
CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 1

Recursion

• Definition:
o A procedure or function that calls itself, directly or indirectly, is

said to be recursive.

• Why recursion?

o For many problems, the recursion solution is more natural than
the alternative non-recursive or iterative solution

o It is often relatively easy to prove the correction of recursive
algorithms (often prove by induction).

o Easy to analyze the performance of recursive algorithms. The
analysis produces recurrence relation, many of which can be
easily solved.

• Format of a recursive algorithm:

o Algorithm name(parameters)

Declarations;
Begin

if trivial case)
then do trivial operations

 else begin
- one or more call name(smaller values of

parameters)
- do few more operations: process the sub-solution(s).

 end;
 end;

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 2

• Taxonomy:

o Direct Recursion:
 It is when a function refers to itself directly

o Indirect Recursion:
 It is when a function calls another function which refer to

it.
o Linear Recursion:

 It is when one a function calls itself only once.
o Binary Recursion:

 A binary-recursive routine (potentially) calls itself twice.

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 3

• Examples
o Printing a stack:

 Recursive method to print the content of a stack

 public void printStackRecursive() {
 if (isEmpty())
 System.out.println("Empty Stack");
 else{
 System.out.println(top());
 pop();
 if (!isEmpty())
 printStackRecursive();
 }
 }

o Palindrome:

 int function Palindrome(string X)
 Begin
 If Equal(S,StringReverse(S))
 then return TRUE;
 else return False;
 end;

 Printing the stack
Z
C Z C B A
B
A

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 4

o Reversing a String:
 Pseudo-Code:

string function StringReverse(string S)
/* Head(S): returns the first character of S */
/* Tail(S): returns S without the first character */
begin
 If (Length(S) <=1)
 then return S;
 else
 return (concat(StringReverse(Tail(S)) & Head(S));
 endif;
end;

 Java Code:
public static String reverse1(String s) {
 //BASIS CASE
 if (s.length() == 0)
 return s;

//RECURSIVE STEP (notice use of empty String to do
conversion of characters)
 return ("" + s.charAt(s.length() - 1) +
 reverse1(s.substring(0, s.length() - 1)));
 }

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 5

• Performance

o Definition: A recurrence relation of a sequence of values is

defined as follows:
 (B) Some finite set of values, usually the first one or first

few, are specified.
 (R) The remaining values of the sequence are defined in

terms of previous values of the sequence.

o Example:

 The familiar sequence of factorial is defined as:
- (B) FACT(0) = 1
- (R) FACT(n+1) = (n+1)*FACT(n)

o Time Complexity:

 The analysis of a recursive algorithm is done using

recurrence relation of the algorithm.

 Example 1:

- The time complexity of StringReverse function:
o Let T(n) be the time complexity of the function

where n is the length of the string.
o The recurrence relation is:

(B) n=1 let T(n)=1
(R) n>1 let T(n)=T(n-1)+1

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 6

- Solution:

 Example 2:

=
>+=
1
1)2(2)(

nifC
nifCnTnT

T(n) = T(n-1)+1
T(n-1) = T(n-2)+1
T(n-2) = T(n-3)+1

 ...

T(3) = T(2)+1
T(2) = T(1)+1

T(n) = T(1)+1+1+1+...+1 = T(1)+(n-1) = n

===> T(n) = O(n

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 7

Assume that n = 2k

T(n) = 2T(n/2)+C
2T(n/2) = 22T(n/4)+2C
22T(n/4) = 23T(n/8)+ 22C

 ...

2k-2T(n/2k-2) = 2k-1T(n/2k-1)+ 2k-2C
2k-1T(n/2k-1) = 2kT(n/2k)+ 2k-1C

T(n) = 2kT(1)+C+2C+22C +...+2k-2C+2k-1C =
T(n) = 2kC +C(1+2+22 +...+2k-2+2k-1)

T(n) = nC +C kkkk

i
i 21

2
12

11)1(21

0
2 ==

−
−+−

∑
−

=
=

T(n) = nC +C 12
11)1(2

−
−+−k

T(n) = nC +C 1
2k

T(n) = nC +C k2
T(n) = nC +nC=2nC

==> T(n) =O(n)

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 8

o Space Complexity:

 Each recursive call requires the creation of an activation
record

 Each activation record contains the following:
- Parameters of the algorithm (PAR)
- Local variable (LC)
- Return address (R @)
- Stack link (SL)

 Example:

SL

R @
PAR
LV
SL

R @
PAR
LV
SL

R @
PAR
LV

Main Program: Local
Variable

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 9

- Complexity:
o Let

 P: parameters
 L: local variables
 2: SL and R @
 n: is the maximum recursive depth

 space= n*(P+L+2)

• Disadvantages:

o Recursive algorithms require more time:

 At each call we have to save the activation record of the
current call and Branch to the code of the called procedure

 At the exit we have the recover the activation record and
return to the calling procedure.

 If the depth of recursion is large the required space may be
significant.

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 10

• Lab Assignments:
o What is the time complexity of the following function:

𝑇(𝑛) = �𝑇(
𝑛
2) 𝑛 > 1
𝐶 𝑛 = 1

�

o What is the time complexity of the following function:

𝑇(𝑛) = �𝑇 �
𝑛
2�+ 𝑛 𝑛 > 1
𝐶 𝑛 = 1

�

o Write a recursive function that returns the total number of nodes
in a singly linked list.

