
CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 1

Tree Structures

 Definitions:

o A tree is a connected acyclic graph.

o A disconnected acyclic graph is called a forest

o A tree is a connected digraph with these properties:

 There is exactly one node (Root) with in-degree=0

 All other nodes have in-degree=1

 A leaf is a node with out-degree=0

 There is exactly one path from the root to any leaf

o The degree of a tree is the maximum out-degree of the nodes

in the tree.

o If (X,Y) is a path:

 X is an ancestor of Y, and

 Y is a descendant of X.

X

Y

Root

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 2

 Level of a node:

 Height or depth:

o The depth of a node is the number of edges from the root to

the node.

o The root node has depth zero

o The height of a node is the number of edges from the node to

the deepest leaf.

o The height of a tree is a height of the root.

o The height of the root is the height of the tree

o Leaf nodes have height zero

o A tree with only a single node (hence both a root and leaf) has

depth and height zero.

o An empty tree (tree with no nodes) has depth and height −1.

o It is the maximum level of any node in the tree.

0 or 1

1 or 2

2 or 3

3 or 4

Level

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 3

o Example:

o Please note that if you label the level starting from 1, the depth

(height) is level-1 (max level -1)

 Children, Parents, and Siblings

 Subtree

 Properties:

 (1) for a tree T =(V,E), where n= V and e= E , we have

e = n - 1

0 or 1

1 or 2

2 or 3

3 or 4

Level

Depth=2

Height=0 Depth=2

Height=1 Depth=1

Height=2

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 4

 Binary Trees

o Definitions:

 It is a tree whose degree is  2

 The two children are called left and right children

o Properties:

 Strictly binary:

 Each node has either two children or 0

 Full Binary tree:

 A tree is a full binary tree of depth h iff each node of

level h is a leaf and each intermediate node has left

and right children.

 Complete Binary tree:

 Every intermediate node in levels between 0 and h-2

have 2 children

 Every node in level h-1 has either 2 children or 1

child. If there is one child, then it is a left child.

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 5

 Balanced Binary Tree :

 A tree is a balanced (or height balanced) BT iff for

each node X in T, the depth of the left and right

subtrees of X differ by at most 1.

 Lemma 1:

o The maximum number of nodes on level i of a binary tree is 2
i

(starting from level 0).

o The maximum number of nodes in a binary tree of depth k is:

2
k+1

-1, k>0 (starting from level 0).

 Lemma 2:

o For any non empty binary tree, T, if n0 is the number of leaves

and n2 is the number of nodes of degree 2, then

o Proof:

 The total number of nodes in a BT T is: n = n0 + n1 + n2

 ni is the number of nodes of degree i (i children)

 for i=0, 1, and 2.

 We have e = n - 1 from property 1 where e is the number

of links in T.

 The number of links e can also be computed as follows:

 n0 contribute by 0 links

 n1 contribute by n1*1 = n1 links

 n2 contribute by n2*2 = 2n2 links

 Therefore,

 e = n1+ 2n2 = n - 1= n0 + n1 + n2- 1

==>

n0 = n2 + 1

n0 = n2 + 1

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 6

 Representations:

o Sequential

o Linked-list

 Sequential representation:

o For a complete tree of n nodes:

 (1) The parent of a node i is:

Parent i

i
if i

No parent if i i is theroot

()

()


















2

1

1

 (2) The leftchild of a node i is:

 Leftchid i
i if i n

Noleftchild if i n
()









2 2

2

 (3) The rightchild of a node i is:

 Rightchild i
i if i n

No Rightchild if i n
()

  

 





2 1 2 1

2 1

 Linked-list representation:

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 7

Binary Tree Traversals

 There are three traversals:

o Inorder: LNR

o Preorder: NLR

o Postorder: LRN

 Inorder Traversal: LNR

  Procedure:

 Procedure LNR (t:tree);

 Begin

 If t=null

 then return

 else Begin

 LNR(t->left);

 visit(t-data);

 LNR(t->right);

 end;

  Complexity:

 T(n) = O(n) where n is the number of nodes in T.

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 8

  Example:

LNR: 4-8-2-9-5-10-1-13-11-14-6-3-7-12

NLR: 1-2-4-8-5-9-10-3-6-11-13-14-7-12

LRN: 8-4-9-10-5-2-13-14-11-6-12-7-3-1

1

2 3

4 5 6 7

8 9 10 11 12

13 14

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 9

Binary Search Tree ADT

 Objective:

o Insertion, deletion, and Find take O(log(n)) where n is the

number of elements in the list.

 Definition:

o Let us assume that every node in a binary search tree (BST) is

assigned a key value X. For every node X in a BST, the keys

in the left subtree of the node containing X are smaller than X

and the keys in the right subtree of the node containing X are

greater than X.

 Example:

x ≤ ≤

Left subtree

of X

Right subtree

of X

7

3 10

1 5 9 11

2 4 6 8 12

R

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 10

 Operations:

o Search or Find

o Find_min

o Find_max

o Insert

o Delete

 Search:

  function:

 Node Search(Node T; int x);

 Begin

 If (T == null)

 then return(null);

 else Begin

 If (x < T.data)

 then return(Search(T.left));

 else if (x > T.data)

 then return(Search(T.right));

 else return(T);

 End;

 End;

  Complexity:

 O(h) where h is the depth of the tree.

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 11

 Insertion in a BST:

o There are three steps:

 create a new node for the element to be inserted

 Search or Find the location at which the new node will be

inserted

 Insert the new node

o Procedure Insert(Node Root; int x)

 Begin /* The element to be inserted is x */

 /* Create new node */

 t = create_node(); /* Allocate space for x */

 t.leftChild = null; t.rightChild = null; t.data = x;

 /* Search for the insertion location */

 p = Root; q = nil;

 While (p!=null) do Begin

 q = p;

 if p.data > x

 then p = p.left;

 else p = p.right;

 End;

 /* Insert the new element */

 If (q == null) /* Empty tree */

 then Root = t;

 else Begin

 if q.data > x

 then q.left = t;

 else q.right = t;

 End;

 End;

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 12

  Complexity:

 O(h) where h is the depth of the tree.

 Example:

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 13

 Deletion in a BST:

o There are three cases:

 Node to be deleted has no children (Leaf).

 Node to be deleted has one child.

 Node to be deleted has two children (complicated).

o Case 1: Node to be deleted has no children (Leaf):

 Deletion steps:

//Delete node with value 12 in a BST with root R

//T is the parent of the node that contains 12

T = findParent(R, 12)

//Delete the element.

T.rightChild = null;

X Node to be deleted

3

5

7

10

1 9 11

2 4 6 8

R
7

3 10

1 5 9 11

2 4 6 8 12

T

R

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 14

o Case 2: node to be deleted has one child

 Example:

 Deletion steps:

//Delete node with value 1 in a BST with root R

//T is the parent of the node that contains 1

T = findParent(R, 1)

//Delete the node

T = T.rightChild; //Since the left child is null.

X

Y

Z

Node to be deleted

Y

Z

3

5

7

10

1 9 11

2 4 6 8

R

T 3

5

7

10

2 9 11

 4 6 8

R

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 15

 Case 3: node to be deleted has two children

o X must be replaced by either its:

- predecessor (Max in the left subtree)

- successor (Min in the right subtree)

o Example 1:

 Deletion steps:

//Delete node with value 5 in a BST with root R

//T is the parent of the node that contains 5

T = findParent(S, 5);

S =findSuccessor(T); //Find the min of the right subtree.

//Delete the node

T.data = S.data;

Delete(T.rightChild, T.data);

Left

Subtree

Right

Subtree

X Node to be deleted

3

5

7

10

2 9 11

 4 6 8

R

T

S

3

6

7

10

2 9 11

 4 6 8

R

T

Delete(T.rightChild, T.data);

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 16

o Tree after deleting node 5:

o Example 2:

 Deletion steps:

//Delete node with value 7 in a BST with root R

//T is the parent of the node that contains 7

T = findParent(S, 7);

S =findSuccessor(T); //Find the min of the right subtree.

//Delete the node

T.data = S.data;

Delete(T.rightChild, T.data);

3

5

7

10

2 9 11

 4 6 8

R

S

T

Delete(T.rightChild, T.data);

3

5

8

10

2 9 11

 4 6 8

R
T

3

6

7

10

2 9 11

 4 8

R

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 17

o Tree after deleting node 7:

3

5

8

10

2 9 11

 4 6

R

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 18

o Procedure Delete(Node Root; int x)

 Begin

 If (T ==null) then print (“Sorry the element is not found “);

 else if (x< T.data)

 then Delete(T.leftChild,x); /* Go left */

 else if (x>T.data)

 then Delete(T.rightChild,x) /* Go Right */

 else Begin

 If (T.leftChild == null) /* only a right child or none*/

 then begin

 temp = T; T = T.rightChild; free(temp);

 end;

 else if (T.rightChild ==null) /* only a left child */

 then begin temp = T; T = T.leftChild; end;

 else begin /* Case 3: Two children. Replace with successor */

 temp = Find_min(T.rightChild);

 T.data = temp.data;

 Delete(T.rightChild,T.data)

 end;

 End;

 End;

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 19

 Time Complexity:

o If the tree is a complete binary tree with n nodes, then the worst-

case time is O(log n).

o If the tree is very unbalanced (i.e. the tree is a linear chain), the

worst-case time is O(n).

o Luckily, the expected height of a randomly built binary search

tree is O(log n)

 basic operations take time O(log n) on average.

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 20

Threaded Binary Trees

 Motivations:

o To do traversal in languages that do not support recursion

o Non- recursive traversals

 In a binary tree of n nodes there are 2n links out of which n+1

are null links. In case of full tree of depth k, we have n=2
k+1

-1. The

number of leaves is 2
 k
 =

n 1

2
. Therefore, the number of null links is:

2*
n 1

2
 = n+1.

 Objective:

o Make use of the null links (by A.J. Perlis & C. Thornton).

o Replace null links by pointers, called threads, to other nodes in

the tree.

 Threads setup:

o If p->right == null

then p->right = the node which would be printed after p (inorder

successor of p) when traversing the tree in

inorder.

o If p->left == null

 then p->left = the node which would be printed before p

 (inorder predecessor of p) when traversing the

 tree in inorder.

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 21

o Example:

LNR: H D I B E A F C G

 Implementation:

o How to distinguish between threads and normal pointers?

 Leftthread Leftchild Rightchild Rightthread

 T Data F

 Application:

o Perform a non-recursive inorder traversal without a stack to

simulate recursion.

A

B C

D E F G

H I

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 22

 Code Example

public class BinaryTreeNode {

 private int key;

 private BinaryTreeNode leftChild;

 private BinaryTreeNode rightChild;

 public BinaryTreeNode(){

 key = 0;

 leftChild = null;

 rightChild = null;

 }

 public BinaryTreeNode(int d, BinaryTreeNode left, BinaryTreeNode

right){

 key = d;

 leftChild = left;

 rightChild = right;

 }

 public int getKey(){

 return(key);

 }

 public BinaryTreeNode getLeftChild(){

 return(leftChild);

 }

 public BinaryTreeNode getRightChild(){

 return(rightChild);

 }

 public void setLeftChild(BinaryTreeNode node){

 leftChild = node;

 }

 public void setRightChild(BinaryTreeNode node){

 rightChild = node;

 }
}

public class BinarySearchTree {

 private BinaryTreeNode root;

 public BinarySearchTree(){

 this.root = null;

 }

 public BinaryTreeNode getRoot(){

 return(root);

 }

 private void findPosition(BinaryTreeNode node, BinaryTreeNode start){

 int sKey = start.getKey();

 if (sKey>node.getKey()){

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 23

 if (start.getLeftChild() == null){

 start.setLeftChild(node);

 }

 else{

 findPosition(node, start.getLeftChild());

 }

 }

 else{

 if (start.getRightChild() == null){

 start.setRightChild(node);

 }

 else{

 findPosition(node, start.getRightChild());

 }

 }

 }

 public void insertNode(BinaryTreeNode node){

 if (root == null){

 root = node;

 }

 else{

 findPosition(node, this.root);

 }

 }

 private boolean findElement(BinaryTreeNode node, int x){

 if (node == null)

 return(false);

 if (x == node.getKey())

 return(true);

 else if (x < node.getKey())

 return(findElement(node.getLeftChild(), x));

 else

 return(findElement(node.getRightChild(), x));

 }

 public int countLeaves(BinaryTreeNode node) {

 if (node == null)

 return 0;

 else if (node.getLeftChild() == null && node.getRightChild() == null)

 return 1;

 else

 return countLeaves(node.getLeftChild()) +

countLeaves(node.getRightChild());

 }

 public int computeDepth(BinaryTreeNode node){

 if (node == null)

 return 0;

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 24

 return (1+ Math.min(computeDepth(node.getLeftChild()),

computeDepth(node.getRightChild())));

 }

 public void inorderPrint(BinaryTreeNode node){

 }

 public void preorderPrint(BinaryTreeNode node){

 }

 public int countNodes(BinaryTreeNode node){

}

 public int findMin(BinaryTreeNode node){

 }

 public int findMax(BinaryTreeNode node){

 }

}

o Programming Assignment:

 Design and implement the missing operations in the Binary

Search Tree ADT:

- findMin

- findMax

- countNodes

- inorderPrint

- preorderPrint

 Test your implementation.

