) = cost(10) + RCL + A(5,3) = 28 + 0 + 0 = 28
`
1�
2�
3�
�
5�
6�
�
�
7�
8�
4�
�

1�
2�
3�
�
5�
8�
6�
�
�
7�
4�
�

Initial State

Final State

1�
2�
3�
�
5�
6�
�
�
7�
8�
4�
�

1�
2�
3�
�
5�
6�
4�
�
7�
8�
�
�

1�
2�
3�
�
5�
�
6�
�
7�
8�
4�
�

1�
2�
�
�
5�
6�
3�
�
7�
8�
4�
�

1�
2�
3�
�
5�
8�
6�
�
7�
�
4�
�

1�
2�
3�
�
�
5�
6�
�
7�
8�
4�
�

1�
�
3�
�
5�
2�
6�
�
7�
8�
4�
�

1�
2�
3�
�
5�
8�
6�
�
7�
4�
�
�

1�
2�
3�
�
5�
8�
6�
�
�
7�
4�
�

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

All Solutions

Solutions with <i,j>

Solutions without <i,j>

L1

L

L2

1

2

3

4

5

6

7

8

9

9

8

7

6

5

4

3

2

1

Vertex = 3

LIFO Branch & Bound (D-Search)

Children of E-node are inserted in a stack.

FIFO Branch & Bound (BFS)

Children of E-node are inserted in a queue.

Live Node: 2, 3, 4, and 5

5

4

3

2

1

Vertex = 5

6

7

8

10

4

5

35

53

25

Vertex = 2

Vertex = 5

Vertex = 3

3

Vertex = 2

Vertex = 5

Vertex = 4

Vertex = 3

28

50

36

52

28

25

1

2

31

9

11

28

Vertex = 3

�

�

cost(1) = 25

�

Cost(4) = 25

�

Cost(6) = 28

�

_1018722209.unknown

_1018722237.unknown

_1018722263.unknown

_1018722279.unknown

_1018722293.unknown

_1018722256.unknown

_1018722222.unknown

_1018615230.unknown

_1018721927.unknown

_1018615187.unknown

