| mper ative Programming L anguages (1 PL)

& Definitions:

e Theimperative (or procedural) paradigmisthe
closest to the structure of actual computers.

 Itisamodd that is based on moving bits around
and changing machine state

Programming languages based on the imperative
paradigm have the following characteristics:

» The basic unit of abstraction is the PROCEDURE,
whose basic structure is a sequence of statements
that are executed in succession, abstracting the way
that the program counter isincremented so asto
proceed through a series of machine instructions
residing in sequential hardware memory cells.

» The sequentia flow of execution can be modified
by conditional and looping statements (as well as by
the very low-level goto statement found in many
imperative languages), which abstract the
conditional and unconditional branch instructions
found in the underlying machine instruction set.

= Variables play akey role, and serve as abstractions
of hardware memory cells. Typically, agiven
variable may assume many different values of the
course of the execution of aprogram, just asa
hardware memory cell may contain many different
values. Thus, the assignment statement isavery
important and frequently used statement.

& Examples of imper ative languages:

« FORTRAN, Algol, COBOL, Pascal, C (and to
some extent C++), BASIC, Ada - and many
more.

& PL/I

* PL/I (1963-5): was one of the few languages that attempted
to be agenera purpose language, rather than aiming at a
particular category of programming.

» PL/I incorporated a blend of features from FORTRAN,
ALGOL, and COBOL, plus allowed programmers to create
concurrent tasks, handle run-time exceptions, use recursive
procedures, and use pointers.

» The language development was closely tied to the
development of the IBM/360, aline of "general use"
computers.

* The main problems with the language were its large size
and the interaction of so many complex features.

¢ Simula 67:

o SIMULA 67: yet another descendant of ALGOL, SIMULA
was the first language to support data abstraction, through the
class concept.

& Pascal:

% C:

« PASCAL (1971): an extension of the ALGOL languages, it
survived as a teaching language for structured programming,
it still has widespread (though rapidly declining) usein the
teaching community, but comparatively little commercial use.

* |t has stronger type and error checking than Fortran or C
and more restrictive syntax, hence enforces some fundamental
programming concepts better than C (perhaps).

o C(1972): C presented relatively little that was new or
remarkable in terms of programming language design, but
used and combined established featuresin avery effective
manner for programming.

|t wasdesigned for systems programming, and initially
spread through close ties with UNIX.

» C has numerous and powerful operators, and extensive
libraries of supporting function.

|t has (comparatively) little in the way of type checking,
which makes the language more flexible for the experienced
user but more dangerous for the inexperienced.

L Ada

o Ada(1975-1983): Ada, like COBOL, had its devel opment
sponsored by the Department of Defense, and survived as a
language largely because of mandated use by the DoD.

* Indesign, Ada’s developers tried to incorporate everything
known about software engineering to that time. It supports

object oriented programming, concurrency, exception
handling, etc.

» The design and implementation of the language suffered
through being perhaps too ambitious.

O |PL Characteristics:

 Variable and Storage
« Commands:

Assignments
Procedure call
Sequential commands
Collatera commands
Conditional commands
|terative commands
Block commands

AN N N RN

& Assignments

e Simple assignment:
X =y +1;

e Multiple assignment:
v1=v2=v3=v4=200;

» Simultaneous assignment:
nl,n2,n3,n4 =m1,m2,m3,m4

» Operator-assignment commands:

m +=n

& Procedure Calls

» The effect of aprocedure call isto apply a procedure
abstraction to some arguments

» The net effect of aprocedure call isto update variables
(local or global).
% Sequential commands
» Much of imperative languages are concerned with
control flow, making sure that commands are executed in

a specific order.

* A sequential command is a set of commands executed
sequentially.

* Inthe sequential command:
‘C1; C2;

C2 is executed after C1 is finished.

& Collateral commands

« A computation is deterministic if we can predict in
advance exactly which sequence of steps will be
followed. Otherwise the sequence is nondeterministic.

e A collatera command is a set of
nondeterministic commands.

* |nthe command:
‘Cl; C27

C1 and C2 are executed in no particular order.

& Conditional commands

* A conditional command has a number of
subcommands, from which exactly one
IS chosen to be executed.
« Example: the most elementary if command:
if E then
C1
else
C2
end if;

e Conditiona commands can aso be
nondeterministic:

If E1thenC1l
| E2 then C2

| En then Cn
end if;

* Nondeterministic conditional commands are
available in concurrent programming
languages (such as Ada).

* Another conditional command is the Case
statement.

O Iterative commands
» An iterative command, also known as loop,
has a set of commands that is to be executed
repeatedly and some kind of phrases that
determines when the iteration will stop.

» Control variable in the definite loops:
o Predefined variable
0 The loop declares the variable
o The initial value is atomic or
comes an expression.

e Two types of iterations:
v Definite (For loop)
v Undéefinite (While loop)

¢ Side-effectsin | PL

* Insome|PL, the evaluation of expressions has
the side effect of updating variables.

[* A program in C-like syntax, with side-effects

*/
inti=1;
main() {
inty =5;
printf("%ad\n" f(y)+g(y));
printf("%d\n",g(y)+f(y));
}
int f(int x) {
| =1%2;
return i*x;
}
int g(int x) {
return i*x;

}

» Thetwo printf statements will not print the
same answer. This means that, for this program

f(y) + g(y) isdifferent from g(y) + f(y)

Isit bad programming?
or

side-effect of f on variablei?

& What is wrong with side-effects in sequential
execution ?

Programis not readable: The result from a
function depends on what happened during the
execution of another function.

 Reusability: A program fragment depends
on aglobal environment

Correctness of aprogram becomes almost
impossible

(Good programming: ensure that side-effects
never occur.

« How can we enforce programmers to avoid
side-effect?

& How can side-effects be avoided ?

» The problem is destructive assignment.
= \Whenever a statement like
X =28;

IS executed then the old value of x is destroyed and
the new value, 8, substituted. To be safe thisimplies
that the previous value of x cannot be needed again.

= S0 to avoid side-effects, abolish destructive
assignment!

% |sthere an aternative to imperative
programming languages ?

Other programming paradigms.

Case Study - C

L History

Kernighan and Ritche designers

|language designed to implement operating
system (Unix)

terse, compact, but can write really fast code

free, ported with Unix

% types (minor difference with Pascal)

static typing

weak typing

standard primitive types - but no booleans
enumerated types (in ANSI C)

composite types

arrays

records (structs)

variant records (unions)

no sets

% expressions
e |iterals
» aggregate expressions (a] ={2, 3,4})

 function calls (limited to returning primitive
types, so composite values are not first-class)

 conditional expression ((2<3)?1:0)

» constants (in ANSI C) and variables

% storage
 classic run-time storage model

» sdlective and total updating of composite

% Variables
e static and dynamic arrays

» heap storage for values allocated by calling
malloc()

* “uncontrolled use” of pointers, pointer craziness

¢ Commands

e Structured programming constructs (e.g., if-then-
else, for-loop)

e assignment is an expression
o multiple, composite assignment

* procedure (void functions) and function calls

% Bindings
* static scoping

nested name spaces (can declare vars after a{)

new-type and type declarations

new-variable, but not variable declarations

limited recursive declarations

% Abstractions
 user-defined function and procedure abstractions
* Dbuilt-in selector abstractions only

e parameter passing call-by-value and call-by-
pointer

» eager evaluation of parameters

% encapsulations

* no packages, objects, ADTs

% type systems

built-in operator overloading/coercion
type coercion via casting

no user-defined overloading

no polymorphic types

no parameterised types

%, sequencers

gotos
escapesviareturns
break escapes from containing block

no exception handlers (setjmp, longjmp arein
library)

