
Advanced Software Paradigms (A. Bellaachia) Page: 1

Domain-specific Software Architectures

1. Objectives ..2

2. Definitions ...3

3. DSSA Methodology ...3

4. DSSA main components ..4

4.1. Domain model ..5

4.2. Reference Requirements6

4.3. The reference architecture7

5. Case Study [Gary A. Curry et al.]: A Graphical Editor domain. 8

5.1. Reference Requirements for the Domain8

5.1.1. Stable Functional Requirements:9

5.1.2. Variable Functional Requirements 10

5.2. Reference Architecture 11

5.2.1. Reference Structure Chart 11

5.2.2. Stable Modules ... 15

5.2.3. Variable Modules .. 16

5.2.4. Reference Class Model 17

6. Summary: .. 29

Advanced Software Paradigms (A. Bellaachia) Page: 2

1. Objectives

 Engineers often draw annotated diagrams of components and the

relationships between them to describe the high-level design or

architecture of a system. We seek to make this intuitive notion of

an architecture more rigorous by defining precise meanings and

notations for such specifications.

 Reuse of source modules alone cannot achieve dramatic reductions

in cost and schedule, since coding and unit testing typically

account for only 10-20% of the overall software life cycle effort.

 Architecture-based analysis coupled with rigorously defined

module interface conventions can lead to significant reductions in

defects and reductions in risk and in the overall life cycle costs can

by a factor of 3 to 10.

 Where are we in the software life cycle?

Requirements Design Implementation ….

 Software

Architectures

 Components

 Software Component Architecture

DSSA: Domain-Specific Software

Architectures

 Frameworks

 Design Patterns

 Which

Programming

language?

Advanced Software Paradigms (A. Bellaachia) Page: 3

2. Definitions

 Domain-specific architectures are a software development

technology that promises to greatly reduce the cost and time to

develop a family of systems for a common application domain

such as satellite command and control.

 DSSA is also an architecture style and process that supports the

development of a solution for a group of related applications

within a problem domain.

 A domain is defined by a set of common problems, functions, and

attributes that applications in such a domain can solve.

 According to [Hay 1994]:

DSSA can be defined as an assemblage of software

components, specialized for a particular type of task

(domain), generalized for effective use across that domain,

composed in a standardized structure (topology) effective for

building successful applications.

3. DSSA Methodology

 First, the domain is analyzed to produce a generic breakdown into

functional elements, with defined interfaces and data flows

between elements. This can be done by traditional structured

analysis or object-oriented analysis.

 Given a generic framework or architecture, developing systems

within the domain can be accomplished more efficiently because

many components will be reusable and the interfaces will be well-

defined when new components must be developed.

Advanced Software Paradigms (A. Bellaachia) Page: 4

4. DSSA main components

 Domain model

 Reference requirements

 Stable requirements

 Variable Requirements

 Reference architecture

Advanced Software Paradigms (A. Bellaachia) Page: 5

4.1. Domain model

 The domain analysis is the initial step in Domain-Specific

Software Architecture, and the analysis of the domain ordinarily

consists of input from customers and "domain experts.

 Domain experts are usually familiar with previous systems of this

type or other aspects of the domain of interest. They may

specialize in a specific area of the domain, or may have actually

help develop a similar problem domain or related applications

under such a domain.

 The customers add their own requirements for the domain and

make modifications based on their needs and interests.

 The customer considers their needs statement as requirements,

however, the functional requirements define the problem domain,

and the design and implementation requirements constrain the

architecture.

 The domain model is referenced by developers and other

professionals that perform maintenance on specific applications in

a domain, and the domain model should provide them with an

understanding of the domain aspects.

 It uses the domain dictionary, which is the text reference source for

words and phrases found in scenarios and the customer’s needs

statement, and the context (block) diagram graphically represents

the high-level data flow between major components in the system.

 The domain analyst performs an implicit functional decomposition

of the system.

Advanced Software Paradigms (A. Bellaachia) Page: 6

4.2. Reference Requirements

 There are composed of:

 Functional requirements,

 Non-functional requirements,

 Design requirements, and

 Implementation requirements.

 The functional requirements are the essential operations/processes,

their numbers, etc.

 The non-functional requirements represent all other functionality

of the domain, i.e., security, extendibility, etc.

 The design requirements focus upon the architectural style and the

user interface style:

 The architectural style will affect the performance,

development cost, and the interfacing style of the

corresponding components of the system.

 The user interface style can be divided into three

broad categories: command-line, menu driven, pull-

down menu driven user, and web-based interfaces.

 The implementation requirements deal with the determination of

the programming language, operating system, hardware platform,

and networking capabilities when applicable.

Advanced Software Paradigms (A. Bellaachia) Page: 7

4.3. The reference architecture

 Inheritance hierarchy is a form of reference architecture

dependency diagrams.

 It consists of the followings:

 Reference architecture models,

 Configuration decision diagram,

 Architecture schema/design record,

 Dependency diagram,

 Component interface descriptions, and

 Constraints and rationale.

 The reference architecture models are simple abstractions based

upon an existing architecture style.

 The configuration decision diagram includes, but is not limited

to, decision trees and reference requirements.

 The purpose of an architecture schema or design record is to

provide an understanding about components, and more specifically

to cover knowledge about design alternatives and alternate

implementations.

 The component interface descriptions section of the DSSA

describes the interfaces to components in the reference

architecture.

 Constraints and rationale are considered the expert system rules

or can be considered an informal text that is included as a

supplemental part of the design record or architecture schema:

 Constraints are the ranges of parameter values, relationships,

and component attributes.

 The rationale is the retrospective "lessons learned" based

upon using the reference architecture in development of

applications. Constraints are the system guidelines.

Advanced Software Paradigms (A. Bellaachia) Page: 8

5. Case Study [Gary A. Curry et al.]: A Graphical Editor domain.

 The graphical editor provides the user an interface to manipulate shapes, lines, and

text in order to graphically represent objects, data, and relationships between them.

 The graphical editor domain includes the ability to create Data Flow Diagrams (DFD),
structure charts, Entity/Relationship (ER) diagrams, state transition diagrams, as well

as, numerous other types of design and architecture graphical modeling documents.

 The user needs to be able to show relationships and behavior by drawing multiple line

types and arrows to connect these objects, and the editor must be able to support the
insertion of text onto objects and corresponding lines to describe their functionality.

 The user should be able to create, delete, and move the lines in the document, and the

ability to save or open a file is vital.

 Also, it is necessary to provide the option to output to a printer.

 In a more advanced version of a graphical editor, the support of color coding objects

and lines should be available; further, the ability to create custom objects and
relationships to better describe the user’s information modeling.

 Some versions may also support the option of animation to show flow, and thus,

improve the understanding of the objects.

 The editor should be able to handle image types of various formats such as PICT,
RTF, SYLK, MIF, JPEG, GIF, BMP, TIF, and ICN to allow distinct products to

interact by data interchange.

5.1. Reference Requirements for the Domain

 The goal is to specify the scope of the domain. It contains a list and

description of functional requirements for the domain. The

following is a refined preliminary report.

 There are two types of requirements:

 Stable functional requirements

 Variable functional requirements

Advanced Software Paradigms (A. Bellaachia) Page: 9

5.1.1. Stable Functional Requirements:

 Stable functional requirements are the essential

operations/processes of the domain.

 They are required for the entire domain and its subsequent

applications.

 Stable functional requirements do not change from application to

application.

 These act as the core requirements for the domain.

 The requirements are:

 file subsystem - handles all user requests of file menu options

 file open - opens an existing file
 file close - closes the currently opened file

 file new - creates a new file; templates

 file save - saves the specified file
 file save as - saves the specified file in a selected format

 file print - spools the active file to a printer device

 file exit - exit the program

 edit subsystem - handles all user requests of edit menu options
 edit undo - undo the last action; possibly several levels deep

 edit cut - cuts the selected object(s) to the clipboard

 edit copy - copies the selected object(s) to the clipboard
 edit paste - pastes the selected object(s) from the clipboard

 edit text - insert, delete, and modify text

 edit image subsystem – handles all user requests of edit image options

 edit image - insert, delete, and modify image
 edit arrow subsystem - handles all user requests of edit arrow options

 interface subsystem – handles user requests to change the current interface

 selector arrow - select a graphical object on screen; targets object for application action
 ruler - displays a ruler on the screen xy borders; vertical and horizontal measurements

 inches - displays the dimensions on ruler in inches

 centimeters - displays the dimensions on the ruler in centimeter

 background grid - background of user screen is of grid type such as xy plane; allows for
more precise depiction of images

 grid spacing - provides a method of changing the background grid spacing

 snap to grid - locks image onto background grid system as a graphical object is dragged
across the screen

 grid lines – indicates the vertical and horizontal background grid with dotted lines

 grid minor dots – indicates incremental positions between grid lines

Advanced Software Paradigms (A. Bellaachia) Page: 10

5.1.2. Variable Functional Requirements

 Unlike stable requirements, variable functional requirements may

change from application to application.

 They represent the additional and supplemental functionality of the

system domain. Such functionality adds to the user-friendliness

and overall applicability of the system.

 The requirements are:

 square image - draws a square on grid system; object representation

 circle image - draws a circle on grid system; object representation

 triangle image - draws a triangle on grid system; object representation
 line image - draws a line on the grid system; object representation

 line arrow image - direct function call; shows image referencing on screen

 dash arrow image - asynchronous call; dashed arrow image
 parameter arrow image - smaller and shorter arrow image used to show direction

of parameter being passed between graphical objects

 sticky arrow - arrows connecting graphical objects will reposition themselves in

accordance with object location as objects are edited
 filled parameter arrow image - used to represent data couple

 unfilled parameter arrow image - used to represent control couple

 various arrow head(s) - variations on the type of pointers on the arrow

 sharpen - sharpen the quality of the image
 smooth - smooth the image

 rotate - rotate the image; clockwise or counterclockwise

 invert - invert the image; flip 180 degrees
 RGB controls - three slider bars for controlling the color scheme

 mirror - mirror the image

 left-right justify - justify the image according to margins

 various baseline symbols - used to show such properties as aggregation and
inheritance

 iterative function - recursive type graphical object(square with arrow returning to

itself)
 module - graphical object with double borders to denote a module, possible

complex

 data store - graphical object used to represent a type of data store

Advanced Software Paradigms (A. Bellaachia) Page: 11

 external entity - graphical representation of an external person, place, or thing

5.2. Reference Architecture

 Reference architecture provides a basic structure of the domain and

can be used as a foundation to develop specific application designs

within the graphical editor domain.

 It helps a designer to quickly produce a useable design that can

then be given to a programming team to produce the application

software.

5.2.1. Reference Structure Chart

 It is a reference structure chart for the graphical editor domain.

 It is a "generic" description of the modules, which are available for

all possible applications.

Structure Chart Image

Advanced Software Paradigms (A. Bellaachia) Page: 12

Subchart A:

 Subchart B:

Subchart C:

Advanced Software Paradigms (A. Bellaachia) Page: 13

Subchart D:

 Subchart E:

Advanced Software Paradigms (A. Bellaachia) Page: 14

Advanced Software Paradigms (A. Bellaachia) Page: 15

5.2.2. Stable Modules

 Stable modules will appear in all applications within the graphical

editor domain.

 These modules are:

 file subsystem - controls all user requests of file menu options by calling the
appropriate file module to fulfill the request.

 file open – provides a file open dialog box for the user to make a selection from,

and processes the selection to open the requested file.
 file close – closes the currently opened file if there are no unsaved changes,

otherwise prompts the user to save the changes prior to closing.

 file new - creates and opens a new file, possibly providing options to the user of

the types of templates available within the specific application based upon
variable requirements.

 file save - saves the unsaved changes of the currently open file.

 file save as – provides a dialog box to prompt the user with the name to save the
currently open file.

 file print – prompts the user with the current printer configuration and spools

the currently file to a printer device.

 file exit - checks for any unsaved changes in currently open files, and, if there
are any, prompts the user to save the changes before exiting the program.

 edit subsystem - controls all user requests of edit menu options by calling the

appropriate edit module to fulfill the request.
 edit undo - undoes the last action(s) within the undo buffer.

 edit cut - cuts the selected object(s) to the clipboard buffer.

 edit copy - copies the selected object(s) to the clipboard buffer.

 edit paste - pastes the selected object(s) from the clipboard buffer.
 edit text – provides a text cursor within the selected text object, allowing the

user to insert, delete, modify text.

 edit image subsystem – controls all user requests of edit image options by

calling the appropriate edit image module to fulfill the request.
 edit image - provides "handles" on the selected image object, allowing the user

to insert, delete, modify the image

 edit arrow subsystem - controls all user requests of edit arrow options by calling
the appropriate edit arrow module to fulfill the request.

 interface subsystem – controls all user requests to change the current interface

by calling the appropriate interface module to fulfill the request.

 selector arrow - provides a method for graphical object on screen allowing the
user to select objects for application action.

 ruler - displays a ruler on the screen xy borders, providing a visual interface of

vertical and horizontal measurements.
 inches – a method to display the dimensions on ruler in inches.

Advanced Software Paradigms (A. Bellaachia) Page: 16

 centimeters – a method to display the dimensions on the ruler in centimeter.

 background grid - provides a background of grid type such as xy plane of user
screen is, allowing for precision placement of objects.

 grid spacing - provides a method of changing the background grid spacing

 snap to grid – a method which locks the image onto background grid system as

a graphical object is repositioned on the screen, providing the freeing the user
from having to pay close attention to the vertically or horizontal alignment of

objects.

 grid lines – draws the current background grid with dotted lines at each
horizontal and vertical gridline.

 grid minor dots – draws vertical and horizontal lines of dots on the screen to

indicate incremental positions between grid lines.

5.2.3. Variable Modules

 Variable modules may appear in some applications within the

graphical editor domain.

 These modules are:

 square image - draws a square object on grid system with the size and position

specified by the user.

 circle image - draws a circle object on grid system with the size and position
specified by the user.

 triangle image - draws a triangle object on grid system with the size and position

specified by the user.
 line image - draws a line object on the grid system with the size and position

specified by the user.

 line arrow image - draws a line object with an arrowhead on the grid system with

the size and position specified by the user; indicates direct function call between
modules of a structure chart.

 dash arrow image - draws a dashed line object with an arrowhead on the grid

system with the size and position specified by the user; indicates an asynchronous

function call between modules of a structure chart.
 parameter arrow image - draws an arrow image to show direction of parameter

being passed between modules in a structure chart.

 sticky arrow - draws arrows connecting graphical objects and will "stick" with the
objects as the repositioned.

Advanced Software Paradigms (A. Bellaachia) Page: 17

 filled parameter arrow image - draws a special parameter arrow, which is filled in

order to represent data couple between modules in a structure chart.
 unfilled parameter arrow image - draws a special parameter arrow, which is

unfilled in order to represent control couple between modules in a structure chart.

 various arrow head(s) - draws variations on the type of pointers on the arrow.

 sharpen - draws a sharper image.
 smooth - draws a smoothing of the image using a splining algorithm.

 rotate - provides handles and the selected image for the user to rotate the image;

clockwise or counterclockwise.
 invert - redraws the image 180 degrees with respect to the current position.

 RGB controls - provides three slider bars for the user to control the color scheme of

the selected object.

 mirror - draws a mirror image of the selected object.
 left-right justify - redraws the selected objects, justifying them respect to left and

right margins.

 various baseline symbols - provides drawing objects to show such properties as
aggregation and inheritance in a class model diagram.

 iterative function - provides a recursive type graphical drawing object (square with

arrow returning to itself) in a class model diagram.

 module - draws a rectangular object with double borders to denote a module in a
structure chart.

 data store - draws an object to represent a type of data store in a data-flow

diagram.

 external entity - draws a representation of an external person, place, or thing in a
data-flow diagram.

5.2.4. Reference Class Model

 A "generic" class model for the graphical editor domain that can be

used for all possible applications.

Advanced Software Paradigms (A. Bellaachia) Page: 18

Advanced Software Paradigms (A. Bellaachia) Page: 19

  Graphical Editor class

 A1 - Graphical_Editor; Graphical Editor object constructor

 a1 - an object of the File class

 a2 - an object of the Edit class

 a3 - an object of the Interface class

 File class

Advanced Software Paradigms (A. Bellaachia) Page: 20

 B1 - File; File object constructor

 B2 - File_Finished; a function to return the file_finished_flag of FALSE to the
Graphical_Editor object until the program is exited, then returns TRUE

 B3 - File_New; a function to open up a new file and provide the user with the

available graphical editor option, i.e. structure chart, data-flow diagram, state-

transition diagram …
 B4 - File_Open; a function to open an existing file; provides a file dialog box to

prompts the user to make a selection

 B5 - File_Close; a function to close the active file; if there are any unsaved changes,
provides a dialog box to prompt the user to save the changes before closing

 B6 - File_Save; a function to save the active file

 B7 - File_Save_As; a function to save the active file with a different name; provides a

file dialog box to prompts the user to type the new file name
 B8 - File_Print; a function to print the active file; provides a print dialog box to

prompts the user to review the current printer and provides a button to change the

current printer
 B9 - File_Current_Printer; a function to change the current printer; provides a dialog

box to prompt the user to change the current printer; called with a button press from

the print dialog box

 B10 - File_Exit; a function to change the file_finished_flag from FALSE to TRUE for
return to the Graphical_Editor object; if there are any unsaved changes, provides a

dialog box to prompt the user to save the changes before changing the finished_flag

 b1 – file_finished_flag; a TRUE/FALSE value return to the Graphical Editor object

when exit is performed
 *b2 - file name; dynamically allocated name and path for the users file name to save

with

 *b3 - printer location(s); dynamically allocated storage of locations currently available
to print from, either locally or on a network

 *b4 – active printer; dynamically allocated storage of the active printer location

 Edit class

 C1 - Edit; Edit object constructor

 C2 - Edit_Finished; a function to return the edit_finished_flag of FALSE to the

Graphical_Editor object while the current editing activity is underway, then returns

TRUE
 C3 - Edit_Undo; a function to undo the users recent commands; uses the

edit_undo_buffer data member

 C4 - Edit_Cut; a function to cut the selected text and/or object(s) to the

edit_clipboard_buffer

Advanced Software Paradigms (A. Bellaachia) Page: 21

 C5 - Edit_Copy; a function to copy the selected text and/or object(s) to the

edit_clipboard_buffer
 C6 - Edit_Paste; a function to paste the edit_clipboard_buffer

 C7 - Edit_Text; a function to provide editing of the selected text

 c1 - edit_finished_flag; a TRUE/FALSE value return to the Graphical Editor object

for all edit activities
 *c2 - edit_undo_buffer; a dynamically allocated buffer to provide a history of the

users recent commands

 *c3 – edit_clipboard_buffer; a dynamically allocated buffer to hold cut and copied
text and image objects

 *c4 - edit_text; a dynamically allocated buffer to hold the current text being edited

 c5 - an object of the Edit Image class

 c6 - an object of the Edit Arrow class

 Interface class

 D1 - Interface; Interface object constructor

 D2 - Selector_Arrow; a function to display a selector arrow which provides a method

for the user to select image and text objects
 D3 - RGB_Controls; a function to dynamically allocate and display three sliders for

control of red, green, and blue colors of the display

 D4 - Background_Grid; a function to display the background grid
 D5 - Grid_Spacing; a function to change the spacing of the current background grid;

provides a dialog box to prompt the user to adjust the grid

 D6 - Snap_To_Grid; a function to toggle the snap_to_grid flag and display or remove

the objects in alignment with the grid based upon whether the flag is TRUE or FALSE
 D7 - Grid_Lines; a function to toggle the grid_line_flag and display or remove the

grid lines based upon whether the flag is TRUE or FALSE

 D8 - Grid_Minor_Dots; a function to toggle the grid_minor_dots_flag and display or
remove the grid minor dots based upon whether the flag is TRUE or FALSE

 d1 - selector_arrow; a structure containing the current status

 d2 - border_ruler; a structure containing the current status

 d3 - snap_to_grid_flag; a flag to indicate whether grid snap is selected; TRUE or
FALSE

 d4 - grid_line_flag; a flag to indicate whether grid lines are selected; TRUE or FALSE

Advanced Software Paradigms (A. Bellaachia) Page: 22

 d5 - grid_minor_dots_flag; a flag to indicate whether grid minor dots is selected;

TRUE or FALSE
 *d6 - RGB_sliders; dynamically allocated sliders for control of the red, green, and

blue colors of the display

 *d7 - background_grid; a dynamically allocated structure containing the current status

 Edit Image class

 E1 - Edit_Image; Edit Image object constructor

 E2 - Sharpen; a function to sharpen the display
 E3 - Smooth; a function to smooth the redisplay of the currently selected object

 E4 - Rotate; a function to rotate and redisplay the currently selected object 90 degrees to

the left

 E5 - Mirror; a function to mirror and redisplay the currently selected object
 E6 - Invert; a function to invert and redisplay the currently selected 180 degrees from its

position

 E7 - Left_Right_Justify; a function to justify and redisplay the currently selected objects
with respect to the left and right hand margins

 *e1 – current_objects; a dynamically allocated linked-list containing all current objects

 Edit Arrow class

 F1 - Edit_Arrow; Edit Arrow object constructor
 F2 - Line_Arrow_Image; a function to add and display a line arrow with a single head

 F3 - Dashed_Arrow_Image; a function to add and display a dashed arrow with a single

head
 F4 - Parameter_Arrow_Image; a function to add and display a parameter arrow with a

single head

 F5 - Sticky_Arrow; a function to add and display a sticky arrow with a single head

 F6 - Filled_Parameter_Arrow_Image; a function to add and display a filled parameter
arrow with a single head

 F7 - Unfilled_Parameter_Arrow_Image; a function to add and display an unfilled

parameter arrow with a single head
 F8 - Arrow_Heads; a function that provides the user with a dialog box to make a

selection of various arrow heads

Advanced Software Paradigms (A. Bellaachia) Page: 23

 *f1 - current_arrows; a dynamically allocated linked-list containing all arrows

  Ruler class

 G1 - Ruler; Ruler object constructor

 G2 - Change_Increments;a function to change the displayed increments of the rulers
based upon the current_zoom

 g2 - current_zoom; storage of the current zoom of the display

 Image class

 H1 - Image; Image object constructor
 H2 - Square_Image; a function to create and display a square image object

 H3 - Circle_Image; a function to create and display a circle image object

 H4 - Triangle_Image; a function to create and display a triangle image object
 H5 - Line_Image; a function to create and display a line image object

 H6 - Base_Line_Image; a function to display the various base line image objects

 H7 - Iterative_Image; a function to create and display a iterative image object

 H8 - Module_Image; a function to create and display a module image object
 *h1 - image; a dynamically allocated structure containing the type, position, and size of

image object

 Inch Ruler class

 I1 - Inch_Ruler; Inch Ruler object constructor

 I2 - Display; a function to display the rulers in inches based upon the current_zoom

inherited from the Ruler class object

 I3 - Display_Cursor; a function to display the movement of the cursor with dotted lines
 i1- cursor_position; a projection of the current position of the cursor on the xy axis of the

inch ruler

  Centimeter Ruler class

 J1 - Centimeter_Ruler; Centimeter Ruler object constructor

 J2 - Display; a function to display the rulers in inches based upon the current_zoom
inherited from the Ruler class object

 J3 - Display_Cursor; a function to display the movement of the cursor with dotted lines

 j1- cursor_position; a projection of the current position of the cursor on the xy axis of the

centimeter ruler

Advanced Software Paradigms (A. Bellaachia) Page: 24

 Stable Classes

 This identifies the stable classes and modules that will appear in

all applications within the graphical editor domain.

 Stable Classes and Modules

 Graphical Editor

 Graphical_Editor

 File

 File_Finished

 File_New

 File_Open

 File_Close

 File_Save

 File_Save_As

 File_Print

 File_Current_Printer

 File_Exit

 Edit

 Edit

 Edit_Finished

 Edit_Undo

 Edit_Cut

 Edit_Copy

 Edit_Paste

 Edit_Text

Advanced Software Paradigms (A. Bellaachia) Page: 25

 Interface

 Interface

 Selector_Arrow

 Background_Grid

 Grid_Spacing

 Snap_To_Grid

 Grid_Lines

 Grid_Minor_Dots

 Edit Image

 Edit_Image

 Image

 Image

 Edit Arrow

 Edit_Arrow

 Ruler

 Ruler

 Change_Increments

 Inch Ruler

 Inch_Ruler

 Display

Advanced Software Paradigms (A. Bellaachia) Page: 26

 Centimeter Ruler

 Centimeter_Ruler

 Display

 Variable Classes

 These are all the variable classes that will appear in all applications

within the graphical editor domain.

 Variable Modules of Stable Classes; Variable Classes and Modules

 Interface(stable class)

 RGB_Controls

 Edit Image(stable class)

 Sharpen

 Smooth

 Rotate

 Mirror

 Invert

 Left_Right_Justify

 Image(stable class)

 Square_Image

Advanced Software Paradigms (A. Bellaachia) Page: 27

 Circle_Image

 Triangle_Image

 Line_Image

 Base_Line_Image

 Iterative_Image

 Module_Image

 Edit Arrow(stable class)

 Line_Arrow_Image

 Dashed_Arrow_Image

 Parameter_Arrow_Image

 Sticky_Arrow

 Filled_Parameter_Arrow_Image

 Unfilled_Parameter_Arrow_Image

 Arrow_Heads

Advanced Software Paradigms (A. Bellaachia) Page: 28

 Configuration Decision Diagram

 The configuration decision diagram will be used to configure a

specific application.

 Configuring a system (application) is the process of selecting a

subset of the reference requirements.

 The application in this case will be named System X, and it

mainly handles class models.

 Since it is in the Graphical Editor Domain, it has all the stable

functional requirements and it will have a select subset of the

variable requirements.

System X – Variable Functional Requirements of the application

Vx Variable Functional Requirements

V1 square image - draws a square on grid system; object representation

V2 line image - draws a line on the grid system; object representation

V3 line arrow image - direct function call; shows image referencing on

screen

V4 dash arrow image - asynchronous call; dashed arrow image

V5 sticky arrow - arrows connecting graphical objects will reposition
themselves in accordance with object location as objects are edited

V6 various arrow head(s) - variations on the type of pointers on the arrow

V7 left-right justify - justify the image according to margins

V8 various baseline symbols - used to show such properties as aggregation

and inheritance

V9 data store - graphical object used to represent a type of data store

V10 external entity - graphical representation of an external person, place, or

thing

V11 iterative function - recursive type graphical object(square with arrow

returning to itself)

Advanced Software Paradigms (A. Bellaachia) Page: 29

6. Summary:

 The requirement analysis and the software architecture of a domain

of applications.

 Examples: Wed browsers, Web servers, Word processors, etc.

 There are three main elements of a DSSA:

o Domain Model

 Complete description of the domain

 Achieved by experts in the domain, users, developers who

have experience in the domain, etc.

o Reference Requirements

 Stable (or Fix)

 Variable (or optional)

 Requirements can also be broken into:

 Functional

 Non-functional

 Design

 Implementation

 List a reference of each requirement of the domain.

o Reference Architecture

 Make sure to state the right architecture style for the

domain.

 List a reference of each architectural element.

