Tree Structures

e Definitions:
o A tree is a connected acyclic graph.

o A disconnected acyclic graph is called a forest

o Atree is a connected digraph with these properties:
» There is exactly one node (Root) with in-degree=0
= All other nodes have in-degree=1
= A leaf is a node with out-degree=0
= There is exactly one path from the root to any leaf

o The degree of a tree is the maximum out-degree of the nodes
In the tree.

o If (X,Y) is a path:
X is an ancestor of Y, and
Y 1s a descendant of X.

Root

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 1



e Level of a node:

Level

Oorl

1or?2

2 or 3

3or4

e Height or depth:

o The depth of a node is the number of edges from the root to
the node.

o The root node has depth zero

o The height of a node is the number of edges from the node to
the deepest leaf.

o The height of a tree is a height of the root.
o The height of the root is the height of the tree
o Leaf nodes have height zero

o A tree with only a single node (hence both a root and leaf) has
depth and height zero.

o An empty tree (tree with no nodes) has depth and height —1.
o It is the maximum level of any node in the tree.

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 2



o Example:

e

e

Depth=2

Height=0 Depth=2
Depth=1 Height=1
Height=2

Level

Oor1l

1or?2

2 or 3

3or4

o Please note that if you label the level starting from 1, the depth

(height) is level-1 (max level -1)
e Children, Parents, and Siblings
e Subtree

e Properties:

(1) for atree T =(V,E), where n=|v| and e=|g|, we have

e=n-1

CSci 1112 - Algorithms and Data Structures, A. Bellaachia

Page 3



e Binary Trees
o Definitions:
» |t is atree whose deqree is< 2
= The two children are called left and right children
o Properties:
= Strictly binary:
e Each node has either two children or 0

= Full Binary tree:

e A tree is a full binary tree of depth h iff each node of
level h is a leaf and each intermediate node has left
and right children.

O
O

O OO

= Complete Binary tree:

e Every intermediate node in levels between 0 and h-2
have 2 children

e Every node in level h-1 has either 2 children or 1
child. If there is one child, then it is a left child.

O OO

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 4



= Balanced Binary Tree :

e A tree is a balanced (or height balanced) BT iff for
each node X in T, the depth of the left and right
subtrees of X differ by at most 1.

e Lemmal:

o The maximum number of nodes on level i of a binary tree is 2'
(starting from level 0).

o The maximum number of nodes in a binary tree of depth Kk is:
211, k>0 (starting from level 0).

e |Lemma 2:

o For any non empty binary tree, T, if ng is the number of leaves
and n, is the number of nodes of degree 2, then

Np=n,+1

o Proof:
= The total number of nodesinaBT Tis:n=ng+ n;+n,
n; Is the number of nodes of degree i (i children)
for i=0, 1, and 2.

= We have e =n - 1 from property 1 where e is the number
of links in T.

» The number of links e can also be computed as follows:
no contribute by 0 links
n, contribute by n;*1 = nq links
n, contribute by  ny*2 = 2n, links
= Therefore,
e=mt2n,=n-1=ny+n;+n,-1
==>

Np=n,+1

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 5



e Representations:
o Sequential
o Linked-list

e Sequential representation:
o For a complete tree of n nodes:

(1) The parent of a node i is:

[ .
Parent(i)= LEJ i1
No parent if i =1(iistheroot)

(2) The leftchild of a node i is:

i [2 if 2i<n
eftehid(1)=1 \ o lefichild if 2i>n

(3) The rightchild of a node i is:
2i +1 iIf2i+1<n

Rightchild(i)=
‘ghtchild(i) {NoRightchiId if 2i +1>n

e Linked-list representation: l

/ AN

/ \

[\

CSci 1112 - Algorithms and Data Structures, A. Bellaachia

Page 6



Binary Tree Traversals

e There are three traversals:
o Inorder: LNR
o Preorder: NLR
o Postorder: LRN

e |Inorder Traversal: LNR

e Procedure;

Procedure LNR (t:tree);
Begin
If t=null
then return
else Begin
LNR(t->left);
visit(t-data);
LNR(t->right);
end,;

e Complexity:

T(n) = O(n) where n is the number of nodes in T.

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 7



e Example:

LNR: 4-8-2-9-5-10-1-13-11-14-6-3-7-12
NLR: 1-2-4-8-5-9-10-3-6-11-13-14-7-12

LRN: 8-4-9-10-5-2-13-14-11-6-12-7-3-1

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 8



Binary Search Tree ADT

e Objective:

o Insertion, deletion, and Find take O(log(n)) where n is the
number of elements in the list.

e Definition:
o Let us assume that every node in a binary search tree (BST) is
assigned a key value X. For every node X in a BST, the keys
In the left subtree of the node containing X are smaller than X
and the keys in the right subtree of the node containing X are
greater than X.

< <

A& /ng4 subtre
of X of X

o Example:

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 9



e Operations:
o Search or Find
Find_min

O

o Find_max
o Insert

o Delete

e Search:

e function:
Node Search(Node T; int x);
Begin
If (T ==null)
then return(null);
else Begin
If (x < T.data)
then return(Search(T.left));
else if (x > T.data)
then return(Search(T.right));
else return(T);
End;
End;

e Complexity:
O(h) where h is the depth of the tree.

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 10



e Insertion in a BST:
o There are three steps:
= create a new node for the element to be inserted

= Search or Find the location at which the new node will be
inserted

= |nsert the new node

o Procedure Insert(Node Root; int x)
Begin [* The element to be inserted is x */
[* Create new node */
t = create_node(); /* Allocate space for x */
t.leftChild = null; t.rightChild = null; t.data = x;
[* Search for the insertion location */
p = Root; g = nil;
While (p!'=null) do Begin
q=p
if p.data > x
then p = p.left;
else p = p.right;
End;
[* Insert the new element */
If (q==null)  /*Empty tree */
then Root = t;
else Begin
if q.data > x
then q.left = t;
else g.right = t;
End;
End;

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 11



e Complexity:
O(h) where h is the depth of the tree.

e Example:

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 12



e Deletion in a BST:
o There are three cases:
= Node to be deleted has no children (Leaf).
= Node to be deleted has one child.
= Node to be deleted has two children (complicated).

o Case 1: Node to be deleted has no children (Leaf):

Node to be deleted &
R R

~

e Deletion steps:
/IDelete node with value 12 in a BST with root R

/[T is the parent of the node that contains 12
T = findParent(R, 12)

/[Delete the element.

T.rightChild = null;

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 13



o Case 2: node to be deleted has one child

Node to be deleted

@

e Example:

"~ "~
@\

(10

7
!
1
1
1
1
|
y ¥ \

|
OO & G

e Deletion steps:
/[Delete node with value 1 in a BST with root R
/[T is the parent of the node that contains 1
T = findParent(R, 1)
//Delete the node
T = T.rightChild; //Since the left child is null.

@ () @
b

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 14



e Case 3: node to be deleted has two children

&
<«

\ Node to be deleted

Left Right
Subtree Subtree
o X must be replaced by either its:

- predecessor ( Max in the left subtree)
- successor (Min in the right subtree)
o Example 1:

R R
/T@\ /T@\
@ o @ @ O ®@
@ﬁ{ @5&

Delete(T.rightChild, T.data);
= Deletion steps:

/[Delete node with value 5 in a BST with root R

/[T is the parent of the node that contains 5

T = findParent(S, 5);

S =findSuccessor(T); //Find the min of the right subtree.
//Delete the node

T.data = S.data;

Delete(T.rightChild, T.data);

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 15



o Tree after deleting node 5:

® ©

o Example2: R T
R / \

) (10

® oo @ ©om

Delete(T.rightChild, T.data);
= Deletion steps:

/[Delete node with value 7 ina BST with root R

/[T is the parent of the node that contains 7

T = findParent(S, 7);

S =findSuccessor(T); //Find the min of the right subtree.
/[Delete the node

T.data = S.data;

Delete(T.rightChild, T.data);

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 16



o Tree after deleting node 7:

-
AR

@ () @
@ ©)

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 17



o Procedure Delete(Node Root; int x)
Begin
If (T ==null) then print (“Sorry the element is not found “);
if (x< T.data)
then Delete(T.leftChild,x);
else if (x>T.data)
then Delete(T.rightChild,x)
else Begin
If (T.leftChild == null)
then begin

else
/* Go left */

/* Go Right */

/* only a right child or none*/

temp =T, T = T.rightChild; free(temp);

end:

else if (T.rightChild ==null)

[* only a left child */

End;
End;

CSci 1112 - Algorithms and Data Structures, A. Bellaachia

then begin temp =T; T = T.leftChild; end;
else Dbegin /* Case 3: Two children. Replace with successor */
temp = Find_min(T.rightChild);

T.data = temp.data;

Delete(T.rightChild, T.data)

end:

Page 18



e Time Complexity:

o If the tree is a complete binary tree with n nodes, then the worst-
case time is O(log n).

o If the tree is very unbalanced (i.e. the tree is a linear chain), the
worst-case time is O(n).

o Luckily, the expected height of a randomly built binary search
tree is O(log n)

= pasic operations take time O(log n) on average.

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 19



Threaded Binary Trees

e Motivations:
o To do traversal in languages that do not support recursion
o Non- recursive traversals

e [n a binary tree of n nodes there are 2n links out of which n+1
are null links. In case of full tree of depth k, we have n=2"*-1. The

number of leaves is 2% = ”T” Therefore, the number of null links is:
2x0 1 = g
, .
e Objective:

o Make use of the null links (by A.J. Perlis & C. Thornton).

o Replace null links by pointers, called threads, to other nodes in
the tree.

e Threads setup:
o If p->right == null
then p->right = the node which would be printed after p (inorder

successor of p) when traversing the tree in
inorder.

o If p->left == null
then p->left = the node which would be printed before p
(inorder predecessor of p) when traversing the
tree in inorder.

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 20



o Example: l

/

LNR: HDIBEAFCG

e Implementation:
o How to distinguish between threads and normal pointers?

Leftthread Leftchild Rightchild Rightthread

T : Data
\

\

o Perform a non-recursive inorder traversal without a stack to
simulate recursion.

e Application:

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 21



e Code Example

public class BinaryTreeNode {

private int key;
private BinaryTreeNode leftChild;
private BinaryTreeNode rightChild;

public BinaryTreeNode () {
key = 0;
leftChild = null;
rightChild = null;
}
public BinaryTreeNode (int d, BinaryTreeNode left, BinaryTreeNode
right) {
key = d;
leftChild = left;
rightChild = right;
}
public int getKey () {
return (key) ;
}
public BinaryTreeNode getLeftChild() {
return (leftChild);
}
public BinaryTreeNode getRightChild () {
return (rightChild);
}
public void setlLeftChild(BinaryTreeNode node) {
leftChild = node;
}
public void setRightChild(BinaryTreeNode node) {
rightChild = node;
}
}

public class BinarySearchTree {
private BinaryTreeNode root;

public BinarySearchTree () {
this.root = null;
}
public BinaryTreeNode getRoot () {
return (root) ;

}

private void findPosition (BinaryTreeNode node, BinaryTreeNode start) {
int sKey = start.getKey():;
if (sKey>node.getKey () ) {

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 22



if (start.getLeftChild() == null) {
start.setLeftChild (node);
}
else{
findPosition (node, start.getLeftChild());
}
}

else(
if (start.getRightChild() == null) {
start.setRightChild (node) ;
}
else(

findPosition (node, start.getRightChild()):
}

}

public void insertNode (BinaryTreeNode node) {
if (root == null) {
root = node;
}

else/
findPosition (node, this.root);

}
}

private boolean findElement (BinaryTreeNode node,

int x){
if (node == null)
return (false) ;
if (x == node.getKey())

return (true) ;
else if (x < node.getKey())

return (findElement (node.getLeftChild (), x));
else

return (findElement (node.getRightChild (), x));

public int countleaves (BinaryTreeNode node) {
if (node == null)
return O;

else if (node.getlLeftChild () == null && node.getRightChild() == null)
return 1;

else
return countlLeaves (node.getLeftChild()) +

countlLeaves (node.getRightChild());
}

public int computeDepth (BinaryTreeNode node) {
if (node == null)
return O;

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 23



return (1+ Math.min(computeDepth (node.getLeftChild()),
computeDepth (node.getRightChild()))):
}
public void inorderPrint (BinaryTreeNode node) {

}

public void preorderPrint (BinaryTreeNode node) {

}

public int countNodes (BinaryTreeNode node) {

}

public int findMin (BinaryTreeNode node) {

public int findMax (BinaryTreeNode node) {

o Programming Assignment:
= Design and implement the missing operations in the Binary

Search Tree ADT:
- findMin
- findMax
- countNodes
- InorderPrint
- preorderPrint

= Test your implementation.

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 24



