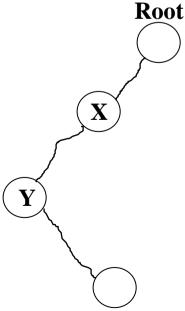
#### **Tree Structures**

#### • Definitions:

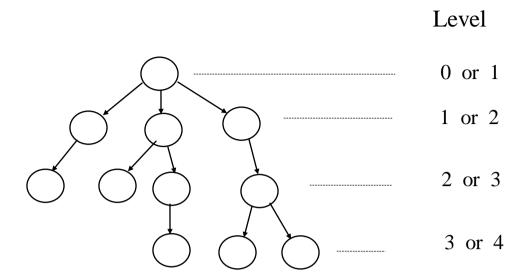
- o A **tree** is a connected acyclic graph.
- A disconnected acyclic graph is called a <u>forest</u>
- o A tree is a connected digraph with these properties:
  - There is exactly one node (**Root**) with in-degree=0
  - All other nodes have in-degree=1
  - A <u>leaf</u> is a node with out-degree=0
  - There is **exactly one path** from the root to any leaf
- The <u>degree</u> of a tree is the maximum out-degree of the nodes in the tree.
- $\circ$  If (X,Y) is a path:

X is an **ancestor** of Y, and

Y is a **descendant** of X.



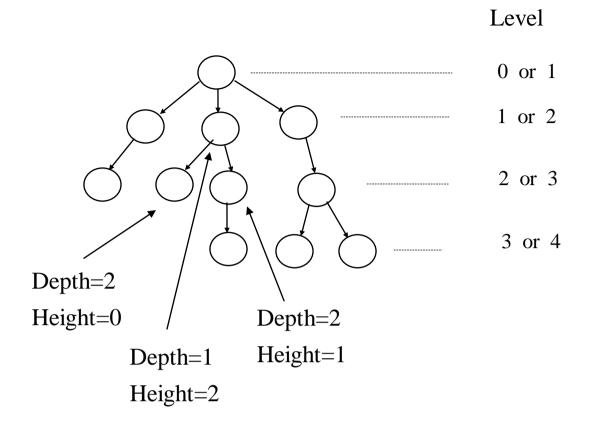
#### • Level of a node:



## • Height or depth:

- The depth of a node is the number of edges from the root to the node.
- The root node has depth zero
- The height of a node is the number of edges from the node to the deepest leaf.
- o The height of a tree is a height of the root.
- o The height of the root is the height of the tree
- o Leaf nodes have height zero
- A tree with only a single node (hence both a root and leaf) has depth and height zero.
- $\circ$  An empty tree (tree with no nodes) has depth and height -1.
- o It is the **maximum level** of any node in the tree.

# o Example:



- Please note that if you label the level starting from 1, the depth (height) is level-1 (max level -1)
- Children, Parents, and Siblings
- Subtree
- Properties:
  - (1) for a tree T = (V,E), where n = |V| and e = |E|, we have

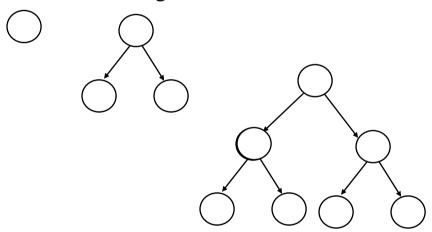
$$e = n - 1$$

## • Binary Trees

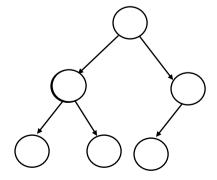
- O Definitions:
  - It is a tree whose <u>degree is  $\leq 2$ </u>
  - The two children are called **left and right** children

# o Properties:

- Strictly binary:
  - Each node has either two children or 0
- Full Binary tree:
  - A tree is a full binary tree of depth h iff each node of level h is a leaf and each intermediate node has left and right children.



- Complete Binary tree:
  - Every intermediate node in levels between 0 and h-2 have 2 children
  - Every node in level h-1 has either 2 children or 1 child. If there is one child, then it is a left child.



### ■ **Balanced** Binary Tree :

• A tree is a balanced (or height balanced) BT iff for each node X in T, the depth of the left and right subtrees of X differ by at most 1.

#### • Lemma 1:

- The maximum number of nodes on level i of a binary tree is 2<sup>i</sup> (starting from level 0).
- The maximum number of nodes in a binary tree of depth k is:  $2^{k+1}$ -1, k>0 (starting from level 0).

#### • Lemma 2:

 $\circ$  For any non empty binary tree, T, if  $n_0$  is the number of leaves and  $n_2$  is the number of nodes of degree 2, then

$$\boxed{n_0 = n_2 + 1}$$

- o Proof:
  - The total number of nodes in a BT T is:  $n = n_0 + n_1 + n_2$   $n_i$  is the number of nodes of degree i (i children) for i=0, 1, and 2.
  - We have e = n 1 from property 1 where e is the number of links in T.
  - The number of links e can also be computed as follows:

$$n_0$$
 contribute by  $0$  links  $n_1$  contribute by  $n_1*1 = n_1$  links  $n_2$  contribute by  $n_2*2 = 2n_2$  links

• Therefore,

$$e = n_1 + 2n_2 = n - 1 = n_0 + n_1 + n_2 - 1$$
 $= > n_0 = n_2 + 1$ 

## • Representations:

- o Sequential
- o Linked-list
- Sequential representation:
  - o For a complete tree of n nodes:
    - (1) The parent of a node i is:

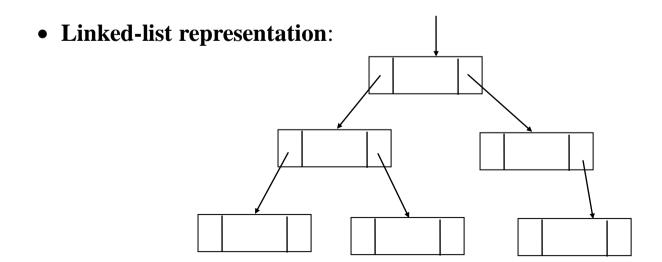
$$Parent(i) = \begin{cases} \left\lfloor \frac{i}{2} \right\rfloor & \text{if } i \neq 1\\ No \text{ parent} & \text{if } i = 1 (i \text{ is the root}) \end{cases}$$

(2) The leftchild of a node i is:

$$Leftchid(i) = \begin{cases} 2i & if \ 2i \le n \\ No \ leftchild & if \ 2i > n \end{cases}$$

(3) The rightchild of a node i is:

$$Rightchild(i) = \begin{cases} 2i + 1 & if \ 2i + 1 \le n \\ No \ Rightchild & if \ 2i + 1 > n \end{cases}$$



## **Binary Tree Traversals**

• There are three traversals:

o Inorder: LNR

o Preorder: NLR

o Postorder: LRN

- Inorder Traversal: LNR
  - Procedure:

```
Procedure LNR (t:tree);

Begin

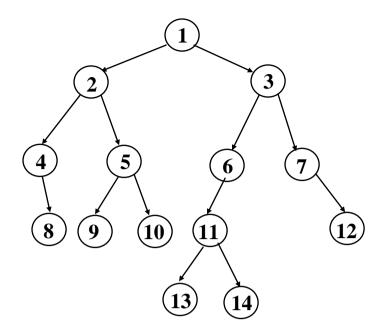
If t=null
then return
else Begin

LNR(t->left);
visit(t-data);
LNR(t->right);
end;
```

• Complexity:

T(n) = O(n) where n is the number of nodes in T.

# • Example:



LNR: 4-8-2-9-5-10-1-13-11-14-6-3-7-12

NLR: 1-2-4-8-5-9-10-3-6-11-13-14-7-12

LRN: 8-4-9-10-5-2-13-14-11-6-12-7-3-1

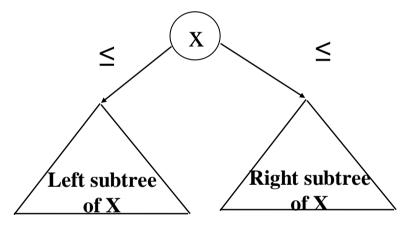
## **Binary Search Tree ADT**

## • Objective:

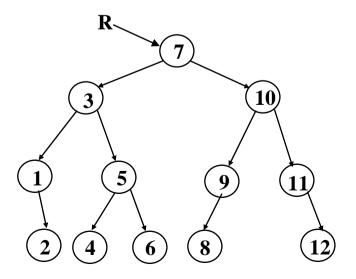
o Insertion, deletion, and Find take O(log(n)) where n is the number of elements in the list.

#### • Definition:

• Let us assume that every node in a binary search tree (BST) is assigned a key value X. For every node X in a BST, the keys in the left subtree of the node containing X are smaller than X and the keys in the right subtree of the node containing X are greater than X.



## • Example:



## • Operations:

- Search or Find
- o Find\_min
- o Find\_max
- o Insert
- o Delete

#### • Search:

• function:

```
Node Search(Node T; int x);

Begin

If ( T == null)
then return(null);
else Begin

If (x < T.data)
then return(Search(T.left));
else if (x > T.data)
then return(Search(T.right));
else return(T);
End;

End;
```

• Complexity:

O(h) where h is the depth of the tree.

#### • Insertion in a BST:

- There are three steps:
  - create a new node for the element to be inserted
  - Search or Find the location at which the new node will be inserted
  - Insert the new node
- Procedure Insert(Node Root; int x)

```
/* The element to be inserted is x */
Begin
     /* Create new node */
     t = create node(); /* Allocate space for x */
     t.leftChild = null; t.rightChild = null; t.data = x;
     /* Search for the insertion location */
     p = Root; q = nil;
     While (p!=null) do Begin
           q = p;
           if p.data > x
           then p = p.left;
           else p = p.right;
     End;
     /* Insert the new element */
                     /* Empty tree */
     If (q == null)
     then Root = t;
     else Begin
                 if q.data > x
                 then q.left = t;
                 else q.right = t;
           End;
```

End;

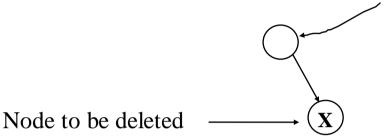
• Complexity:

O(h) where h is the depth of the tree.

• Example:

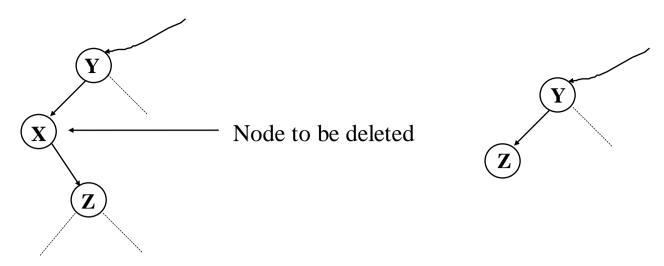
#### • Deletion in a BST:

- o There are three cases:
  - Node to be deleted has no children (Leaf).
  - Node to be deleted has one child.
  - Node to be deleted has two children (complicated).
- o Case 1: Node to be deleted has no children (Leaf):

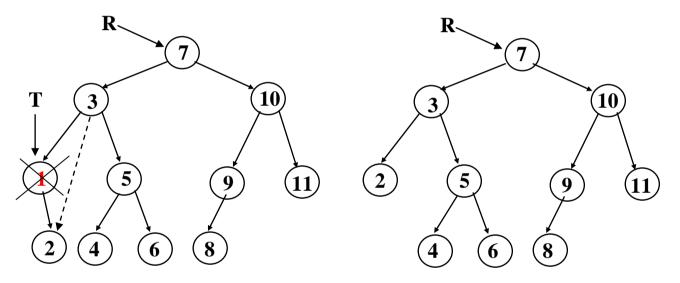


- Deletion steps:
  - //Delete node with value 12 in a BST with root R
  - //T is the parent of the node that contains 12
  - T = findParent(R, 12)
  - //Delete the element.
  - T.rightChild = null;

o Case 2: node to be deleted has one child



• Example:



## • Deletion steps:

//Delete node with value 1 in a BST with root R

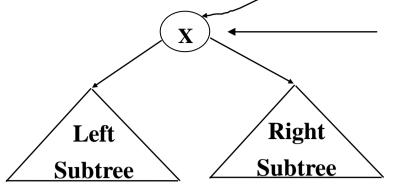
//T is the parent of the node that contains 1

T = findParent(R, 1)

//Delete the node

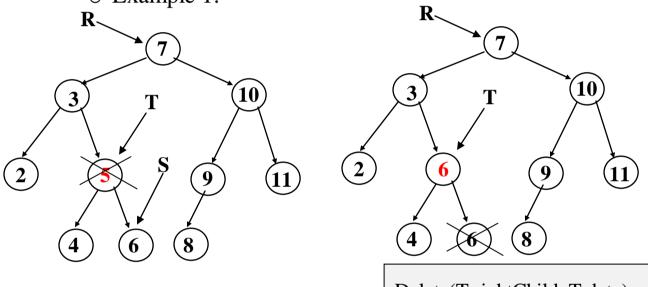
T = T.rightChild; //Since the left child is null.

• Case 3: node to be deleted has two children



Node to be deleted

- o X must be replaced by either its:
  - **predecessor** ( Max in the left subtree)
  - **successor** (Min in the right subtree)
- o Example 1:



Delete(T.rightChild, T.data);

Deletion steps:

//Delete node with value 5 in a BST with root R

//T is the parent of the node that contains 5

T = findParent(S, 5);

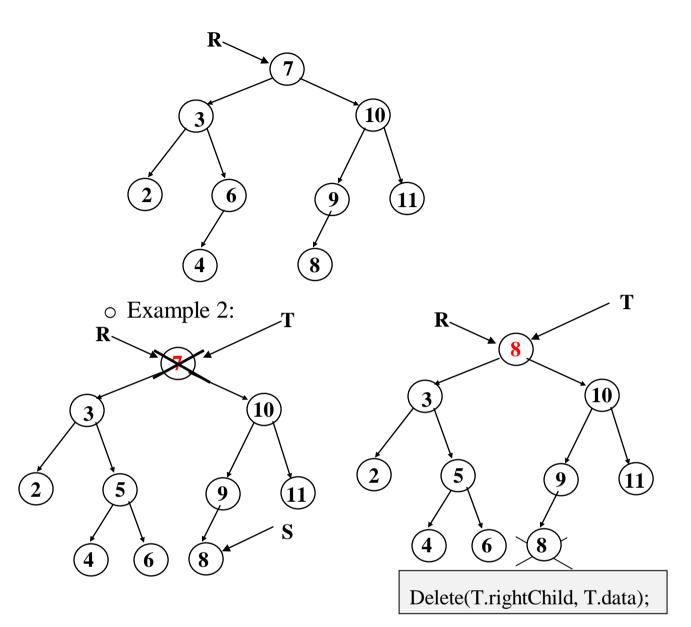
S =findSuccessor(T); //Find the min of the right subtree.

//Delete the node

T.data = S.data;

Delete(T.rightChild, T.data);

o Tree after deleting node 5:



Deletion steps:

//Delete node with value 7 in a BST with root R

//T is the parent of the node that contains 7

T = findParent(S, 7);

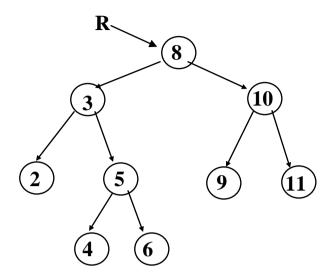
S =findSuccessor(T); //Find the min of the right subtree.

//Delete the node

T.data = S.data;

Delete(T.rightChild, T.data);

• Tree after deleting node 7:



```
Procedure Delete(Node Root; int x)
  Begin
     If (T ==null) then print ("Sorry the element is not found ");
     else if (x < T.data)
                                                 /* Go left */
            then Delete(T.leftChild,x);
            else if (x>T.data)
                                                /* Go Right */
                  then Delete(T.rightChild,x)
                  else Begin
                              If (T.leftChild == null)
                                                                  /* only a right child or none*/
                              then begin
                                          temp = T; T = T.rightChild; free(temp);
                                    end;
                              else if (T.rightChild ==null) /* only a left child */
                                    then begin temp = T; T = T.leftChild; end;
                                    else begin /* Case 3: Two children. Replace with successor */
                                                temp = Find_min(T.rightChild);
                                                T.data = temp.data;
                                                Delete(T.rightChild,T.data)
                                          end;
                        End;
 End;
```

## • Time Complexity:

- o If the tree is a complete binary tree with n nodes, then the worst-case time is O(log n).
- If the tree is very unbalanced (i.e. the tree is a linear chain), the worst-case time is O(n).
- Luckily, the expected height of a randomly built binary search tree is O(log n)
  - basic operations take time O(log n) on average.

### **Threaded Binary Trees**

#### • Motivations:

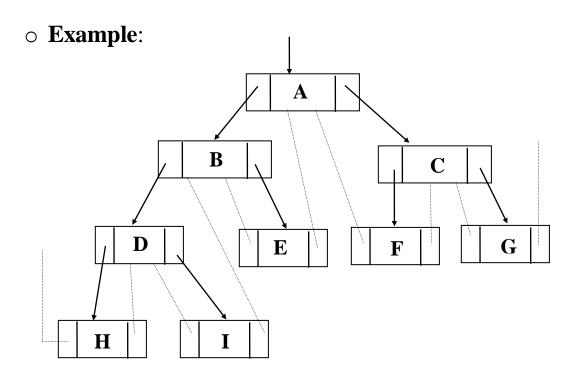
- o To do traversal in languages that do not support recursion
- Non- recursive traversals
- In a binary tree of n nodes there are 2n links out of which n+1 are null links. In case of full tree of depth k, we have  $n=2^{k+1}-1$ . The number of leaves is  $2^k = \frac{n+1}{2}$ . Therefore, the number of null links is:  $2*\frac{n+1}{2} = n+1$ .

### • Objective:

- o Make use of the null links (by A.J. Perlis & C. Thornton).
- Replace null links by pointers, called threads, to other nodes in the tree.

### • Threads setup:

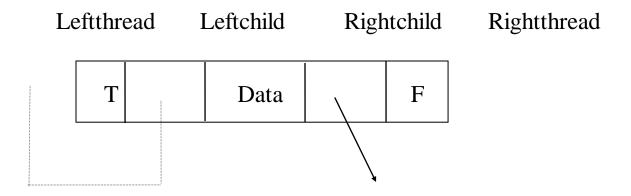
- If p->right == null
   then p->right = the node which would be printed after p (inorder successor of p) when traversing the tree in inorder.
- If p->left == null
   then p->left = the node which would be printed before p
   (inorder predecessor of p) when traversing the
   tree in inorder.



LNR: HDIBEAFCG

# • Implementation:

o How to distinguish between threads and normal pointers?



# • Application:

 Perform a non-recursive inorder traversal without a stack to simulate recursion.

### • Code Example

```
public class BinaryTreeNode {
     private int key;
     private BinaryTreeNode leftChild;
     private BinaryTreeNode rightChild;
     public BinaryTreeNode() {
          key = 0;
          leftChild = null;
          rightChild = null;
     public BinaryTreeNode(int d, BinaryTreeNode left, BinaryTreeNode
right) {
          key = d;
          leftChild = left;
          rightChild = right;
     public int getKey() {
          return (key);
     public BinaryTreeNode getLeftChild() {
          return(leftChild);
     }
     public BinaryTreeNode getRightChild() {
          return (rightChild);
     }
     public void setLeftChild(BinaryTreeNode node) {
          leftChild = node;
     public void setRightChild(BinaryTreeNode node) {
          rightChild = node;
     }
public class BinarySearchTree {
      private BinaryTreeNode root;
      public BinarySearchTree() {
             this.root = null;
    public BinaryTreeNode getRoot(){
          return(root);
     }
      private void findPosition(BinaryTreeNode node, BinaryTreeNode start) {
             int sKey = start.getKey();
             if (sKey>node.getKey()) {
```

```
if (start.getLeftChild() == null) {
                     start.setLeftChild(node);
                 else{
                    findPosition(node, start.getLeftChild());
             }
             else{
                 if (start.getRightChild() == null) {
                     start.setRightChild(node);
                 }
                 else{
                    findPosition(node, start.getRightChild());
                 }
             }
         }
      public void insertNode(BinaryTreeNode node) {
           if (root == null) {
                root = node;
          }
          else{
           findPosition(node, this.root);
          }
      }
      private boolean findElement(BinaryTreeNode node, int x) {
             if (node == null)
               return(false);
               if (x == node.getKey())
               return(true);
             else if (x < node.getKey())</pre>
                    return(findElement(node.getLeftChild(), x));
               else
                    return(findElement(node.getRightChild(), x));
      }
      public int countLeaves(BinaryTreeNode node) {
      if (node == null)
         return 0;
      else if (node.getLeftChild() == null && node.getRightChild() == null)
         return 1;
      else
         return countLeaves(node.getLeftChild()) +
countLeaves(node.getRightChild());
      public int computeDepth(BinaryTreeNode node) {
          if (node == null)
                    return 0;
```

```
return (1+ Math.min(computeDepth(node.getLeftChild()),
computeDepth(node.getRightChild()));
}

public void inorderPrint(BinaryTreeNode node){
}

public void preorderPrint(BinaryTreeNode node){
}

public int countNodes(BinaryTreeNode node){
}

public int findMin(BinaryTreeNode node){
}

public int findMax(BinaryTreeNode node){
}
```

## o Programming Assignment:

- Design and implement the missing operations in the Binary Search Tree ADT:
  - findMin
  - findMax
  - countNodes
  - inorderPrint
  - preorderPrint
- Test your implementation.