Introduction

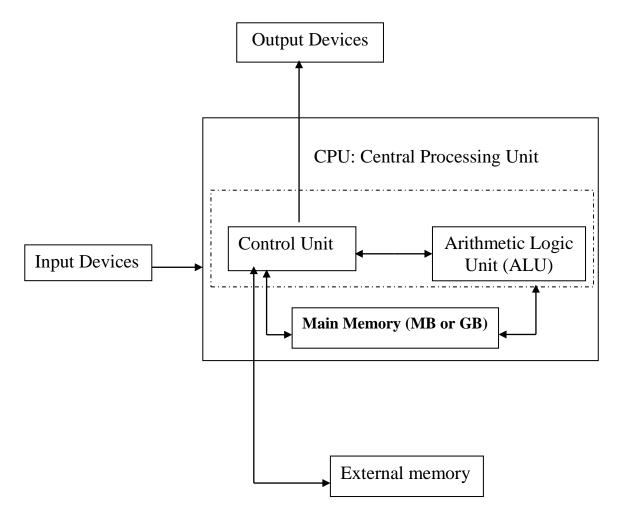
1.	Objective	2
2.	Computing History	2
3.	Computer Taxonomy	3
4.	Components of a computer	4
5.	Computer Software	6
6.	Computer Networks	7
7.	Problem solving and programming:	7
8.	The Software Development method	8
9.	Programming languages	9
10.	Programming paradigms	10
11.	Imperative paradigms	12
12.	Running Your Program	12
13.	Processing of a high-level language program.	13
14.	Programming Errors	15

1. Objective

- What is computer science?
- What is a computer?
- What are the main components of computer hardware?
- o What is science?
- Where is the science in computer science?
- What is an algorithm?
- What is software development?
- What is computer programming?
- O What is a computer programming language?

2. Computing History

- The Von Neumann architecture is still the key model: CPU, memory, long-term storage, communication bus, and peripherals
- First computers were hard-wired, had to physically exchange cables to create different programs
- Early systems included ENIAC, ILLIAC, and UNIVAC (late 1940's)
- Machines cost hundreds of thousands of dollars, require tens of thousands of vacuum tubes and relays, huge space requirements, breakdowns frequent


3. Computer Taxonomy

- Supercomputers:
 - The world fastest Mid 1970's Cray Research develops the CRAY I
 - o Parallel operation
- Mainframes:
 - o Still large enough to fill a small room
 - Best at large amounts of I/O
 - O Supports 50 to 1000 simultaneous users
 - Massive storage
- Minicomputer:
 - Can fit in a closet
 - O Supports 2 to 50 simultaneous users
- Microcomputer:
 - o Workstations, Sun
 - Desktop sized
 - o Generally supports one user
 - o Portables, laptops, notebooks
- Personal Digital Assistant (PDA) or Handheld Computer:
 - o Palm, Visor, TRG,
 - o Palm size
 - More than just an organizer
 - Special-purpose computers
 - o Embedded

- Dedicated use
- Not easily programmable, firmware

4. Components of a computer

- Main memory
- Secondary memory
- Central Processor unit
- I/O devices
- Computer networks

• Bit - an acronym for Binary Digit. A bit is either 0 or 1.

- Byte a group of 8 bits. 00000000 through 111111111.
- Counting in binary and decimal.

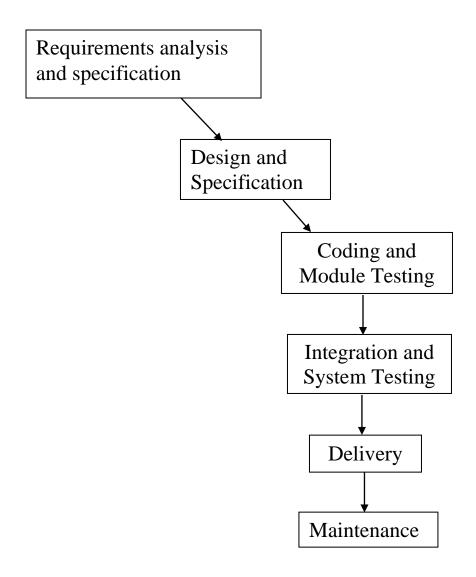
Dec	Binary	
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	
8	1000	

- Central Processing Unit CPU
 - The component that executes instructions in order to process input data and generate output.
- Arithmetic Logic Unit-ALU.
 - Performs arithmetic and logical operations.
 Stores data temporarily in an accumulator or registers.
- Control Unit

- Responsible for retrieving instructions to be executed, retrieving necessary data, and sending both to the ALU for processing.
- Secondary Storage
 - Stores information that needs to be retrieved later. Different than primary storage (RAM).
 - Additional Storage (larger)
 - o Permanent
 - o Examples: Hard Disks, CD-ROMs, Etc.

5. Computer Software

- Software is instructions and associated data, stored in electronic format, that direct the computer to perform some task.
- Categories of software:
 - o System
 - o Applications
- Categories of Systems software
 - Operating systems
 - Utility programs
- Categories of Applications software
 - Productivity software
 - Education
 - o Entertainment


6. Computer Networks

- Why Network?
- Classifications of Networks: LAN, WAN, Etc.
- Connecting to the Network

7. Problem solving and programming:

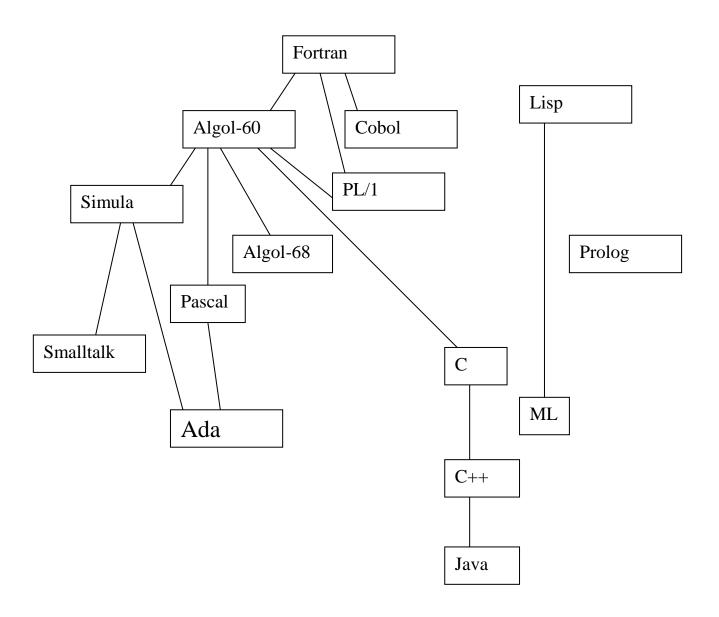
- It is a very challenging task
- It takes a plain English description of a problem and transforms it to a digital computer solution
- Successful solutions require the following:
 - Capture the requirements of the problem right from the beginning
 - Have a clear definition of what is the set of inputs and what is the set of outputs
 - Limit the scope of the problem: Do not solve the universal problem.
 - Use any information about the problem: formulas, equations, etc.
- Have a complete test plan for your solution.

8. The Software Development method

9. Programming languages

- A Programming language is a notational system for describing tasks/computations in a machine and human readable form.
- Most computer languages are designed to facilitate certain operations and not others: numerical computation, or text manipulation, or I/O.
- More broadly, a computer language typically embodies a particular *programming paradigm*.
- Every language has syntax and semantics:
 - **Syntax**: The syntax of a program is the form of its declarations, expressions, statements and program units.
 - **Semantic**: The semantic of a program is concerned with the meaning of its program.
- Machine language:
 - The lowest level language: The language of the CPU.
 - It consists of binary strings that represent Instructions: 0's and 1's.
- Assembly languages:

- Abbreviations for machine language
- High-level languages:
 - Use program statements words and algebratype expressions.
 - o Developed in the 50's and 60's.
 - After a program is written in one of the highlevel languages, it must be either compiled or interpreted.


10. Programming paradigms

• The paradigms are not exclusive, but reflect the different emphasis of language designers. Most practical languages embody features of more than one paradigm.

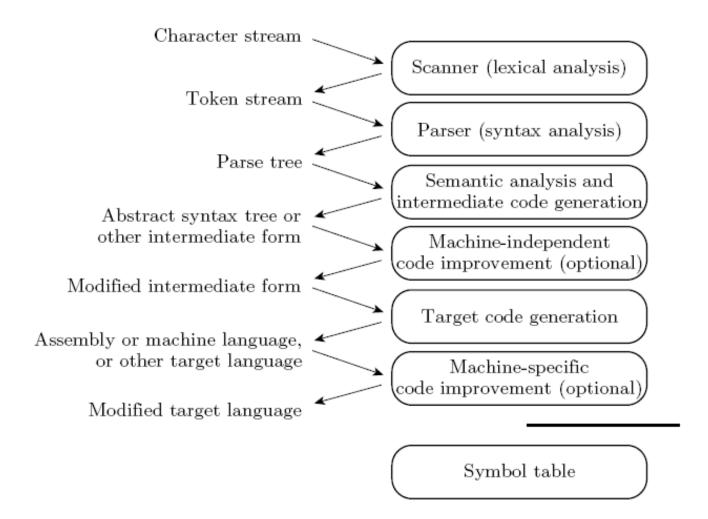
Classification:

Imperative/	Imperative/ Declarative		Object-Oriented
Algorithmic			
	Functional	Logic	
	Programming	Programming	
Algol	Lisp	Prolog	Smalltalk
Cobol	Haskell		Simula
PL/1	ML		C++
Ada	Miranda		Java
C	APL		
Modula-3			

• Language History:

11. Imperative paradigms

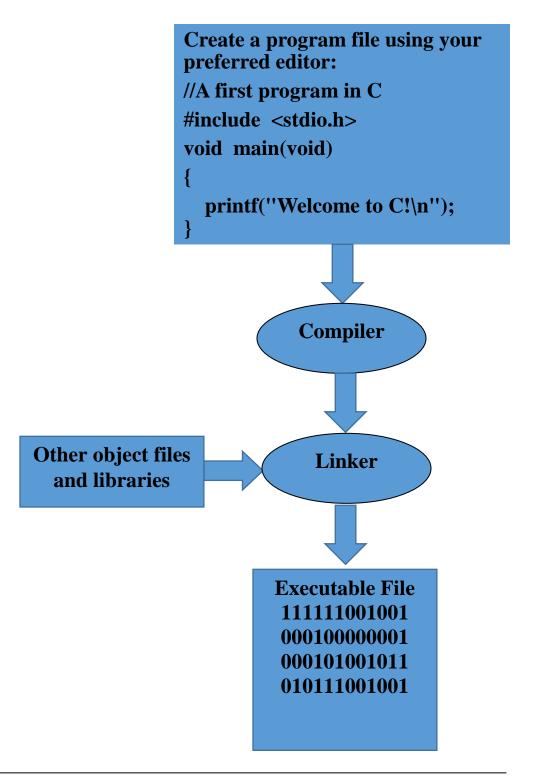
- It is based on commands that update variables in storage. The Latin word *imperare* means "to command".
 - The language provides statements, such as *assignment statements*, which explicitly change the *state* of the memory of the computer.
 - This model closely matches the actual executions of computer and usually has high execution efficiency.
- Many people also find the imperative paradigm to be a more natural way of expressing themselves.


12. Running Your Program

• Interpreter:

 An interpreter program translates the program statements into machine language one line at a time

• Compiler:


 A compiler program rewrites the program into machine language that the CPU can understand. This is done all at once and the program is saved in this new form. A compiled program is generally considerably larger than the original. Phase of Compilation (From Scott's class notes)

13. Processing of a high-level language program

- What is a computer program?
 - A computer program is a set of detailed directions telling the computer exactly what to do, one step at a time. A program can be as short as one line of code, or as long as several millions lines of code.

• Steps to execute a program:

Programming Errors

- Syntax Errors: You need to speak the language!
- **Run Time** Errors: illegal operations?
- Semantic Errors: You need to review your algorithm!