

Abdelghani Bellaachia, CSCI 1121 Page: 1

C Pointers

1. Objective ... 2

2. Introduction... 2

3. Pointer Variable Declarations and Initialization 3

4. Reference operator (&) and Dereference operator

(*) 6

5. Relation between Arrays and Pointers 8

6. Dynamic Memory Allocation 10

7. Call by reference ... 18

Abdelghani Bellaachia, CSCI 1121 Page: 2

1. Objective

 What is C structure?

 When to use structures.

 Syntax of a structure.

 How to declare variable of type structure?

 Fields of a structure and how to initialize them.

 How to manipulate structure type

2. Introduction

 Static vs. Dynamic variables

o Static variables:

 Size is fix throughput the execution

 Size is known at compile time

 Memory is allocated at execution

o Dynamic Variables

 Creation during the run time

 Size may vary and it is not known at

compile time

 Generally, the user is responsible for

freeing the allocated memory

 Clearly there is a need to allocate memory at run

time instead of compile time.

Abdelghani Bellaachia, CSCI 1121 Page: 3

 This raises two important issues:

o You have to be able to give the memory back

when you are done with it

o If the memory isn't allocated yet, how should

you refer to it in your program?

3. Pointer Variable Declarations and

Initialization

 Pointer variables:

o Pointers store the address of a variable. They

Contain memory addresses as their values

o They are called pointers because storing the

address of another variable is essentially a way

of referring to, or pointing to, the variable

o Normal variables contain a specific value (direct

reference):

int var = 10234;

10234

Abdelghani Bellaachia, CSCI 1121 Page: 4

o Pointers contain address of a variable that has a

specific value (indirect reference)

o Indirection – referencing a pointer value

 Pointer declarations

o * used with pointer variables:

int * pi; // declares a pointer to an integer

char *pc1, *pc2; // pointers to characters

o Multiple pointers require using a * before each

variable declaration

int *p1, *p2;

o Can declare pointers to any data type

 Pointer Initialization:

1230

A pointer to an integer

Abdelghani Bellaachia, CSCI 1121 Page: 5

o A NULL pointer is a special pointer value that is

known not to point anywhere.

o Initialize pointers to:

 0,

 NULL (preferred)

 an address

o Example:
//gcc 5.4.0

#include <stdio.h>

int main(void)

{

 int *ip = NULL;

 int i = 10;

 printf("Address of ip = %u\n", ip);

 ip = &i;

 printf("Content of ip = %d\n", *ip);

 printf("Address of ip = %u\n", ip);

 return 0;

}

Abdelghani Bellaachia, CSCI 1121 Page: 6

4. Reference operator (&) and Dereference

operator (*)

 Reference operator (&): How to get the address of

a variable

o Use & address operator

//gcc 5.4.0

#include <stdio.h>

int main(void)

{

 int i = 5;

 int *ptr; // declare a pointer variable

 ptr = &i; // ptr stores the ADDRESS of i

 printf("The content of the memory location pointed to

by ptr = %d\n", *ptr); // refer to referee of ptr

 return 0;

}

 Accessing the content of a pointer:

o There are two ways to get the content of a

pointer:

 Dereference operator (*):

Abdelghani Bellaachia, CSCI 1121 Page: 7

 Using -> operator for sturctures

o Use the dereference operator *:

 It is used to refer the content of a pointer

 Example:

//gcc 5.4.0

#include <stdio.h>

int main(void)

{

 int * pi;

 int i=8;

 pi = &i; // pi stores the ADDRESS of i

 printf("pi points to a memory location with %d\n",

*pi);

 *pi = 14;

 printf("Now pi points to a memory location with

%d\n", *pi);

 return 0;

}

 Exercise, what is the output of the following?

 int *ip1, *ip2;

 int x=34, y= 7;

 ip1=&x;

 ip2=ip1;

Abdelghani Bellaachia, CSCI 1121 Page: 8

 *ip2=12;

5. Relation between Arrays and Pointers

 In fact, you have already been using pointers

when you were working with arrays.

 Given the following array:

int arr[4];

o Then the name arr is actually a pointer to the

first element in the array:

arr[0] is equivalent to *arr

*arr = 5; is the same as arr[0] = 5;

arr[1] is equivalent to *(arr + 1)

arr[2] is equivalent to *(arr + 2)

arr[3] is equivalent to *(arr + 3)

 Example:

Abdelghani Bellaachia, CSCI 1121 Page: 9

//gcc 5.4.0

#include <stdio.h>

int main(void)

{

 int i;

 int arr[4];

 for (i=0;i<4;++i)

 *(arr + i) = 100;

 for (i=0;i<4;++i)

 printf("arr[%d] = %d\n", i, arr[i]);

 // printf("Address of ip = %u\n", ip);

 return 0;

}

Abdelghani Bellaachia, CSCI 1121 Page: 10

6. Dynamic Memory Allocation

 Dynamic memory allocation allows your

program to obtain more memory space while

running.

 It allows to allocate/free memory during the

execution of you program.

Function Use of Function

malloc()

Allocates requested size of bytes and returns a

pointer first byte of allocated space

calloc()

Allocates space for an array elements, initializes

to zero and then returns a pointer to memory

free() deallocate the previously allocated space

realloc() Change the size of previously allocated space

 C malloc():

o The name malloc stands for "memory

allocation".

https://www.programiz.com/c-programming/c-dynamic-memory-allocation#malloc
https://www.programiz.com/c-programming/c-dynamic-memory-allocation#calloc
https://www.programiz.com/c-programming/c-dynamic-memory-allocation#free
https://www.programiz.com/c-programming/c-dynamic-memory-allocation#realloc

Abdelghani Bellaachia, CSCI 1121 Page: 11

o The function malloc() reserves a block of

memory of specified size and return a

pointer of type void which can be casted into

pointer of any form.

o NULL returned if not enough memory

available.

o Syntax:

ptr = (type*) malloc(byte-size)

o Example: Pointers & Structures

 We can access the fields of a structure

in two different ways:

 Using Dereference operator *

 Using -> operator

#include <stdio.h>

#include <stdlib.h>

struct person {

 int age;

 float weight;

 char name[30];

};

int main()

Abdelghani Bellaachia, CSCI 1121 Page: 12

{

 struct person *ptr;

 int i, num;

 ptr = (struct person*) malloc(sizeof(struct person));

 // Above statement allocates the memory for 1

structure with pointer ptr pointing to base address */

 printf("Enter name, age and weight of the person

respectively:\n");

 scanf("%s%d%f", &ptr->name, &ptr->age,

&ptr->weight);

 printf("Displaying Infromation:\n");

 printf("%s\t%d\t%.2f\n", ptr->name, ptr->age,

ptr->weight);

 return 0;

}

 C calloc():

o The name calloc stands for "contiguous

allocation".

o It is used to allocate arrays of memory.

Abdelghani Bellaachia, CSCI 1121 Page: 13

o calloc() allocates multiple blocks of memory

each of same size and sets all bytes to zero.

Note that malloc() only allocates a single

block of memory.

o Syntax:

ptr = (type*) calloc(n, element-size);

o Example: Dynamic Arrays
//gcc 5.4.0

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 int *nums;

 int N;

 printf("Read how many numbers:\n");

 scanf("%d",&N);

 nums = (int *) calloc(N, sizeof(int));

 for (int i=0; i<N; ++i)

 *(nums+i) = i*i;

 for (int i=0; i<N; ++i)

Abdelghani Bellaachia, CSCI 1121 Page: 14

 printf("Num[%d] = %d\n", i, *(nums+i));

 /* use array nums */

 /* when done with nums: */

 free(nums);

 /* would be an error to say it again - free(nums) */

 return 0;

}

 C free():

o It is used to let the compiler that the

allocated memory is no longer needed.

o Note that the allocated memory is not freed

until you explicitly free it up

o Syntax:

free(ptr);

o Example:

free(nums); // from the previous example.

Abdelghani Bellaachia, CSCI 1121 Page: 15

 C realloc():

o It is used to let the compiler that the

allocated memory is no longer needed.

o The C library function void *realloc(void

*ptr, size_t size) attempts to resize the

memory block pointed to by ptr that was

previously allocated with a call to malloc or

calloc.Syntax:

void *realloc(void *ptr, size_t size);

 Where

ptr: is the pointer to a memory block

previously allocated with malloc, calloc or

realloc to be reallocated.

If this is NULL, a new block is allocated

and a pointer to it is returned by the

function.

size: is the new size for the memory

block, in bytes. If it is NULL and ptr

points to an existing block of memory, the

Abdelghani Bellaachia, CSCI 1121 Page: 16

memory block pointed by ptr is

deallocated and a NULL pointer is

returned.

o Example 1:

#include <stdio.h>

#include <stdlib.h>

int main()

{

 char *str;

 str = (char *) malloc(20);

 strcpy(str, "C Programming");

 printf("String = %s, Address = %u\n", str, str);

 /* Requesting more memory: Reallocating memory */

 str = (char *) realloc(str, 30);

 //Concatenate strings

 strcat(str, " language");

 printf("String = %s, Address = %u\n", str, str);

 free(str);

 return(0);

}

Abdelghani Bellaachia, CSCI 1121 Page: 17

o Example 1:

#include <stdio.h>

#include <stdlib.h>

void main() {

 float *myarr;

 int i;

 /* Allocate an array of 5 floating point values */

 myarr = (float *) calloc(5, sizeof(float));

 /* myarr is an array of 5 floating point values */

 for (i = 0; i < 5; i++)

 myarr[i] = 2.0 * i;

 for (i = 0; i < 5; i++)

 printf("myarr[%d] = %lf\n", i, myarr[i]);

 printf("------------------------------\n");

 /* Increase the size of the array by 5 more floating point

values */

 myarr = (float *) realloc(myarr,10 * sizeof(float));

 for (i = 5; i < 10; i++)

 myarr[i] = 10.0 * i;

 for (i = 0; i < 10; i++)

 printf("myarr[%d] = %lf\n", i, myarr[i]);

}

Abdelghani Bellaachia, CSCI 1121 Page: 18

7. Call by reference

 Call by reference is done using pointers.

 Unlike call by value, call by reference passes the

address of the variable to the function as

parameter.

 The value of the actual parameter can be

modified by formal parameter.

 The same memory location is used for both

actual and formal parameters

 Example:

//gcc 5.4.0

#include <stdio.h>

void byval(int j){

 j = 0;

}

void byref(int *j){

 *j = 0;

}

int main(void)

{

 int i = 100;

 byval (i);

Abdelghani Bellaachia, CSCI 1121 Page: 19

 printf("i = %d\n", i);

 byref (&i);

 printf("i = %d\n", i);

 return 0;

}

