

Abdelghani Bellaachia, CSCI 1121 Page: 1

My First C Program

Variables & Constants

1. Objective: ... 2

2. What is C? ... 2

3. Structure of a C program: 4

4. Declarations ... 10

5. Variables & Assignments 10

6. Assignments ... 12

7. Questions/Practice ... 15

8. Identifiers ... 22

Abdelghani Bellaachia, CSCI 1121 Page: 2

1. Objective:

 To understand the structure of a C-language

program.

 To write your first C program.

 To introduce the Include preprocessor command.

 To be able to create good identifiers for objects in a

program.

 To be able to list, describe, and use the C basic data

types.

 To be able to create and use variables and constants.

 To understand input and output concepts.

 To be able to use simple input and output

statements.

2. What is C?

 The C programming language was designed by

Dennis Ritchie at Bell Laboratories in the early

1970s (Headquarters in Murray Hill, New Jersey)

 C is a structured programming language.

 It is considered a high-level language because it

allows the programmer to concentrate on the

Abdelghani Bellaachia, CSCI 1121 Page: 3

problem at hand and not worry about the machine

that the program will be using.

 An December 2015 survey ranking language by

their usage (lines of code written) yielded the

following:

Language Usage by percentage

Java 21%

C 17%

C++ 6%

Python 5%

C# 4%

PHP 3%

Visual Basic .NET 2%

Javascript 2%

Perl 2.2%

Ruby 2%

Assembly language 1%

(Source: http://www.tiobe.com)

http://www.tiobe.com/

Abdelghani Bellaachia, CSCI 1121 Page: 4

3. Structure of a C program:

/* Comments:

this is my first C program

*/

Preprocessor Directives

Global Declarations

// This is the main function

Int main(void) {

Local Declarations

Statements

}

//Other functions.

 My First C program

//A first program in C

#include <stdio.h>

void main(void)

{

 printf("Welcome to C!\n");

}

Abdelghani Bellaachia, CSCI 1121 Page: 5

• Comments & Whitespace

o Used to describe program

o Text surrounded by comments symbols is ignored

by computer

o Two types of comments:

 Single-line comment uses the // symbols

 Multi-line comment uses the /* and */ symbols

o Whitespace

 It is used to make the program more readable.

 It refers to:

 blank spaces between items within a

statement, and

 blank lines between statements.

 A compiler ignores most whitespace.

• Preprocessor Directives

o Tells computer to load contents of a certain file

o Example:

#include <stdio.h>

o stdio.h:

Abdelghani Bellaachia, CSCI 1121 Page: 6

 Allows standard input/output operations file

and console (also a file) Input-Output: scanf,

printf, open, close, read, write, perror, etc.

o stdlib.h:

 Common utility functions: malloc, calloc, strtol,

atoi, etc

o string.h:

 String and byte manipulation: strlen, strcpy,

strcat, memcpy, memset, etc.

o ctype.h:

 Character types: isalnum, isprint, isupport,

tolower, etc.

o errno.h:

 Defines errno used for reporting system errors

o math.h:

 Math functions: ceil, exp, floor, sqrt, etc.

 Example: In class

Abdelghani Bellaachia, CSCI 1121 Page: 7

//gcc 5.4.0

// By A. Bellaachia

// Computer the square root of a number

#include <stdio.h>

#include <math.h>

int main(void)

{

 int value1;

 int value2;

 int sum;

 value2 = 100;

 value1 = 16;

 sum = sqrt(value1) + sqrt(value2);

 printf("The sume is: %d\n", sum);

 return 0;

}

o time.h:

 Time related facility: asctime, clock, time_t,

etc.

Abdelghani Bellaachia, CSCI 1121 Page: 8

 Global Declarations:

o A set of declarations that are used by your program.

o They can be variables or functions.

 int main():

o C programs contain one or more functions, exactly

one of which must be main

o Parenthesis used to indicate a function

o int means that main "returns" an integer value

o Braces ({ and }) indicate a block

o The bodies of all functions must be contained in

braces

o printf("Welcome to C!\n"):

 Instructs computer to perform an action

 Specifically, prints the string of characters

within quotes (“ ”)

 Entire line called a statement

 All statements must end with a semicolon (;)

 Escape character (\):

 Indicates that printf should do something

out of the ordinary \n is the newline

character

 Example: From “Programming in C”, zyBooks

Abdelghani Bellaachia, CSCI 1121 Page: 9

Which statement prints: Welcome!

printf(Welcome!);

printf "Welcome!";

printf("Welcome!");

Which statement prints Hey

followed by a new line?

printf(Hey\n);

printf("Hey"\n);

printf("Hey\n");

o return 0;

 A way to exit a function in this case, means that

the program terminated normally

 Another C program:

o Add two numbers: In class

#include <stdio.h>

int main(void)

{

 int value1;

 int value2;

 int sum;

Abdelghani Bellaachia, CSCI 1121 Page: 10

 value2 = 100;

 value1 = 10;

 sum = value1 + value2;

 printf("The sume is: %d\n", sum);

 return 0;

}

4. Declarations

 To notify the compiler about our needs in term of

memory cells

 Used to create both variables and constants

 A declaration gives the basic underlying type of the

variable and optionally its initial value.

 An unbroken rule of C, never broken:

o C requires that anything you use must have been

previously defined: variables as well as constants,

procedures, functions, and all other entities.

o C never breaks this rule.

5. Variables & Assignments

 A variable represents a memory location used to store

data for your program.

Abdelghani Bellaachia, CSCI 1121 Page: 11

 Each variable is defined by the following attributes:

o A memory cell used to hold its value

o A unique identifier or name (a name given by the

programmer)

o A data type (what type is your variable? a number,

a word, etc.)

 The programmer must define a variable before any

statement that assigns or reads the variable, so that

the variable's memory location is known.

 To ask the compiler to reserve a memory location for

your data, you need a declaration in C.

 Here is a declaration statement:

int value1;

Variable Name: myScore

125.5

Abdelghani Bellaachia, CSCI 1121 Page: 12

o The compiler allocates a memory location for

value1 capable of storing an integer, hence the "int".

6. Assignments

o It is a statement (like a sentence in natural

language):

o An expression may be:

 A number like 80,

 A variable name,

 Or a simple calculation

o Examples:

 value1 = 200;

 value1 = value2;

 value1 = value1+1;

 Etc.

variableName = expression;

Abdelghani Bellaachia, CSCI 1121 Page: 13

 Multiple declarations: In class

//gcc 5.4.0

#include <stdio.h>

// Print an multiple decalarations.

int main(void)

{

 int x, y, z;

 x = 0; y = 10; z = 1000;

 printf(" x: %d\n", x);

 printf(" y: %d\n", y);

 printf(" z: %d\n", z);

}

 The value of a variable may be changed during the

execution of a program:

o value1 = 10;

o value1 = sqrt(400);

 Variable Initialization:

o A good practice is to initialize a variable before

using it.

o Example: In class

Abdelghani Bellaachia, CSCI 1121 Page: 14

//gcc 5.4.0

#include <stdio.h>

// Print an uninitialized varaible.

int main(void)

{

 int myScore;

 //Print myScore before it is initialized. Some compilers

may print garbage.

 printf("My Score is : %d\n", myScore);

 //Initial myScore now

 myScore = 105;

 printf("My Score is : %d\n", myScore);

 return 0;

}

Abdelghani Bellaachia, CSCI 1121 Page: 15

7. Questions/Practice

1. int dogCount;

A. Error

B. No error

2. int amountOwed = -999;

A. Error

B. No error

3. int numYears = 9000111000;

A. Error

B. No error

4. Define an integer variable named numPeople. Do not

initialize the variable.

Abdelghani Bellaachia, CSCI 1121 Page: 16

5. Define an integer variable named numDogs,

initializing the variable to 0 in the definition.

6. Define an integer variable named daysCount,

initializing the variable to 365 in the definition.

7. Write an assignment statement to assign 99 to

numCars.

8. Assign 2300 to houseSize.

9. Assign the current value of numApples to numFruit.

Abdelghani Bellaachia, CSCI 1121 Page: 17

10. The current value in houseRats is 200. Then:

numRodents = houseRats;

executes. You know 200 will be stored in

numRodents. What is the value of houseRats

after the statement executes? Valid answers: 0,

199, 200, or unknown.

11. Assign the result of ballCount - 3 to numItems.

12. dogCount is 5. After

animalsTotal = dogCount - 3;

Abdelghani Bellaachia, CSCI 1121 Page: 18

executes, what is the value in animalsTotal?

13. dogCount is 5. After

animalsTotal = dogCount - 3;

executes, what is the value in dogCount?

14. What is the value of numBooks after both

statements execute?

numBooks = 5;

numBooks = 3;

15. numApples is initially 5. What is numApples

after:

Abdelghani Bellaachia, CSCI 1121 Page: 19

 numApples = numApples + 3;

16. numApples is initially 5. What is numFruit

after:

numFruit = numApples;

numFruit = numFruit + 1;

17. Write a statement ending with - 1 that decreases

variable flyCount's value by 1.

Abdelghani Bellaachia, CSCI 1121 Page: 20

18. What is the value of each assignment in the

following code:

w = 1;

y = 2;

z = 4;

x = y + 1;

w = 2 - x;

z = w * y;

19. What is the value of each assignment in the

following code:

x = 4;

y = 0;

z = 3;

x = x - 3;

y = y + x;

z = z * y;

20. What is the value of each assignment in the

following code:

x = 6;

y = -2;

Abdelghani Bellaachia, CSCI 1121 Page: 21

y = x + x;

w = y * x;

z = w - y;

21. What is the value of each assignment in the

following code:

w = -2;

x = -7;

y = -8;

z = x - y;

z = z * w;

z = z / w;

Abdelghani Bellaachia, CSCI 1121 Page: 22

8. Identifiers

 An identifier is the name a programmer gives to a

variable or a function.

 The characters used to create an identifier are:

o Letters: a-z and A-Z,

o Digits: 0-9

o Underscore character: "_"

 The name of an identifier must start with a letter.

 C is a case-sensitive language

 Examples:

o Valid identifiers:

 c, cat, Cat, n1m1, short1, and _hello.

 Note that cat and Cat are different identifiers.

o Invalid identifiers:

 42c (starts with a digit)

 hi there (has a disallowed symbol: space),

 cat! (has a disallowed symbol: !).

 Reserved Names (keywords):

o A reserved word is a word that is part of the

language, like int, short, or double.

Abdelghani Bellaachia, CSCI 1121 Page: 23

o A programmer cannot use a reserved word as an

identifier.

o A list of reserved words appears at the end of this

section. (https://www.programiz.com)

auto else Long Switch

break enum Register Typedef

case extern Return Union

char float Short Unsigned

const for Signed Void

continue goto Sizeof Volatile

default if Static While

do int Struct _Packed

double

