

Abdelghani Bellaachia, CSCI 1121 Page: 1

C Pointers

1. Objective ... 2

2. Introduction... 2

3. Pointer Variable Declarations and Initialization 3

4. Reference operator (&) and Dereference operator

(*) 6

5. Relation between Arrays and Pointers 8

6. Dynamic Memory Allocation 10

7. Call by reference ... 18

Abdelghani Bellaachia, CSCI 1121 Page: 2

1. Objective

 What is C structure?

 When to use structures.

 Syntax of a structure.

 How to declare variable of type structure?

 Fields of a structure and how to initialize them.

 How to manipulate structure type

2. Introduction

 Static vs. Dynamic variables

o Static variables:

 Size is fix throughput the execution

 Size is known at compile time

 Memory is allocated at execution

o Dynamic Variables

 Creation during the run time

 Size may vary and it is not known at

compile time

 Generally, the user is responsible for

freeing the allocated memory

 Clearly there is a need to allocate memory at run

time instead of compile time.

Abdelghani Bellaachia, CSCI 1121 Page: 3

 This raises two important issues:

o You have to be able to give the memory back

when you are done with it

o If the memory isn't allocated yet, how should

you refer to it in your program?

3. Pointer Variable Declarations and

Initialization

 Pointer variables:

o Pointers store the address of a variable. They

Contain memory addresses as their values

o They are called pointers because storing the

address of another variable is essentially a way

of referring to, or pointing to, the variable

o Normal variables contain a specific value (direct

reference):

int var = 10234;

10234

Abdelghani Bellaachia, CSCI 1121 Page: 4

o Pointers contain address of a variable that has a

specific value (indirect reference)

o Indirection – referencing a pointer value

 Pointer declarations

o * used with pointer variables:

int * pi; // declares a pointer to an integer

char *pc1, *pc2; // pointers to characters

o Multiple pointers require using a * before each

variable declaration

int *p1, *p2;

o Can declare pointers to any data type

 Pointer Initialization:

1230

A pointer to an integer

Abdelghani Bellaachia, CSCI 1121 Page: 5

o A NULL pointer is a special pointer value that is

known not to point anywhere.

o Initialize pointers to:

 0,

 NULL (preferred)

 an address

o Example:
//gcc 5.4.0

#include <stdio.h>

int main(void)

{

 int *ip = NULL;

 int i = 10;

 printf("Address of ip = %u\n", ip);

 ip = &i;

 printf("Content of ip = %d\n", *ip);

 printf("Address of ip = %u\n", ip);

 return 0;

}

Abdelghani Bellaachia, CSCI 1121 Page: 6

4. Reference operator (&) and Dereference

operator (*)

 Reference operator (&): How to get the address of

a variable

o Use & address operator

//gcc 5.4.0

#include <stdio.h>

int main(void)

{

 int i = 5;

 int *ptr; // declare a pointer variable

 ptr = &i; // ptr stores the ADDRESS of i

 printf("The content of the memory location pointed to

by ptr = %d\n", *ptr); // refer to referee of ptr

 return 0;

}

 Accessing the content of a pointer:

o There are two ways to get the content of a

pointer:

 Dereference operator (*):

Abdelghani Bellaachia, CSCI 1121 Page: 7

 Using -> operator for sturctures

o Use the dereference operator *:

 It is used to refer the content of a pointer

 Example:

//gcc 5.4.0

#include <stdio.h>

int main(void)

{

 int * pi;

 int i=8;

 pi = &i; // pi stores the ADDRESS of i

 printf("pi points to a memory location with %d\n",

*pi);

 *pi = 14;

 printf("Now pi points to a memory location with

%d\n", *pi);

 return 0;

}

 Exercise, what is the output of the following?

 int *ip1, *ip2;

 int x=34, y= 7;

 ip1=&x;

 ip2=ip1;

Abdelghani Bellaachia, CSCI 1121 Page: 8

 *ip2=12;

5. Relation between Arrays and Pointers

 In fact, you have already been using pointers

when you were working with arrays.

 Given the following array:

int arr[4];

o Then the name arr is actually a pointer to the

first element in the array:

arr[0] is equivalent to *arr

*arr = 5; is the same as arr[0] = 5;

arr[1] is equivalent to *(arr + 1)

arr[2] is equivalent to *(arr + 2)

arr[3] is equivalent to *(arr + 3)

 Example:

Abdelghani Bellaachia, CSCI 1121 Page: 9

//gcc 5.4.0

#include <stdio.h>

int main(void)

{

 int i;

 int arr[4];

 for (i=0;i<4;++i)

 *(arr + i) = 100;

 for (i=0;i<4;++i)

 printf("arr[%d] = %d\n", i, arr[i]);

 // printf("Address of ip = %u\n", ip);

 return 0;

}

Abdelghani Bellaachia, CSCI 1121 Page: 10

6. Dynamic Memory Allocation

 Dynamic memory allocation allows your

program to obtain more memory space while

running.

 It allows to allocate/free memory during the

execution of you program.

Function Use of Function

malloc()

Allocates requested size of bytes and returns a

pointer first byte of allocated space

calloc()

Allocates space for an array elements, initializes

to zero and then returns a pointer to memory

free() deallocate the previously allocated space

realloc() Change the size of previously allocated space

 C malloc():

o The name malloc stands for "memory

allocation".

https://www.programiz.com/c-programming/c-dynamic-memory-allocation#malloc
https://www.programiz.com/c-programming/c-dynamic-memory-allocation#calloc
https://www.programiz.com/c-programming/c-dynamic-memory-allocation#free
https://www.programiz.com/c-programming/c-dynamic-memory-allocation#realloc

Abdelghani Bellaachia, CSCI 1121 Page: 11

o The function malloc() reserves a block of

memory of specified size and return a

pointer of type void which can be casted into

pointer of any form.

o NULL returned if not enough memory

available.

o Syntax:

ptr = (type*) malloc(byte-size)

o Example: Pointers & Structures

 We can access the fields of a structure

in two different ways:

 Using Dereference operator *

 Using -> operator

#include <stdio.h>

#include <stdlib.h>

struct person {

 int age;

 float weight;

 char name[30];

};

int main()

Abdelghani Bellaachia, CSCI 1121 Page: 12

{

 struct person *ptr;

 int i, num;

 ptr = (struct person*) malloc(sizeof(struct person));

 // Above statement allocates the memory for 1

structure with pointer ptr pointing to base address */

 printf("Enter name, age and weight of the person

respectively:\n");

 scanf("%s%d%f", &ptr->name, &ptr->age,

&ptr->weight);

 printf("Displaying Infromation:\n");

 printf("%s\t%d\t%.2f\n", ptr->name, ptr->age,

ptr->weight);

 return 0;

}

 C calloc():

o The name calloc stands for "contiguous

allocation".

o It is used to allocate arrays of memory.

Abdelghani Bellaachia, CSCI 1121 Page: 13

o calloc() allocates multiple blocks of memory

each of same size and sets all bytes to zero.

Note that malloc() only allocates a single

block of memory.

o Syntax:

ptr = (type*) calloc(n, element-size);

o Example: Dynamic Arrays
//gcc 5.4.0

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 int *nums;

 int N;

 printf("Read how many numbers:\n");

 scanf("%d",&N);

 nums = (int *) calloc(N, sizeof(int));

 for (int i=0; i<N; ++i)

 *(nums+i) = i*i;

 for (int i=0; i<N; ++i)

Abdelghani Bellaachia, CSCI 1121 Page: 14

 printf("Num[%d] = %d\n", i, *(nums+i));

 /* use array nums */

 /* when done with nums: */

 free(nums);

 /* would be an error to say it again - free(nums) */

 return 0;

}

 C free():

o It is used to let the compiler that the

allocated memory is no longer needed.

o Note that the allocated memory is not freed

until you explicitly free it up

o Syntax:

free(ptr);

o Example:

free(nums); // from the previous example.

Abdelghani Bellaachia, CSCI 1121 Page: 15

 C realloc():

o It is used to let the compiler that the

allocated memory is no longer needed.

o The C library function void *realloc(void

*ptr, size_t size) attempts to resize the

memory block pointed to by ptr that was

previously allocated with a call to malloc or

calloc.Syntax:

void *realloc(void *ptr, size_t size);

 Where

ptr: is the pointer to a memory block

previously allocated with malloc, calloc or

realloc to be reallocated.

If this is NULL, a new block is allocated

and a pointer to it is returned by the

function.

size: is the new size for the memory

block, in bytes. If it is NULL and ptr

points to an existing block of memory, the

Abdelghani Bellaachia, CSCI 1121 Page: 16

memory block pointed by ptr is

deallocated and a NULL pointer is

returned.

o Example 1:

#include <stdio.h>

#include <stdlib.h>

int main()

{

 char *str;

 str = (char *) malloc(20);

 strcpy(str, "C Programming");

 printf("String = %s, Address = %u\n", str, str);

 /* Requesting more memory: Reallocating memory */

 str = (char *) realloc(str, 30);

 //Concatenate strings

 strcat(str, " language");

 printf("String = %s, Address = %u\n", str, str);

 free(str);

 return(0);

}

Abdelghani Bellaachia, CSCI 1121 Page: 17

o Example 1:

#include <stdio.h>

#include <stdlib.h>

void main() {

 float *myarr;

 int i;

 /* Allocate an array of 5 floating point values */

 myarr = (float *) calloc(5, sizeof(float));

 /* myarr is an array of 5 floating point values */

 for (i = 0; i < 5; i++)

 myarr[i] = 2.0 * i;

 for (i = 0; i < 5; i++)

 printf("myarr[%d] = %lf\n", i, myarr[i]);

 printf("------------------------------\n");

 /* Increase the size of the array by 5 more floating point

values */

 myarr = (float *) realloc(myarr,10 * sizeof(float));

 for (i = 5; i < 10; i++)

 myarr[i] = 10.0 * i;

 for (i = 0; i < 10; i++)

 printf("myarr[%d] = %lf\n", i, myarr[i]);

}

Abdelghani Bellaachia, CSCI 1121 Page: 18

7. Call by reference

 Call by reference is done using pointers.

 Unlike call by value, call by reference passes the

address of the variable to the function as

parameter.

 The value of the actual parameter can be

modified by formal parameter.

 The same memory location is used for both

actual and formal parameters

 Example:

//gcc 5.4.0

#include <stdio.h>

void byval(int j){

 j = 0;

}

void byref(int *j){

 *j = 0;

}

int main(void)

{

 int i = 100;

 byval (i);

Abdelghani Bellaachia, CSCI 1121 Page: 19

 printf("i = %d\n", i);

 byref (&i);

 printf("i = %d\n", i);

 return 0;

}

