Tree Structures

• Definitions:
 o A tree is a connected acyclic graph.

 o A disconnected acyclic graph is called a forest

 o A tree is a connected digraph with these properties:
 ▪ There is exactly one node (Root) with in-degree=0
 ▪ All other nodes have in-degree=1
 ▪ A leaf is a node with out-degree=0
 ▪ There is exactly one path from the root to any leaf

 o The degree of a tree is the maximum out-degree of the nodes in the tree.

 o If (X,Y) is a path:
 X is an ancestor of Y, and
 Y is a descendant of X.
• Level of a node:

Level

0 or 1

1 or 2

2 or 3

3 or 4

• Height or depth:

 o The depth of a node is the number of edges from the root to the node.

 o The root node has depth zero

 o The height of a node is the number of edges from the node to the deepest leaf.

 o The height of a tree is a height of the root.

 o The height of the root is the height of the tree

 o Leaf nodes have height zero

 o A tree with only a single node (hence both a root and leaf) has depth and height zero.

 o An empty tree (tree with no nodes) has depth and height −1.

 o It is the **maximum level** of any node in the tree.
Example:

- Children, Parents, and Siblings

- Subtree

- Properties:
 (1) for a tree $T = (V, E)$, where $n = |V|$ and $e = |E|$, we have

$$e = n - 1$$
• Binary Trees
 o Definitions:
 ▪ It is a tree whose \textbf{degree is} \leq 2
 ▪ The two children are called \textbf{left and right} children
 o Properties:
 ▪ \textbf{Strictly binary:}
 • Each node has either two children or 0
 ▪ \textbf{Full Binary} tree:
 • A tree is a full binary tree of depth \(h \) iff each node of level \(h \) is a leaf and each intermediate node has left and right children.
 ▪ \textbf{Complete Binary} tree:
 • Every intermediate node in levels between 0 and \(h-2 \) have 2 children
 • Every node in level \(h-1 \) has either 2 children or 1 child. If there is one child, then it is a left child.
- **Balanced Binary Tree:**
 - A tree is a balanced (or height balanced) BT iff for each node X in T, the depth of the left and right subtrees of X differ by at most 1.

- **Lemma 1:**
 - The maximum number of nodes on level i of a binary tree is 2^i (starting from level 0).
 - The maximum number of nodes in a binary tree of depth k is: $2^{k+1} - 1$, k>0 (starting from level 0).

- **Lemma 2:**
 - For any non empty binary tree, T, if n_0 is the number of leaves and n_2 is the number of nodes of degree 2, then
 $$n_0 = n_2 + 1$$
 - Proof:
 - The total number of nodes in a BT T is: $n = n_0 + n_1 + n_2$
 n_i is the number of nodes of degree i (i children) for i=0, 1, and 2.
 - We have $e = n - 1$ from property 1 where e is the number of links in T.
 - The number of links e can also be computed as follows:
 - n_0 contribute by 0 links
 - n_1 contribute by $n_1 \times 1 = n_1$ links
 - n_2 contribute by $n_2 \times 2 = 2n_2$ links
 - Therefore,
 $$e = n_1 + 2n_2 = n - 1 = n_0 + n_1 + n_2 - 1$$
 $$\Rightarrow \quad n_0 = n_2 + 1$$
• **Representations:**

 - Sequential
 - Linked-list

• **Sequential representation:**

 - For a complete tree of \(n \) nodes:

 (1) The parent of a node \(i \) is:

 \[
 \text{Parent}(i) = \begin{cases}
 \frac{i}{2} & \text{if } i \neq 1 \\
 \text{No parent} & \text{if } i = 1 (i \text{ is the root})
 \end{cases}
 \]

 (2) The leftchild of a node \(i \) is:

 \[
 \text{Leftchild}(i) = \begin{cases}
 2i & \text{if } 2i \leq n \\
 \text{No leftchild} & \text{if } 2i > n
 \end{cases}
 \]

 (3) The rightchild of a node \(i \) is:

 \[
 \text{Rightchild}(i) = \begin{cases}
 2i + 1 & \text{if } 2i + 1 \leq n \\
 \text{No Rightchild} & \text{if } 2i + 1 > n
 \end{cases}
 \]

• **Linked-list representation:**

[Diagram of a tree with node labels and connections]
Binary Tree Traversals

- There are three traversals:
 - Inorder: LNR
 - Preorder: NLR
 - Postorder: LRN

- Inorder Traversal: LNR

- Procedure:

 Procedure LNR (t:tree);
 Begin
 If t=null
 then return
 else Begin
 LNR(t->left);
 visit(t-data);
 LNR(t->right);
 end;

- Complexity:

 \[T(n) = O(n) \text{ where } n \text{ is the number of nodes in } T. \]
Example:

LNR: 4-8-2-9-5-10-1-13-11-14-6-3-7-12

NLR: 1-2-4-8-5-9-10-3-6-11-13-14-7-12

LRN: 8-4-9-10-5-2-13-14-11-6-12-7-3-1
Binary Search Tree ADT

- **Objective:**
 - Insertion, deletion, and Find take $O(\log(n))$ where n is the number of elements in the list.

- **Definition:**
 - Let us assume that every node in a binary search tree (BST) is assigned a key value X. For every node X in a BST, the keys in the left subtree of the node containing X are smaller than X and the keys in the right subtree of the node containing X are greater than $X.$

```
      X
     /
    /
   /
  /
 /
```

- **Example:**

```
      7
    /  \
  3    10
 / \
1   5   9
 / \
2   4   8
     \
     6
        \
     12
        \
```

CSci 1112 - Algorithms and Data Structures, A. Bellaachia

Page 9
• **Operations:**
 - Search or Find
 - Find_min
 - Find_max
 - Insert
 - Delete

• **Search:**

 • function:

 Node Search(Node T; int x);
 Begin
 If (T == null)
 then return(null);
 else Begin
 If (x < T.data)
 then return(Search(T.left));
 else if (x > T.data)
 then return(Search(T.right));
 else return(T);
 End;
 End;

 • Complexity:

 O(h) where h is the depth of the tree.
• **Insertion in a BST:**
 o There are three steps:
 ▪ create a new node for the element to be inserted
 ▪ Search or Find the location at which the new node will be inserted
 ▪ Insert the new node
 o Procedure `Insert(Node Root; int x)`

    ```cpp
    Begin /* The element to be inserted is x */
    /* Create new node */
    t = create_node(); /* Allocate space for x */
    t.leftChild = null; t.rightChild = null; t.data = x;
    /* Search for the insertion location */
    p = Root; q = nil;
    While (p!=null) do Begin
      q = p;
      if p.data > x
        then p = p.left;
      else p = p.right;
    End;
    /* Insert the new element */
    If (q == null) /* Empty tree */
      then Root = t;
    else Begin
      if q.data > x
        then q.left = t;
      else q.right = t;
    End;
    End;
    ```
• Complexity:
 \[O(h) \text{ where } h \text{ is the depth of the tree.} \]

• Example:
• Deletion in a BST:
 o There are three cases:
 ▪ Node to be deleted has no children (Leaf).
 ▪ Node to be deleted has one child.
 ▪ Node to be deleted has two children (complicated).

 o Case 1: Node to be deleted has no children (Leaf):

 ![Deletion in a BST](image)

 Deletion steps:
  ```
  //Delete node with value 12 in a BST with root R
  //T is the parent of the node that contains 12
  T = findParent(R, 12)
  T.rightChild = null;
  ```
Case 2: node to be deleted has one child

Example:

- Deletion steps:
 //Delete node with value 1 in a BST with root R
 //T is the parent of the node that contains 1
 T = findParent(R, 1)
 //Delete the node
 T = T.rightChild; //Since the left child is null.
• Case 3: node to be deleted has two children

X \quad \text{Node to be deleted}

Left Subtree \quad \text{Right Subtree}

- X must be replaced by either its:
 - predecessor (Max in the left subtree)
 - successor (Min in the right subtree)

- Example 1:

```
R
7
3
T
2
S
4
5
6
9
8
10
11

\text{Delete}(T.\text{rightChild}, T.\text{data});
```

- Deletion steps:

//Delete node with value 5 in a BST with root R
//T is the parent of the node that contains 5
T = \text{findParent}(S, 5);
S = \text{findSuccessor}(T); //Find the min of the right subtree.
//Delete the node
T.\text{data} = S.\text{data};
\text{Delete}(T.\text{rightChild}, T.\text{data});
Tree after deleting node 5:

Example 2:

- Deletion steps:
 //Delete node with value 7 in a BST with root R
 //T is the parent of the node that contains 7
 T = findParent(S, 7);
 S = findSuccessor(T); //Find the min of the right subtree.
 //Delete the node
 T.data = S.data;
 Delete(T.rightChild, T.data);
o Tree after deleting node 7:
Procedure Delete(Node Root; int x)
Begin
 If (T ==null) then print (“Sorry the element is not found “);
 else if (x< T.data)
 then Delete(T.leftChild,x); /* Go left */
 else if (x>T.data)
 then Delete(T.rightChild,x) /* Go Right */
 else Begin
 If (T.leftChild == null) /* only a right child or none*/
 then begin
 temp = T; T = T.rightChild; free(temp);
 end;
 else if (T.rightChild ==null) /* only a left child */
 then begin temp = T; T = T.leftChild; end;
 else begin /* Case 3: Two children. Replace with successor */
 temp = Find_min(T.rightChild);
 T.data = temp.data;
 Delete(T.rightChild,T.data)
 end;
 End;
End;
Time Complexity:

- If the tree is a complete binary tree with n nodes, then the worst-case time is $O(\log n)$.

- If the tree is very unbalanced (i.e. the tree is a linear chain), the worst-case time is $O(n)$.

- Luckily, the expected height of a randomly built binary search tree is $O(\log n)$
 - basic operations take time $O(\log n)$ on average.
Threaded Binary Trees

- **Motivations:**
 - To do traversal in languages that do not support recursion
 - Non-recursive traversals

- In a binary tree of n nodes there are 2n links out of which n+1 are null links. In case of full tree of depth k, we have \(n = 2^{k+1} - 1 \). The number of leaves is \(2^k = \frac{n+1}{2} \). Therefore, the number of null links is: \(2 \times \frac{n+1}{2} = n+1 \).

- **Objective:**
 - Make use of the null links (by A.J. Perlis & C. Thornton).
 - Replace null links by pointers, called threads, to other nodes in the tree.

- **Threads setup:**
 - If \(p->right == \text{null} \)
 then \(p->right = \) the node which would be printed after \(p \) (inorder successor of \(p \)) when traversing the tree in inorder.
 - If \(p->left == \text{null} \)
 then \(p->left = \) the node which would be printed before \(p \) (inorder predecessor of \(p \)) when traversing the tree in inorder.
• Example:

```
         A
        / \
       B   C
      / \  /  \
     D E F G
    / \   /   /
   H   I  F   G
```

LNR: H D I B E A F C G

• Implementation:
 o How to distinguish between threads and normal pointers?

<table>
<thead>
<tr>
<th>Leftthread</th>
<th>Leftchild</th>
<th>Rightchild</th>
<th>Rightthread</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Data</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

• Application:
 o Perform a non-recursive inorder traversal without a stack to simulate recursion.
• Code Example

public class BinaryTreeNode {

 private int key;
 private BinaryTreeNode leftChild;
 private BinaryTreeNode rightChild;

 public BinaryTreeNode(){
 key = 0;
 leftChild = null;
 rightChild = null;
 }
 public BinaryTreeNode(int d, BinaryTreeNode left, BinaryTreeNode right){
 key = d;
 leftChild = left;
 rightChild = right;
 }
 public int getKey(){
 return (key);
 }
 public BinaryTreeNode getLeftChild(){
 return (leftChild);
 }
 public BinaryTreeNode getRightChild(){
 return (rightChild);
 }
 public void setLeftChild(BinaryTreeNode node){
 leftChild = node;
 }
 public void setRightChild(BinaryTreeNode node){
 rightChild = node;
 }
}

public class BinarySearchTree {

 private BinaryTreeNode root;

 public BinarySearchTree(){
 this.root = null;
 }
 public BinaryTreeNode getRoot(){
 return (root);
 }

 private void findPosition(BinaryTreeNode node, BinaryTreeNode start){
 int sKey = start.getKey();
 if (sKey>node.getKey()){
if (start.getLeftChild() == null)
 start.setLeftChild(node);
else{
 findPosition(node, start.getLeftChild());
}
}
else{
 if (start.getRightChild() == null)
 start.setRightChild(node);
 else{
 findPosition(node, start.getRightChild());
 }
}

public void insertNode(BinaryTreeNode node){
 if (root == null){
 root = node;
 } else{
 findPosition(node, this.root);
 }
}

private boolean findElement(BinaryTreeNode node, int x){
 if (node == null)
 return false;
 if (x == node.getKey())
 return true;
 else if (x < node.getKey())
 return findElement(node.getLeftChild(), x);
 else
 return findElement(node.getRightChild(), x);
}

public int countLeaves(BinaryTreeNode node) {
 if (node == null)
 return 0;
 else if (node.getLeftChild() == null && node.getRightChild() == null)
 return 1;
 else
 return countLeaves(node.getLeftChild()) +
 countLeaves(node.getRightChild());
}

public int computeDepth(BinaryTreeNode node){
 if (node == null)
 return 0;

return (1 + Math.min(computeDepth(node.getLeftChild()),
 computeDepth(node.getRightChild())));
}

public void inorderPrint(BinaryTreeNode node){
}

public void preorderPrint(BinaryTreeNode node){
}

public int countNodes(BinaryTreeNode node){
}

public int findMin(BinaryTreeNode node){
}

public int findMax(BinaryTreeNode node){
}

}

o Programming Assignment:
 – Design and implement the missing operations in the Binary Search Tree ADT:
 - findMin
 - findMax
 - countNodes
 - inorderPrint
 - preorderPrint

 – Test your implementation.