
CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 1 

 

Tree Structures 

 

 Definitions: 

o A tree is a connected acyclic graph. 

 

o A disconnected acyclic graph is called a forest 

 

o A tree is a connected digraph with these properties: 

 There is exactly one node (Root) with in-degree=0 

 All other nodes have in-degree=1 

 A leaf is a node with out-degree=0 

 There is exactly one path from the root to any leaf 

 

o The degree of a tree is the maximum out-degree of the nodes 

in the tree. 

o If (X,Y) is a path: 

   X is an ancestor of Y, and    

   Y is a descendant of X. 

 

         

 

 

 

           

 

 

X 

Y 

Root 



CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 2 

 

 Level of a node: 

               

 

          

 

           

 

 

           

 

 

 Height or depth: 

o The depth of a node is the number of edges from the root to 

the node. 

o The root node has depth zero 

o The height of a node is the number of edges from the node to 

the deepest leaf. 

o The height of a tree is a height of the root. 

o The height of the root is the height of the tree  

o Leaf nodes have height zero  

o A tree with only a single node (hence both a root and leaf) has 

depth and height zero.  

o An empty tree (tree with no nodes) has depth and height −1. 

o It is the maximum level of any node in the tree. 

0  or  1 

1  or  2 

2  or  3 

 

3  or  4 

Level 
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o Example: 

 

 

 

 

 

 

 

 

  

  

  

 

o Please note that if you label the level starting from 1, the depth 

(height) is level-1 (max level -1) 

 

 Children, Parents, and Siblings   

 

 Subtree      

 

 Properties: 

 (1) for a tree T =(V,E), where n= V  and e= E , we have  

 

 
e = n - 1 

0  or  1 

1  or  2 

2  or  3 

 

3  or  4 

Level 

Depth=2 

Height=0 Depth=2 

Height=1 Depth=1 

Height=2 
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 Binary Trees 

o Definitions: 

 It is a tree whose degree is  2 

 The two children are called left and right children 

o Properties: 

 Strictly binary:  

 Each node has either two children or 0 

 Full Binary tree:  

 A tree is a full binary tree of depth h iff each node of 

level h is a leaf and each intermediate node has left 

and right children. 

 

 

 

 

  

 

 Complete Binary tree:  

 Every intermediate node in levels between 0 and h-2 

have 2 children 

 Every node in level h-1 has either 2 children or 1 

child. If there is one child, then it is a left child.  
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 Balanced Binary Tree : 

 A tree is a balanced (or height balanced) BT iff for 

each node X in T, the depth of the left and right 

subtrees of X differ by at most 1. 

 

 Lemma 1:  

o The maximum number of nodes on level i of a binary tree is 2
i
 

(starting from level 0). 

o The maximum number of nodes in a binary tree of depth k is: 

2
k+1

-1, k>0 (starting from level 0). 

 Lemma 2:  

o For any non empty binary tree, T, if n0 is the number of leaves 

and n2 is the number of nodes of degree 2, then  

      

o Proof: 

 The total number of nodes in a BT T is: n = n0 + n1 + n2 

   ni is the number of nodes of degree i (i children)  

   for i=0, 1, and 2. 

 We have e = n - 1 from property 1 where e is the number 

of links in T. 

 The number of links e can also be computed as follows: 

    n0 contribute by  0 links 

    n1 contribute by  n1*1 = n1 links 

    n2 contribute by  n2*2 = 2n2 links 

 Therefore, 

    e = n1+ 2n2 = n - 1= n0 + n1 + n2- 1 

==> 

n0 = n2 + 1 

n0 = n2 + 1 
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 Representations: 

o Sequential 

o Linked-list 

 

 Sequential representation: 

o For a complete tree of n nodes: 

 

  (1) The parent of a node i is: 

                            

Parent i

i
if i

No parent if i i is theroot

( )

( )


















2

1

1

 

 

  (2) The leftchild of a node i is:  

         Leftchid i
i if i n

Noleftchild if i n
( )









2 2

2
 

 

  (3) The rightchild of a node i is:  

         Rightchild i
i if i n

No Rightchild if i n
( )

  

 





2 1 2 1

2 1
 

 

 Linked-list representation: 
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Binary Tree Traversals 

 

 There are three traversals: 

o Inorder:   LNR 

o Preorder:  NLR 

o Postorder:  LRN 

 

 Inorder Traversal:  LNR 

 

  Procedure: 

 

  Procedure LNR (t:tree); 

  Begin 

   If t=null 

   then return 

   else  Begin 

     LNR(t->left); 

     visit(t-data); 

     LNR(t->right); 

    end; 

    

 

  Complexity:  

 

   T(n) = O(n) where n is the number of nodes in T. 
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  Example: 

                

 

                 

 

 

 

      

 

  

                    

 

 

LNR:   4-8-2-9-5-10-1-13-11-14-6-3-7-12 

 

NLR: 1-2-4-8-5-9-10-3-6-11-13-14-7-12 

 

LRN: 8-4-9-10-5-2-13-14-11-6-12-7-3-1 

1 

2 3 

4 5 6 7 

8 9 10 11 12 

13 14 
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Binary Search Tree ADT 

 

 

 Objective:  

o Insertion, deletion, and Find take O(log(n)) where n is the 

number of elements in the list. 

 

 Definition: 

o Let us assume that every node in a binary search tree (BST) is 

assigned a key value X. For every node X in a BST, the keys 

in the left subtree of the node containing X are smaller than X 

and the keys in the right subtree of the node containing X are 

greater than X. 

 

              

                  

    

 

 

 Example: 

 

 

 

 

 

 

 

x ≤ ≤ 

Left subtree 

of X 

Right subtree 

of X 

7 

3 10 

1 5 9 11 

2 4 6 8 12 

R 
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 Operations:  

o Search or Find 

o Find_min 

o Find_max 

o Insert 

o Delete 

 

 Search: 

 

  function: 

  Node Search(Node T; int x); 

  Begin 

   If ( T == null) 

   then return(null); 

   else Begin 

     If (x < T.data) 

     then return(Search(T.left)); 

     else if (x > T.data) 

      then return(Search(T.right)); 

      else return(T); 

    End;   

  End; 

 

  Complexity: 

  O(h) where h is the depth of the tree. 
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 Insertion in a BST: 

o There are three steps: 

 create a new node for the element to be inserted 

 Search or Find the location at which the new node will be 

inserted 

 Insert the new node 

o Procedure Insert(Node Root; int x) 

  Begin         /* The element to be inserted is x */ 

   /* Create new node */ 

   t = create_node();   /* Allocate space for x */ 

   t.leftChild = null; t.rightChild = null; t.data = x; 

   /* Search for the insertion location */ 

   p = Root; q = nil; 

   While (p!=null) do Begin 

    q = p; 

    if p.data > x 

    then p = p.left; 

    else p = p.right; 

   End; 

   /* Insert the new element */ 

   If (q == null) /* Empty tree */ 

   then Root = t; 

   else  Begin 

     if q.data > x 

     then q.left = t; 

     else q.right = t; 

    End; 

  End; 



CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 12 

 

 

  Complexity: 

  O(h) where h is the depth of the tree. 

 

 Example: 
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 Deletion in a BST: 

o There are three cases:  

 Node to be deleted has no children (Leaf). 

 Node to be deleted has one child. 

 Node to be deleted has two children (complicated). 

 

o Case 1: Node to be deleted has no children (Leaf): 

 

 

 

  

  

 

 

 

 

  

 

 

 Deletion steps: 

//Delete node with value 12 in a BST with root R 

//T is the parent of the node that contains 12 

T = findParent(R, 12) 

//Delete the element. 

T.rightChild = null; 

 

X Node to be deleted 

3 

5 

7 

10 

1 9 11 

2 4 6 8 

R 
7 

3 10 

1 5 9 11 

2 4 6 8 12 

T 

R 
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o Case 2: node to be deleted has one child  

 

     

 

 

         

 

  

        

 Example: 

 

 

 

 

    

 

 

 

 Deletion steps: 

//Delete node with value 1 in a BST with root R 

//T is the parent of the node that contains 1 

T = findParent(R, 1) 

//Delete the node 

T = T.rightChild;  //Since the left child is null. 

X 

Y 

Z 

Node to be deleted 

Y 

Z 

3 

5 

7 

10 

1 9 11 

2 4 6 8 

R 

T 3 

5 

7 

10 

2 9 11 

  4 6 8 

R 
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 Case 3: node to be deleted has two children  

                   

 

 

 

 

o X must be replaced by either its: 

- predecessor ( Max in the left subtree) 

- successor (Min in the right subtree) 

o Example 1: 

 

 

 

 

 

 

 

 

 Deletion steps: 

//Delete node with value 5 in a BST with root R 

//T is the parent of the node that contains 5 

T = findParent(S, 5); 

S =findSuccessor(T); //Find the min of the right subtree. 

//Delete the node 

T.data = S.data;  

Delete(T.rightChild, T.data);    

Left  

Subtree 

Right 

Subtree 

X Node to be deleted 

3 

5 

7 

10 

2 9 11 

  4 6 8 

R 

T 

S 

3 

6 

7 

10 

2 9 11 

  4 6 8 

R 

T 

Delete(T.rightChild, T.data);    
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o Tree after deleting node 5: 

 

 

 

 

 

 

 

 

o Example 2: 

 

 

 

 

 

 

 

 

 Deletion steps: 

//Delete node with value 7 in a BST with root R 

//T is the parent of the node that contains 7 

T = findParent(S, 7); 

S =findSuccessor(T); //Find the min of the right subtree. 

//Delete the node 

T.data = S.data;  

Delete(T.rightChild, T.data);    

3 

5 

7 

10 

2 9 11 

  4 6 8 

R 

S 

T 

Delete(T.rightChild, T.data);    
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  4 8 

R 
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o Tree after deleting node 7: 
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o Procedure Delete(Node Root; int x) 

    Begin 

  If (T ==null)   then print (“Sorry the element is not found “); 

  else  if (x< T.data) 

   then Delete(T.leftChild,x);    /* Go left */ 

   else if (x>T.data) 

    then Delete(T.rightChild,x) /* Go Right */ 

    else  Begin 

      If (T.leftChild == null)   /* only a right child or none*/ 

      then  begin 

        temp = T; T = T.rightChild; free(temp); 

       end; 

      else  if (T.rightChild ==null)  /* only a left child */ 

       then  begin  temp = T; T = T.leftChild;   end; 

       else  begin    /* Case 3: Two children. Replace with successor */ 

         temp = Find_min(T.rightChild); 

         T.data = temp.data; 

         Delete(T.rightChild,T.data) 

        end; 

     End; 

    End;
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 Time Complexity: 

o If the tree is a complete binary tree with n nodes, then the worst-

case time is O(log n).  

 

o If the tree is very unbalanced (i.e. the tree is a linear chain), the 

worst-case time is O(n).  

 

o Luckily, the expected height of a randomly built binary search 

tree is O(log n) 

 basic operations take time O(log n) on average.
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Threaded Binary Trees 

 

 Motivations:  

o To do traversal in languages that do not support recursion 

o Non- recursive traversals 

 

 In a binary tree of n nodes there are 2n links out of which n+1      

are null links. In case of full tree of depth k, we have n=2
k+1

-1. The 

number of leaves is 2
 k
 = 

n 1

2
. Therefore, the number of null links is: 

2*
n 1

2
 = n+1. 

 

 Objective:  

o Make use of the null links (by A.J. Perlis & C. Thornton). 

o Replace null links by pointers, called threads, to other nodes in     

the tree. 

 Threads setup: 

o If p->right == null 

then  p->right = the node which would be printed after p (inorder  

successor of p) when traversing the tree in 

inorder. 

o If p->left == null 

     then  p->left = the node which would be printed before p                          

                                      (inorder predecessor of p) when traversing the                

                                      tree in inorder. 
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o Example: 

 

  

         

 

 

                

 

 

 

LNR:  H D I B E A F C G 

 

 Implementation: 

o How to distinguish between threads and normal pointers? 

 

 Leftthread Leftchild  Rightchild Rightthread 

 

  T        Data             F 

 

 

 

 Application:  

o Perform a non-recursive inorder traversal without a stack to 

simulate recursion. 

 

A 

B C 

D E F G 

H I 
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 Code Example 
 

public class BinaryTreeNode { 

 

 private int key; 

 private BinaryTreeNode leftChild; 

 private BinaryTreeNode rightChild; 

  

 public BinaryTreeNode(){ 

  key = 0; 

  leftChild = null; 

  rightChild = null; 

 } 

 public BinaryTreeNode(int d, BinaryTreeNode left, BinaryTreeNode 

right){ 

  key = d; 

  leftChild = left; 

  rightChild = right; 

 } 

 public int getKey(){ 

  return(key); 

 } 

 public BinaryTreeNode getLeftChild(){ 

  return(leftChild); 

 } 

 public BinaryTreeNode getRightChild(){ 

  return(rightChild); 

 } 

 public void setLeftChild(BinaryTreeNode node){ 

  leftChild = node; 

 } 

 public void setRightChild(BinaryTreeNode node){ 

  rightChild = node; 

 } 
} 
 
public class BinarySearchTree { 

 

  private BinaryTreeNode root; 

   

  public BinarySearchTree(){ 

         this.root = null; 

  } 

    public BinaryTreeNode getRoot(){ 

  return(root); 

 } 

 

  private void findPosition(BinaryTreeNode node, BinaryTreeNode start){ 

         int sKey = start.getKey(); 

         if (sKey>node.getKey()){ 
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             if (start.getLeftChild() == null){ 

                 start.setLeftChild(node); 

             } 

             else{ 

              findPosition(node, start.getLeftChild()); 

             } 

         } 

         else{ 

             if (start.getRightChild() == null){ 

                 start.setRightChild(node); 

             } 

             else{ 

              findPosition(node, start.getRightChild()); 

             } 

         } 

     }   

 

  public void insertNode(BinaryTreeNode node){ 

   if (root == null){ 

    root = node; 

      } 

      else{ 

       findPosition(node, this.root); 

      } 

  } 

 

  private boolean findElement(BinaryTreeNode node, int x){ 

         if (node ==  null) 

          return(false); 

    if (x == node.getKey()) 

          return(true); 

         else if (x < node.getKey()) 

           return(findElement(node.getLeftChild(), x));              

          else 

           return(findElement(node.getRightChild(), x)); 

  } 

    

   

  public int countLeaves(BinaryTreeNode node) { 

      if (node == null) 

         return 0;   

      else if (node.getLeftChild() == null && node.getRightChild() == null) 

         return 1;   

      else 

         return countLeaves(node.getLeftChild()) + 

countLeaves(node.getRightChild()); 

  }   

  public int computeDepth(BinaryTreeNode node){ 

  if (node == null) 

     return 0; 
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  return (1+  Math.min(computeDepth(node.getLeftChild()), 

computeDepth(node.getRightChild()))); 

     } 

  public void inorderPrint(BinaryTreeNode node){ 

     } 

 

  public void preorderPrint(BinaryTreeNode node){ 

     } 

  public int countNodes(BinaryTreeNode node){ 

      

} 

   

  public int findMin(BinaryTreeNode node){ 

 

     } 

  public int findMax(BinaryTreeNode node){ 

     } 

   

 

} 

 

 

o Programming Assignment: 

 Design and implement the missing operations in the Binary 

Search Tree ADT:  

- findMin 

- findMax 

- countNodes 

- inorderPrint 

- preorderPrint 

 

 Test your implementation.  

 

 


