

Abdelghani Bellaachia, CSCI 1121 Page: 1

Data Types & Arithmetic Expressions

1. Objective .. 2

2. Data Types ... 2

3. Integers .. 3

4. Real numbers ... 3

5. Characters and strings .. 5

6. Basic Data Types Sizes: In Class 7

7. Constant Variables ... 9

8. Questions/Practice ... 11

9. Input Statement .. 12

10. Arithmetic Expressions 16

11. Questions/Practice ... 21

12. Shorthand operators ... 22

13. Questions/Practice ... 26

14. Type conversions ... 28

Abdelghani Bellaachia, CSCI 1121 Page: 2

1. Objective

 To be able to list, describe, and use the C basic data

types.

 To be able to create and use variables and constants.

 To be able to use simple input and output

statements.

 Learn about type conversion.

2. Data Types

 A type defines by the following:

o A set of values

o A set of operations

 C offers three basic data types:

o Integers defined with the keyword int

o Characters defined with the keyword char

o Real or floating point numbers defined with the

keywords float or double.

Abdelghani Bellaachia, CSCI 1121 Page: 3

3. Integers

 positive or negative whole numbers

 Thre are three types of integers:

o “int”,

o “short int” (which can be abbreviated “short”)

o “long int” (which can be abbreviated “long”).

 Example:
 int myVarInt;

 int myDistance;

 myVarInt = 16;

 myDistance = 4;

 printf("myVarInt:%d\n", myVarInt);

 printf("myVarInt:%i\n", myVarInt);

 printf("myDistance:%d\n", myDistance);

 printf("myDistance:%i\n", myDistance);

4. Real numbers

 There is an infinite number of real numbers, but

they are represented with a finite number of bits in

the computer.

 There are two main types:

 “float”

Abdelghani Bellaachia, CSCI 1121 Page: 4

 “double”.

 Real numbers defined with “double” are

represented with a size double of those declared as

“float”.

 The difference is the amount of precision

used to represent the numbers internally.

 Example:

float a = 3.5;

double b = -5.4e-12;

long double c = 3.54e320;

 Print a real number:

 double myVard;

 float myVarf;

 long double myVarld = 3.54e30;

 myVard = 9.72;

 myVarf = 9.72;

 myVarld = 3.54e30;

 printf("This is a double:%f\n", myVard);

 printf("This is a double:%e\n", myVard);

 printf("This is a float:%f\n", myVarf);

 printf("This is a float:%e\n", myVarf);

 printf("This is a long double:%Le\n", myVarld);

Abdelghani Bellaachia, CSCI 1121 Page: 5

5. Characters and strings

o Character:

 The variables of type character are declared

as “char”.

 To refer to a character, the symbol must be

surrounded by simple quotes: 'M'.

 Characters are internally represented as

numbers and the C language allows

arithmetic operations with them such as 'M' +

25.

 Print a character:

 char myChar;

 myChar = 'A';

 printf("This is a character:%c\n", myChar);

 myChar = 'A'+1;

 printf("This is a character:%c\n", myChar);

 myChar = 'A'+2;

 printf("This is a character:%c\n", myChar);

Abdelghani Bellaachia, CSCI 1121 Page: 6

o String:

 The strings are represented as tables of

“char”.

 The library functions to manipulate strings all

assume that the last byte of the chain has

value zero.

 The strings are written in the program

surrounded by double quotes and contain the

value zero at the end.

 Print a character:
 char myText1 [30]="I am printing a string";

 char myText2 [20]="I am printing a string";

 char myText3 [10]="I am printing a string";

 printf("mText1:%s\n", myText1);

 printf("mText2:%s\n", myText2);

 printf("mText3:%s\n", myText3);

Abdelghani Bellaachia, CSCI 1121 Page: 7

6. Basic Data Types Sizes: In Class

o The C programming languages does not define a

fixed size for the basic data types.

o The size of each data type depends on the

implementation.

Type Bits Sign Range

Char 8 Unsigned 0 .. 255

signed char 8 Signed -128 .. 127

unsigned

short

16 Unsigned 0 .. 65,535

short 16 Signed -32,768 .. 32,767

unsigned int 32 Unsigned 0 .. 4,294,967,295

Int 16

OR

32

Signed -32,768 to 32,767

OR

-2,147,483,648 .. 2,147,483,647

unsigned

long long

64 Unsigned 0 .. 18,446,744,073,709,551,615

long long 64 Signed -9,223,372,036,854,775,808 ..

9,223,372,036,854,775,807

Abdelghani Bellaachia, CSCI 1121 Page: 8

o Example:

//gcc 5.4.0

#include <stdio.h>

// size of basic data types in C

int main(void)

{

 int answer;

 short myFirst = 1;

 long mySecond = 2;

 float myThird = 3.0;

 double myFourth = 4.4;

 long double myFifth = 5.54;

 char myCharacter = 'p';

 /* The size of various types */

 printf("The size of int %zu\n", sizeof(answer));

 printf("The size of short %zu\n", sizeof(myFirst));

 printf("The size of long %zu\n", sizeof(mySecond));

 printf("The size of float %zu\n", sizeof(myThird));

 printf("The size of double %zu\n", sizeof(myFourth));

 printf("The size of long double %zu\n", sizeof(myFifth));

 printf("The size of char %zu\n", sizeof(myCharacter));

 return 0;

}

Abdelghani Bellaachia, CSCI 1121 Page: 9

7. Constant Variables

o Constants refer to fixed values that the program

may not alter during its execution. These fixed

values are also called literals:

 Integer Literals: can any number. e.g.,

integers, reals, etc.

 Character Literals: any character and are

enclosed in single quotes, e.g., 'x' .

 String Literals: any sequence of character

and are enclosed in double quotes "".

o A good practice is to minimize the use of

literal numbers in code.

o One reason is to improve code readability.

o A common convention, or good practice, is to

name constant variables using upper case letters,

to make constant variables clearly visible in code.

o There are two simple ways in C to define

constants:

 Using #define preprocessor.

 Using const keyword.

Abdelghani Bellaachia, CSCI 1121 Page: 10

o Examples:

const int MAXRATE = 10; /*int constant*/

const float PI = 3.14; /*Real constant*/

const char MYCHARACTER = 'A'; /*char constant*/

const char MYAREA[10] = "Tysons Corner"; /*string constant*/

const double SPEED_OF_SOUND = 761.207; // Miles/hour (sea level)

const double SECONDS_PER_HOUR = 3600.0; // Secs/hour

#define NEWLINE '\n'

Abdelghani Bellaachia, CSCI 1121 Page: 11

8. Questions/Practice

1. The number of cars in a parking lot.

double

int

2. The current temperature in Celsius.

double

int

3. A person's height in centimeters.

double

int

4. The number of hairs on a person's head.

double

int

5. The average number of kids per household.

double

int

Abdelghani Bellaachia, CSCI 1121 Page: 12

9. Input Statement

o In C programming language, scanf() function

is used to read character, string, numeric data

from keyboard.

o scanf() is a predefined function in "stdio.h"

header file.

o Syntax:

 scanf("format specifiers",&value1,&value2,.....);

 Example 1:

//gcc 5.4.0

#include <stdio.h>

int main(void)

{

int a;

float b;

scanf("%d%f",&a,&b);

printf("a:%d ---- b:%f", a, b);

}

Abdelghani Bellaachia, CSCI 1121 Page: 13

 Example 2:

//gcc 5.4.0

#include <stdio.h>

int main(void)

{

 char ch;

 char str[100];

 printf("Enter any character \n");

 scanf("%c", &ch);

 printf("Entered character is %c \n", ch);

 printf("Enter any string (upto 100 character) \n");

 scanf("%s", &str);

 printf("Entered string is %s \n", str);

}

 Example 3:

//gcc 5.4.0

#include <stdio.h>

int main(void)

{

 int x , y;

 printf("Enter a value for x:");

 scanf("%d\n", &x);

 printf("%d\n", x);

 printf("Enter a value for y:");

 scanf("%d\n", &y);

Abdelghani Bellaachia, CSCI 1121 Page: 14

 printf("%d\n", y);

 printf("The sum of x and y is: %d\n", x+y);

}

 Format specifiers for printf() and scanf()

statements.

Format

specifier
Data type Notes

%c char Prints or reads a single ASCII character

%d int Prints or reads a decimal integer values.

%hd short Prints or reads a short signed integer.

%ld long Prints or reads a long signed integer.

%lld long long Prints or reads a long long signed integer.

%u unsigned int Prints or reads an unsigned integer.

%hu unsigned short Prints or reads an unsigned short integer.

%lu unsigned long Prints or reads an unsigned long integer.

%llu
unsigned long

long

Prints or reads an unsigned long long

integer.

%f float Prints or reads a float floating-point value.

%lf double
Prints or reads a double floating-point

value (lf stands for long float).

Abdelghani Bellaachia, CSCI 1121 Page: 15

%s string

printf() will print the contents of a string

up to the null character. scanf() will read a

string of characters from the user input

until a whitespace character (a space, tab,

or newline) is reached.

%% Prints the % character.

Abdelghani Bellaachia, CSCI 1121 Page: 16

10. Arithmetic Expressions

o As in most languages, C programs specify

computation in the form of arithmetic expressions

that closely resemble expressions in mathematics.

o The most common operators in C are the ones that

specify arithmetic computation:

Arithmetic operator Description

+ addition

- subtraction

* multiplication

/ division

% modulo (remainder)

 Binary Operators:

o Operators in C usually appear between two

subexpressions, which are called its operands.

Operators that take two operands are called

binary operators:

Operand operator Operand

 A + B

o Unary Operator:

Abdelghani Bellaachia, CSCI 1121 Page: 17

 The - operator can also appear as a unary

operator, as in the expression -x, which

denotes the negative of x.

 Precedence rules for arithmetic operators:

Convention Description Explanation

()
Items within parentheses are

evaluated first

In 2 * (A + 1), A + 1 is

computed first, with the result

then multiplied by 2.

unary -
- used as a negative (unary

minus) is next

In 2 * -A, -A is computed first,

with the result then multiplied

by 2.

* / %

Next to be evaluated are *, /,

and %, having equal

precedence.

+ -
Finally come + and - with

equal precedence.

In B = 3 + 2 * A, 2 * A is

evaluated first, with the result

then added to 3, because * has

higher precedence than +.

left-to-right

If more than one operator of

equal precedence could be

evaluated, evaluation occurs

left to right.

In B = A * 2 / 3, A * 2 is first

evaluated, with the result then

divided by 3.

Abdelghani Bellaachia, CSCI 1121 Page: 18

o Example: In Class

 Compute the solutions of a quadratic equation

//gcc 5.4.0

#include <stdio.h>

#include <math.h>

int main(void)

{

 // y = ax**2+bx+c

 //Compute quadratic formula

 // [-b+/-squareroot(b**2-4ac)]/2*a

 int a = 1;

 int b = 0;

 int c = -1;

 double discriminant = powf(b,2) - 4*a*c;

 double x = sqrt(discriminant);

 double solution1 = (-b + x)/(2*a);

 double solution2 = (-b - x)/(2*a);

 printf("solution1: %f\n", solution1);

 printf("solution2: %f\n", solution2);

 return 0;

}

Abdelghani Bellaachia, CSCI 1121 Page: 19

 An example of Modulo operator:

//gcc 5.4.0

#include <stdio.h>

int main(void)

{

 int x = 89;

 printf("The reminder of the division of %d by 10 = %d\n",x, x % 10);

 x = 9;

 printf("The reminder of the division of %d by 10 = %d\n",x, x % 10);

 x = 20;

 printf("The reminder of the division of %d by 10 = %d\n",x, x % 10);

 //How to find out if a number is even

 x = 3488;

 printf("The reminder of the division of %d by 2 = %d\n",x, x % 2);

 x = 3489;

 printf("The reminder of the division of %d by 2 = %d\n",x, x % 2);

 return 0;

}

Abdelghani Bellaachia, CSCI 1121 Page: 20

o Random Numbers

//gcc 5.4.0

#include <stdio.h>

#include <stdlib.h> // Enables use of rand()

int main(void) {

 int myRand;

 printf("Four rolls of a dice...\n");

 // rand() % 6 yields 0, 1, 2, 3, 4, or 5

 // so + 1 makes that 1, 2, 3, 4, 5, or 6

 myRand = rand();

 printf("Random Number = %d\n", myRand);

 printf("%d\n", ((myRand % 6) + 1));

 myRand = rand();

 printf("Random Number = %d\n", myRand);

 printf("%d\n", ((myRand % 6) + 1));

 myRand = rand();

 printf("Random Number = %d\n", myRand);

 printf("%d\n", ((myRand % 6) + 1));

 myRand = rand();

 printf("Random Number = %d\n", myRand);

 printf("%d\n", ((myRand % 6) + 1));

 return 0;

}

Abdelghani Bellaachia, CSCI 1121 Page: 21

11. Questions/Practice

o Write a program that reads two integers and print

their sum.

o Write a program that computes the area of a

circle. Given the radius of a circle, the area is:

𝜋*R2

 Where R is the radium and 𝜋 = 3.14.

o Write a program that computes the volume of a

sphere. Given the radius of the sphere, the volume

is:

(4.0 / 3.0) π R3

 Where R is the radium and 𝜋 = 3.14.

Abdelghani Bellaachia, CSCI 1121 Page: 22

12. Shorthand operators

 A shorthand operator is a shorter way to express an

expression.

 Shorthand operators +=, -=, *=, /= and *=

o Frequent expressions:

x is a variable in the program
Operator Name Example Equivalent construct

+= Addition assignment x += 4; x = x + 4;

-= Subtraction assignment x -= 4; x = x - 4;

*= Multiplication assignment x *= 4; x = x * 4;

/= Division assignment x /= 4; x = x / 4;

%= Remainder assignment x %= 4; x = x % 4;

 Special Statements: Increment and decrement

operators:

Operator Name Example Equivalent construct

++ Increment x++; x = x + 1;

-- Decrement x--; x = x - 1;

Abdelghani Bellaachia, CSCI 1121 Page: 23

 Example:

//gcc 5.4.0

#include <stdio.h>

int main(void)

{

 int x;

 int y;

 x = 7;

 printf("x=%d\n",x);

 x++;

 printf("x before incrementing x=%d\n\n",x);

 x = 7;

 printf("x=%d\n",x);

 ++x;

 printf("x after incrementing x=%d\n\n",x);

 x = 7;

 printf("x=%d\n",x);

 x--;

 printf("x before decrementing x=%d\n\n",x);

 x = 7;

 printf("x=%d\n",x);

 --x;

 printf("x after decrementing x=%d\n\n",x);

Abdelghani Bellaachia, CSCI 1121 Page: 24

 y = x;

 printf("y=%d\n",y);

 y = x++;

 printf("y before incrementing x=%d\n\n",y);

 y = x;

 printf("y=%d\n",y);

 y = ++x;

 printf("y after incrementing x=%d\n\n",y);

 y = x;

 printf("y=%d\n",y);

 y = x--;

 printf("y before decrementing c=%d\n\n",y);

 y = x;

 printf("y=%d\n",y);

 y = --x;

 printf("y after decrementing x=%d\n",y);

 return 0;

}

//gcc 5.4.0

#include <stdio.h>

int main(void)

{

Abdelghani Bellaachia, CSCI 1121 Page: 25

 int x;

 int y;

 x = 7;

 y = 8;

 printf("x=%d\n",x);

 printf("y=%d\n",y);

 x *=y;

 printf("x=%d\n\n",x);

 x = 7;

 y = 8;

 x *=--y;

 printf("x=%d\n\n",x);

 x = 7;

 y = 8;

 x *=y--;

 printf("x=%d\n\n",x);

 return 0;

}

Abdelghani Bellaachia, CSCI 1121 Page: 26

13. Questions/Practice

1. numAtoms is initially 7. What is numAtoms

after: numAtoms += 5?

2. numAtoms is initially 7. What is numAtoms

after: numAtoms *= 2?

3. Rewrite the statement using a compound

operator, or type “Not possible”

carCount = carCount / 2;

4. Rewrite the statement using a compound

operator, or type “Not possible”

numItems = boxCount + 1;

Abdelghani Bellaachia, CSCI 1121 Page: 27

5. A drink costs 2 dollars. A taco costs 3 dollars.

Given the number of each, compute total cost

and assign to totalCost. Ex: 4 drinks and 6

tacos yields totalCost of 26.

#include <stdio.h>

int main(void) {

 int numDrinks = 0;

 int numTacos = 0;

 int totalCost = 0;

 numDrinks = 4;

 numTacos = 6;

 /* Your solution goes here */

 printf("Total cost: %d\n", totalCost);

 return 0;

}

Abdelghani Bellaachia, CSCI 1121 Page: 28

14. Type conversions

 A type conversion (also known as type casting,

and type coercion) is a conversion of one data type

to another, such as an int to a double.

 It is needed when the types of an expression are not

compatible:

//gcc 5.4.0

#include <stdio.h>

const int MULT = 5;

int main(void)

{

 int x;

 double y;

 float z = 3.597;

 x = MULT * z;

 y = MULT * z;

 printf("x=%d\n", x);

 printf("y=%f\n", y);

 return 0;

}

Abdelghani Bellaachia, CSCI 1121 Page: 29

 There are two types of type conversions:

o Implicit conversion (Also known as

coercion): When the compiler automatically

performs several common conversions

between int and double types.

o Explicit conversion (Also known as casting):

When the user decides the type of the

conversion (the desired type)

 For assignment =, the right side type is converted

to the left side type.

o int-to-double conversion is straightforward

 25 becomes 25.0.

o double-to-int conversion just drops the

fraction:

 4.9 becomes 4.

Abdelghani Bellaachia, CSCI 1121 Page: 30

 Arithmetic Expressions:

o Conversions are implicitly performed to cast

their values to a common type, if the user does

not specify any casting.

o The compiler user the hierarchy:

