

Abdelghani Bellaachia, CSCI 1121 Page: 1

Data Types & Arithmetic Expressions

1. Objective .. 2

2. Data Types ... 2

3. Integers .. 3

4. Real numbers ... 3

5. Characters and strings .. 5

6. Basic Data Types Sizes: In Class 7

7. Constant Variables ... 9

8. Questions/Practice ... 11

9. Input Statement .. 12

10. Arithmetic Expressions 16

11. Questions/Practice ... 21

12. Shorthand operators ... 22

13. Questions/Practice ... 26

14. Type conversions ... 28

Abdelghani Bellaachia, CSCI 1121 Page: 2

1. Objective

 To be able to list, describe, and use the C basic data

types.

 To be able to create and use variables and constants.

 To be able to use simple input and output

statements.

 Learn about type conversion.

2. Data Types

 A type defines by the following:

o A set of values

o A set of operations

 C offers three basic data types:

o Integers defined with the keyword int

o Characters defined with the keyword char

o Real or floating point numbers defined with the

keywords float or double.

Abdelghani Bellaachia, CSCI 1121 Page: 3

3. Integers

 positive or negative whole numbers

 Thre are three types of integers:

o “int”,

o “short int” (which can be abbreviated “short”)

o “long int” (which can be abbreviated “long”).

 Example:
 int myVarInt;

 int myDistance;

 myVarInt = 16;

 myDistance = 4;

 printf("myVarInt:%d\n", myVarInt);

 printf("myVarInt:%i\n", myVarInt);

 printf("myDistance:%d\n", myDistance);

 printf("myDistance:%i\n", myDistance);

4. Real numbers

 There is an infinite number of real numbers, but

they are represented with a finite number of bits in

the computer.

 There are two main types:

 “float”

Abdelghani Bellaachia, CSCI 1121 Page: 4

 “double”.

 Real numbers defined with “double” are

represented with a size double of those declared as

“float”.

 The difference is the amount of precision

used to represent the numbers internally.

 Example:

float a = 3.5;

double b = -5.4e-12;

long double c = 3.54e320;

 Print a real number:

 double myVard;

 float myVarf;

 long double myVarld = 3.54e30;

 myVard = 9.72;

 myVarf = 9.72;

 myVarld = 3.54e30;

 printf("This is a double:%f\n", myVard);

 printf("This is a double:%e\n", myVard);

 printf("This is a float:%f\n", myVarf);

 printf("This is a float:%e\n", myVarf);

 printf("This is a long double:%Le\n", myVarld);

Abdelghani Bellaachia, CSCI 1121 Page: 5

5. Characters and strings

o Character:

 The variables of type character are declared

as “char”.

 To refer to a character, the symbol must be

surrounded by simple quotes: 'M'.

 Characters are internally represented as

numbers and the C language allows

arithmetic operations with them such as 'M' +

25.

 Print a character:

 char myChar;

 myChar = 'A';

 printf("This is a character:%c\n", myChar);

 myChar = 'A'+1;

 printf("This is a character:%c\n", myChar);

 myChar = 'A'+2;

 printf("This is a character:%c\n", myChar);

Abdelghani Bellaachia, CSCI 1121 Page: 6

o String:

 The strings are represented as tables of

“char”.

 The library functions to manipulate strings all

assume that the last byte of the chain has

value zero.

 The strings are written in the program

surrounded by double quotes and contain the

value zero at the end.

 Print a character:
 char myText1 [30]="I am printing a string";

 char myText2 [20]="I am printing a string";

 char myText3 [10]="I am printing a string";

 printf("mText1:%s\n", myText1);

 printf("mText2:%s\n", myText2);

 printf("mText3:%s\n", myText3);

Abdelghani Bellaachia, CSCI 1121 Page: 7

6. Basic Data Types Sizes: In Class

o The C programming languages does not define a

fixed size for the basic data types.

o The size of each data type depends on the

implementation.

Type Bits Sign Range

Char 8 Unsigned 0 .. 255

signed char 8 Signed -128 .. 127

unsigned

short

16 Unsigned 0 .. 65,535

short 16 Signed -32,768 .. 32,767

unsigned int 32 Unsigned 0 .. 4,294,967,295

Int 16

OR

32

Signed -32,768 to 32,767

OR

-2,147,483,648 .. 2,147,483,647

unsigned

long long

64 Unsigned 0 .. 18,446,744,073,709,551,615

long long 64 Signed -9,223,372,036,854,775,808 ..

9,223,372,036,854,775,807

Abdelghani Bellaachia, CSCI 1121 Page: 8

o Example:

//gcc 5.4.0

#include <stdio.h>

// size of basic data types in C

int main(void)

{

 int answer;

 short myFirst = 1;

 long mySecond = 2;

 float myThird = 3.0;

 double myFourth = 4.4;

 long double myFifth = 5.54;

 char myCharacter = 'p';

 /* The size of various types */

 printf("The size of int %zu\n", sizeof(answer));

 printf("The size of short %zu\n", sizeof(myFirst));

 printf("The size of long %zu\n", sizeof(mySecond));

 printf("The size of float %zu\n", sizeof(myThird));

 printf("The size of double %zu\n", sizeof(myFourth));

 printf("The size of long double %zu\n", sizeof(myFifth));

 printf("The size of char %zu\n", sizeof(myCharacter));

 return 0;

}

Abdelghani Bellaachia, CSCI 1121 Page: 9

7. Constant Variables

o Constants refer to fixed values that the program

may not alter during its execution. These fixed

values are also called literals:

 Integer Literals: can any number. e.g.,

integers, reals, etc.

 Character Literals: any character and are

enclosed in single quotes, e.g., 'x' .

 String Literals: any sequence of character

and are enclosed in double quotes "".

o A good practice is to minimize the use of

literal numbers in code.

o One reason is to improve code readability.

o A common convention, or good practice, is to

name constant variables using upper case letters,

to make constant variables clearly visible in code.

o There are two simple ways in C to define

constants:

 Using #define preprocessor.

 Using const keyword.

Abdelghani Bellaachia, CSCI 1121 Page: 10

o Examples:

const int MAXRATE = 10; /*int constant*/

const float PI = 3.14; /*Real constant*/

const char MYCHARACTER = 'A'; /*char constant*/

const char MYAREA[10] = "Tysons Corner"; /*string constant*/

const double SPEED_OF_SOUND = 761.207; // Miles/hour (sea level)

const double SECONDS_PER_HOUR = 3600.0; // Secs/hour

#define NEWLINE '\n'

Abdelghani Bellaachia, CSCI 1121 Page: 11

8. Questions/Practice

1. The number of cars in a parking lot.

double

int

2. The current temperature in Celsius.

double

int

3. A person's height in centimeters.

double

int

4. The number of hairs on a person's head.

double

int

5. The average number of kids per household.

double

int

Abdelghani Bellaachia, CSCI 1121 Page: 12

9. Input Statement

o In C programming language, scanf() function

is used to read character, string, numeric data

from keyboard.

o scanf() is a predefined function in "stdio.h"

header file.

o Syntax:

 scanf("format specifiers",&value1,&value2,.....);

 Example 1:

//gcc 5.4.0

#include <stdio.h>

int main(void)

{

int a;

float b;

scanf("%d%f",&a,&b);

printf("a:%d ---- b:%f", a, b);

}

Abdelghani Bellaachia, CSCI 1121 Page: 13

 Example 2:

//gcc 5.4.0

#include <stdio.h>

int main(void)

{

 char ch;

 char str[100];

 printf("Enter any character \n");

 scanf("%c", &ch);

 printf("Entered character is %c \n", ch);

 printf("Enter any string (upto 100 character) \n");

 scanf("%s", &str);

 printf("Entered string is %s \n", str);

}

 Example 3:

//gcc 5.4.0

#include <stdio.h>

int main(void)

{

 int x , y;

 printf("Enter a value for x:");

 scanf("%d\n", &x);

 printf("%d\n", x);

 printf("Enter a value for y:");

 scanf("%d\n", &y);

Abdelghani Bellaachia, CSCI 1121 Page: 14

 printf("%d\n", y);

 printf("The sum of x and y is: %d\n", x+y);

}

 Format specifiers for printf() and scanf()

statements.

Format

specifier
Data type Notes

%c char Prints or reads a single ASCII character

%d int Prints or reads a decimal integer values.

%hd short Prints or reads a short signed integer.

%ld long Prints or reads a long signed integer.

%lld long long Prints or reads a long long signed integer.

%u unsigned int Prints or reads an unsigned integer.

%hu unsigned short Prints or reads an unsigned short integer.

%lu unsigned long Prints or reads an unsigned long integer.

%llu
unsigned long

long

Prints or reads an unsigned long long

integer.

%f float Prints or reads a float floating-point value.

%lf double
Prints or reads a double floating-point

value (lf stands for long float).

Abdelghani Bellaachia, CSCI 1121 Page: 15

%s string

printf() will print the contents of a string

up to the null character. scanf() will read a

string of characters from the user input

until a whitespace character (a space, tab,

or newline) is reached.

%% Prints the % character.

Abdelghani Bellaachia, CSCI 1121 Page: 16

10. Arithmetic Expressions

o As in most languages, C programs specify

computation in the form of arithmetic expressions

that closely resemble expressions in mathematics.

o The most common operators in C are the ones that

specify arithmetic computation:

Arithmetic operator Description

+ addition

- subtraction

* multiplication

/ division

% modulo (remainder)

 Binary Operators:

o Operators in C usually appear between two

subexpressions, which are called its operands.

Operators that take two operands are called

binary operators:

Operand operator Operand

 A + B

o Unary Operator:

Abdelghani Bellaachia, CSCI 1121 Page: 17

 The - operator can also appear as a unary

operator, as in the expression -x, which

denotes the negative of x.

 Precedence rules for arithmetic operators:

Convention Description Explanation

()
Items within parentheses are

evaluated first

In 2 * (A + 1), A + 1 is

computed first, with the result

then multiplied by 2.

unary -
- used as a negative (unary

minus) is next

In 2 * -A, -A is computed first,

with the result then multiplied

by 2.

* / %

Next to be evaluated are *, /,

and %, having equal

precedence.

+ -
Finally come + and - with

equal precedence.

In B = 3 + 2 * A, 2 * A is

evaluated first, with the result

then added to 3, because * has

higher precedence than +.

left-to-right

If more than one operator of

equal precedence could be

evaluated, evaluation occurs

left to right.

In B = A * 2 / 3, A * 2 is first

evaluated, with the result then

divided by 3.

Abdelghani Bellaachia, CSCI 1121 Page: 18

o Example: In Class

 Compute the solutions of a quadratic equation

//gcc 5.4.0

#include <stdio.h>

#include <math.h>

int main(void)

{

 // y = ax**2+bx+c

 //Compute quadratic formula

 // [-b+/-squareroot(b**2-4ac)]/2*a

 int a = 1;

 int b = 0;

 int c = -1;

 double discriminant = powf(b,2) - 4*a*c;

 double x = sqrt(discriminant);

 double solution1 = (-b + x)/(2*a);

 double solution2 = (-b - x)/(2*a);

 printf("solution1: %f\n", solution1);

 printf("solution2: %f\n", solution2);

 return 0;

}

Abdelghani Bellaachia, CSCI 1121 Page: 19

 An example of Modulo operator:

//gcc 5.4.0

#include <stdio.h>

int main(void)

{

 int x = 89;

 printf("The reminder of the division of %d by 10 = %d\n",x, x % 10);

 x = 9;

 printf("The reminder of the division of %d by 10 = %d\n",x, x % 10);

 x = 20;

 printf("The reminder of the division of %d by 10 = %d\n",x, x % 10);

 //How to find out if a number is even

 x = 3488;

 printf("The reminder of the division of %d by 2 = %d\n",x, x % 2);

 x = 3489;

 printf("The reminder of the division of %d by 2 = %d\n",x, x % 2);

 return 0;

}

Abdelghani Bellaachia, CSCI 1121 Page: 20

o Random Numbers

//gcc 5.4.0

#include <stdio.h>

#include <stdlib.h> // Enables use of rand()

int main(void) {

 int myRand;

 printf("Four rolls of a dice...\n");

 // rand() % 6 yields 0, 1, 2, 3, 4, or 5

 // so + 1 makes that 1, 2, 3, 4, 5, or 6

 myRand = rand();

 printf("Random Number = %d\n", myRand);

 printf("%d\n", ((myRand % 6) + 1));

 myRand = rand();

 printf("Random Number = %d\n", myRand);

 printf("%d\n", ((myRand % 6) + 1));

 myRand = rand();

 printf("Random Number = %d\n", myRand);

 printf("%d\n", ((myRand % 6) + 1));

 myRand = rand();

 printf("Random Number = %d\n", myRand);

 printf("%d\n", ((myRand % 6) + 1));

 return 0;

}

Abdelghani Bellaachia, CSCI 1121 Page: 21

11. Questions/Practice

o Write a program that reads two integers and print

their sum.

o Write a program that computes the area of a

circle. Given the radius of a circle, the area is:

𝜋*R2

 Where R is the radium and 𝜋 = 3.14.

o Write a program that computes the volume of a

sphere. Given the radius of the sphere, the volume

is:

(4.0 / 3.0) π R3

 Where R is the radium and 𝜋 = 3.14.

Abdelghani Bellaachia, CSCI 1121 Page: 22

12. Shorthand operators

 A shorthand operator is a shorter way to express an

expression.

 Shorthand operators +=, -=, *=, /= and *=

o Frequent expressions:

x is a variable in the program
Operator Name Example Equivalent construct

+= Addition assignment x += 4; x = x + 4;

-= Subtraction assignment x -= 4; x = x - 4;

*= Multiplication assignment x *= 4; x = x * 4;

/= Division assignment x /= 4; x = x / 4;

%= Remainder assignment x %= 4; x = x % 4;

 Special Statements: Increment and decrement

operators:

Operator Name Example Equivalent construct

++ Increment x++; x = x + 1;

-- Decrement x--; x = x - 1;

Abdelghani Bellaachia, CSCI 1121 Page: 23

 Example:

//gcc 5.4.0

#include <stdio.h>

int main(void)

{

 int x;

 int y;

 x = 7;

 printf("x=%d\n",x);

 x++;

 printf("x before incrementing x=%d\n\n",x);

 x = 7;

 printf("x=%d\n",x);

 ++x;

 printf("x after incrementing x=%d\n\n",x);

 x = 7;

 printf("x=%d\n",x);

 x--;

 printf("x before decrementing x=%d\n\n",x);

 x = 7;

 printf("x=%d\n",x);

 --x;

 printf("x after decrementing x=%d\n\n",x);

Abdelghani Bellaachia, CSCI 1121 Page: 24

 y = x;

 printf("y=%d\n",y);

 y = x++;

 printf("y before incrementing x=%d\n\n",y);

 y = x;

 printf("y=%d\n",y);

 y = ++x;

 printf("y after incrementing x=%d\n\n",y);

 y = x;

 printf("y=%d\n",y);

 y = x--;

 printf("y before decrementing c=%d\n\n",y);

 y = x;

 printf("y=%d\n",y);

 y = --x;

 printf("y after decrementing x=%d\n",y);

 return 0;

}

//gcc 5.4.0

#include <stdio.h>

int main(void)

{

Abdelghani Bellaachia, CSCI 1121 Page: 25

 int x;

 int y;

 x = 7;

 y = 8;

 printf("x=%d\n",x);

 printf("y=%d\n",y);

 x *=y;

 printf("x=%d\n\n",x);

 x = 7;

 y = 8;

 x *=--y;

 printf("x=%d\n\n",x);

 x = 7;

 y = 8;

 x *=y--;

 printf("x=%d\n\n",x);

 return 0;

}

Abdelghani Bellaachia, CSCI 1121 Page: 26

13. Questions/Practice

1. numAtoms is initially 7. What is numAtoms

after: numAtoms += 5?

2. numAtoms is initially 7. What is numAtoms

after: numAtoms *= 2?

3. Rewrite the statement using a compound

operator, or type “Not possible”

carCount = carCount / 2;

4. Rewrite the statement using a compound

operator, or type “Not possible”

numItems = boxCount + 1;

Abdelghani Bellaachia, CSCI 1121 Page: 27

5. A drink costs 2 dollars. A taco costs 3 dollars.

Given the number of each, compute total cost

and assign to totalCost. Ex: 4 drinks and 6

tacos yields totalCost of 26.

#include <stdio.h>

int main(void) {

 int numDrinks = 0;

 int numTacos = 0;

 int totalCost = 0;

 numDrinks = 4;

 numTacos = 6;

 /* Your solution goes here */

 printf("Total cost: %d\n", totalCost);

 return 0;

}

Abdelghani Bellaachia, CSCI 1121 Page: 28

14. Type conversions

 A type conversion (also known as type casting,

and type coercion) is a conversion of one data type

to another, such as an int to a double.

 It is needed when the types of an expression are not

compatible:

//gcc 5.4.0

#include <stdio.h>

const int MULT = 5;

int main(void)

{

 int x;

 double y;

 float z = 3.597;

 x = MULT * z;

 y = MULT * z;

 printf("x=%d\n", x);

 printf("y=%f\n", y);

 return 0;

}

Abdelghani Bellaachia, CSCI 1121 Page: 29

 There are two types of type conversions:

o Implicit conversion (Also known as

coercion): When the compiler automatically

performs several common conversions

between int and double types.

o Explicit conversion (Also known as casting):

When the user decides the type of the

conversion (the desired type)

 For assignment =, the right side type is converted

to the left side type.

o int-to-double conversion is straightforward

 25 becomes 25.0.

o double-to-int conversion just drops the

fraction:

 4.9 becomes 4.

Abdelghani Bellaachia, CSCI 1121 Page: 30

 Arithmetic Expressions:

o Conversions are implicitly performed to cast

their values to a common type, if the user does

not specify any casting.

o The compiler user the hierarchy:

