
 1

Component-based Architecture

“Buy, don’t build”

 Fred Broks

1. Why use components? ... 2

2. What are software components? .. 3

3. Component-based Systems: A Reality!! [SEI reference] ... 4

4. Major elements of a component: .. 5

5. Component Architecture .. 9

6. Blackbox vs. Whitebox.. 12

7. Components vs. Objects .. 14

8. Components in industry verses in-house solutions 15

9. Component disadvantages ... 16

10. Summary... 17

 2

1. Why use components?

 Problem with OOP:

 Objects are too complicated and provide too limited

functionality to be useful to many clients, while

components such as plug-ins provide a high-level feature

that can be installed and configured by users (such as web-

browser plug-ins).

 Objects do not allow for plug-and-play, integrating an

object into a particular system may not be possible and

therefore objects cannot be provided independently.

 Composition and assembly of components can be done by a larger

group of people who do not have to have the specialist skills

required for component development.

 Component-based development is a critical part of the maturing

process of developing and managing distributed applications.

 Where are we in the software life cycle?

Requirements Design Implementation ….

 Software

Architectures

 Components

 Software Component Architecture

DSSA: Domain-Specific Software

Architectures

 Frameworks

 Design Patterns

 Which

Programming

language?

 3

2. What are software components?

 “A software component is a unit of composition with contractually

specified interfaces and explicit context dependencies only. A

software component can be deployed independently and is subject

to composition by third parties.” (Workshop on Component-

Oriented Programming, ECOOP, 1996.)

 A component is a software object, meant to interact with other

components, encapsulating certain functionality or a set of

functionalities. A component has a clearly defined interface and

conforms to a prescribed behavior common to all components

within an architecture. Multiple components may be composed to

build other components.

 Components are expected to exhibit certain behaviors and

characteristics that let them participate in the component structure and

interact with its environment and other components.

 4

3. Component-based Systems: A Reality!! [SEI reference]

 Component-based systems encompass both commercial-off-the-

shelf (COTS) products and components acquired through other

means, such as existing applications.

 Developing component-based systems is becoming feasible due to

the following:

 the increase in the quality and variety of COTS

products economic pressures to reduce system

development and maintenance costs

 the emergence of component integration technology

 the increasing amount of existing software in

organizations that can be reused in new systems.

 CBSD shifts the development emphasis from programming

software to composing software systems [Clements 95].

http://www.sei.cmu.edu/str/indexes/references/Clements_95_bold.html

 5

4. Major elements of a component:

 Specification:

It is more than just list of available operations. It describes

the expected behavior of the component for specific

situations, constraints the allowable states of the

component, and guides the clients in appropriate

interactions with the component. In some cases these

descriptions may be in some formal notation. Most often

they are informally defined.

 One or more implementations:

The component must be supported by one or more

implementations. These must conform to the specification.

The implementer can choose any programming language.

 Component Model:
o Software components exist within a defined environment,

or component model.

o Established component models include MS’s COM+, Sun’s

Java J2EE or JEE 5, and the Object Management Group

OMG’s CORBA component standard.

o A component model is a set of services that support the

software, plus a set of rules that must be obeyed by the

component in order for it to take advantage of the services.

o Each of these component models addresses the following

issues:

 How a component makes its services available to

others?

 How component are named?

 How new components and their services are

discovered at runtime.

 Component Types: [Felix Bachman et al. 2000]

 6

o A component’s type may be defined in

terms of the interfaces it implements.

o If a component implements three different

interfaces X, Y and Z, then it is of type X, Y

and Z. We say that this component is

polymorphic with respect to these types (it

can play the role of an X, Y, or Z at different

times.

o Component types are found in both

Microsoft/COM and Sun/Java technologies.

o A component model requires that

components implement one or more

interfaces, and in this way a component

model can be seen to define one or more

component types. Different component

types can play different roles in systems, and

participate in different types of interaction

schemes.

o Each model also provides other capabilities such as:

 Transaction management,

 persistence, and

 Security.

 A packaging approach:

o Components must be grouped to provide a set of services.

It is these packages that are bought and sold when

acquiring from a third-party sources. They represent units

of functionality that must be installed on the system.

o A J2EE application is packaged as an Enterprise ARchive

(EAR) file, a standard Java JAR file with an .ear extension.

 7

The goal of this file format is to provide an application

deployment unit that is assured of being portable.

o Different components (modules) of an application may be

packaged separated to achieve maximum reusability.

 A deployment approach:

o Once the packaged components are installed in an operational

environment, they will be deployed. This occurs by creating

an executable instance of a component and allowing

interactions with it to occur. Note that we might have

different instances of a component running on the same

machine.

o J2EE uses deployment descriptors that are defined as in XML files

named ejb-jar.xml. Example:

<?xml version="1.0" encoding="UTF-8"?>

<application xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/application_1_4.xsd"
 version="1.4">

 <display-name>Simple example of application</display-name>

 <description>Simple example</description>

 <module>

 <ejb>ejb1.jar</ejb>
 </module>

 <module>

 <ejb>ejb2.jar</ejb>
 </module>

 <module>

 8

 <web>

 <web-uri>web.war</web-uri>
 <context-root>web</context-root>

 </web>

 </module>
</application>

 9

5. Component Architecture

 A component architecture is a system defining the rules of

linking components together.

 A standard component model includes definitions for the following

(WebSphere Advisor 2000):

 How each component must make its services available to

others?

 How to connect one component to another.

 Which common utility services can be assumed to be

provided by the infrastructure supporting the component

model?

 How new components announce their availability to

others?

 Component Architecture Principles (Rijsenbrij)

 Component architecture is a set of principles and rules

according to which a software system is designed and built

with the use of components.

 It must be independent from the business domain or the

technology of the application.

 The component architecture covers three aspects of a software

system. These are:

 Building blocks:

The architecture specifies the type of building blocks

systems are composed of.

 Construction of the software system:

The architecture specifies how the building

blocks are joined together when developing an

 10

application. The architecture describes the role

that the building blocks play in the system.

 Organisation:

Components are divided in categories based on

their functionality.

 The component interface is a set of methods supported by a

component, and type definitions for the data used for arguments to

those methods. An interface itself is a type and can be an argument

for a component method.

 The Common Component Architecture Forum

(http://www.cca-forum.org/glossary/index.html)

o An Interface Definition Language understandable to all

components. Interface definitions expressed in a language

allow components to find out about each other either through

introspection or through consulting a repository, and give

component architecture the potential to dynamically add and

delete components in multi-component applications (whether

this potential is actually realized or not depends on a specific

implementation of the architecture).

o Introspection: Inspection is the process of exposing the

properties, methods, and Events that a component supports.

Example: Java provides Java provide an interface

java.beans.BeanInfo to accomplish it.

o A Reusable Combining Infrastructure provides the

implementation necessary to link components. It contains

mechanisms enabling the components to reference each other,

understands the interface definition syntax and is capable of

transferring data types and component references between

components.

http://www.cca-forum.org/glossary/index.html

 11

o A Binding between the interface definition syntax and a

language or framework of actual component implementation.

o A Composition API allows the programmer to link

components into multi-component applications and save those

compositions. Such a mechanism could be provided for

example by a GUI or a scripting language. Examples:

 BML (Bean Markup language) from IBM

 CoML:

(http://www.springerlink.com/content/k4hy95n563m8ag

v8/)

 12

6. Blackbox vs. Whitebox

 Abstractions and Reuse Blackbox vs. whitebox abstraction

refers to the visibility of an implementation behind its interface.

 Ideally, a blackbox’s clients don’t know any details beyond the

interface and its specification.

 For a whitebox, the interface may still enforce encapsulation and

limit what clients can do (although implementation inheritance

allows for substantial interference). However, the whitebox

implementation is available and you can study it to better

understand what the box does.

 Blackbox reuse refers to reusing an implementation without relying

on anything but its interface and specification. For example, typical

application programming interfaces (APIs) reveal no implementation

details. Building on such an API is thus blackbox reuse of the API’s

implementation.

 In contrast, whitebox reuse refers to using a software fragment,

through its interfaces, while relying on the understanding you

gained from studying the actual implementation. Most class

libraries and application frameworks are delivered in source

form and application developers study a class implementation

to understand what a subclass can or must do.

 There are serious problems with whitebox reuse across

components, since whitebox reuse renders it unlikely that the

reused software can be replaced by a new release. Such a

replacement will likely break some of the reusing clients, as

these depend on implementation details that may have changed

in the new release.

 13

 Some authors further distinguish between whiteboxes and glassboxes,

where a whitebox lets you manipulate the implementation, and a glassbox

merely lets you study the implementation.

 14

7. Components vs. Objects

 How does component architecture differ from object architecture?

 An object is built around the following ideas:

o Inheritance

o Needs other objects to be (re)used properly

o The interface defines only methods

o Has only properties (state) and behavior.

 A component differs in the following ways:

o No inheritance (although the object that make up the

component may inherit behavior from other objects, possibly

in other components.

o The component always appears as one of multiple interfaces.

o The interface formalizes properties, events and behavior.

o Easily reused due to its well-defined interface.

o Flat hierarchy: no direct dependencies on other external

objects.

o Guaranteed to function in any configuration.

o Has the ability to describe its own interface at runtime.

 List of properties contrasting Components and Objects:

 15

8. Components in industry verses in-house solutions

 Fixed-price contracts can be agreed on, limiting financial risks.

 Existing software can be customized to business needs.

 Interoperability problems are left to vendor

 In-house developers may not have the required skill. In this case

component vendors may provide better solutions.

 16

9. Component disadvantages

 Must upgrade configuration for next release

 Business processes may have to be changed to suit software

(rather than developing software to suit business processes)

 Fully testing components for integration testing will be

infeasible, customers may have to proceed on a most-likely will

work basis (compare with applets and browsers).

 Components must handle downloading and dynamic (late)

integration with other components.

 Reliance on vendors may make adjustments to software slower.

 17

10. Summary

 Why use components?

 Major elements of a component:

o Specification

o One or more implementations

o Component Model:
 Each of these component models addresses the

following issues:

 How a component makes its services available to

others?

 How component are named?

 How new components and their services are

discovered at runtime.

o A packaging approach:

 Example: 2EE application is packaged as an

Enterprise ARchive (EAR) file, a standard Java JAR

file with an .ear extension.

o A deployment approach:
 J2EE uses deployment descriptors that are defined as in XML

files named ejb-jar.xml.

 Component Architecture

 Blackbox vs. Whitebox

 Components vs. Objects

 Components in industry verses in-house solutions

 Component disadvantages

