
CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 1

Recursion

• Definition:
o A procedure or function that calls itself, directly or indirectly, is

said to be recursive.

• Why recursion?

o For many problems, the recursion solution is more natural than
the alternative non-recursive or iterative solution

o It is often relatively easy to prove the correction of recursive
algorithms (often prove by induction).

o Easy to analyze the performance of recursive algorithms. The
analysis produces recurrence relation, many of which can be
easily solved.

• Format of a recursive algorithm:

o Algorithm name(parameters)

Declarations;
Begin

if trivial case)
then do trivial operations

 else begin
- one or more call name(smaller values of

parameters)
- do few more operations: process the sub-solution(s).

 end;
 end;

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 2

• Taxonomy:

o Direct Recursion:
 It is when a function refers to itself directly

o Indirect Recursion:
 It is when a function calls another function which refer to

it.
o Linear Recursion:

 It is when one a function calls itself only once.
o Binary Recursion:

 A binary-recursive routine (potentially) calls itself twice.

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 3

• Examples
o Printing a stack:

 Recursive method to print the content of a stack

 public void printStackRecursive() {
 if (isEmpty())
 System.out.println("Empty Stack");
 else{
 System.out.println(top());
 pop();
 if (!isEmpty())
 printStackRecursive();
 }
 }

o Palindrome:

 int function Palindrome(string X)
 Begin
 If Equal(S,StringReverse(S))
 then return TRUE;
 else return False;
 end;

 Printing the stack
Z
C  Z C B A
B
A

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 4

o Reversing a String:
 Pseudo-Code:

string function StringReverse(string S)
/* Head(S): returns the first character of S */
/* Tail(S): returns S without the first character */
begin
 If (Length(S) <=1)
 then return S;
 else
 return (concat(StringReverse(Tail(S)) & Head(S));
 endif;
end;

 Java Code:
public static String reverse1(String s) {
 //BASIS CASE
 if (s.length() == 0)
 return s;

//RECURSIVE STEP (notice use of empty String to do
conversion of characters)
 return ("" + s.charAt(s.length() - 1) +
 reverse1(s.substring(0, s.length() - 1)));
 }

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 5

• Performance

o Definition: A recurrence relation of a sequence of values is

defined as follows:
 (B) Some finite set of values, usually the first one or first

few, are specified.
 (R) The remaining values of the sequence are defined in

terms of previous values of the sequence.

o Example:

 The familiar sequence of factorial is defined as:
- (B) FACT(0) = 1
- (R) FACT(n+1) = (n+1)*FACT(n)

o Time Complexity:

 The analysis of a recursive algorithm is done using

recurrence relation of the algorithm.

 Example 1:

- The time complexity of StringReverse function:
o Let T(n) be the time complexity of the function

where n is the length of the string.
o The recurrence relation is:

(B) n=1 let T(n)=1
(R) n>1 let T(n)=T(n-1)+1

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 6

- Solution:

 Example 2:







=
>+=
1
1)2(2)(

nifC
nifCnTnT

T(n) = T(n-1)+1
T(n-1) = T(n-2)+1
T(n-2) = T(n-3)+1

 ...

T(3) = T(2)+1
T(2) = T(1)+1

T(n) = T(1)+1+1+1+...+1 = T(1)+(n-1) = n

===> T(n) = O(n

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 7

Assume that n = 2k

T(n) = 2T(n/2)+C
2T(n/2) = 22T(n/4)+2C
22T(n/4) = 23T(n/8)+ 22C

 ...

2k-2T(n/2k-2) = 2k-1T(n/2k-1)+ 2k-2C
2k-1T(n/2k-1) = 2kT(n/2k)+ 2k-1C

T(n) = 2kT(1)+C+2C+22C +...+2k-2C+2k-1C =
T(n) = 2kC +C(1+2+22 +...+2k-2+2k-1)

T(n) = nC +C kkkk

i
i 21

2
12

11)1(21

0
2 ==

−
−+−

∑
−

=
=

T(n) = nC +C 12
11)1(2

−
−+−k

T(n) = nC +C 1
2k

T(n) = nC +C k2
T(n) = nC +nC=2nC

==> T(n) =O(n)

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 8

o Space Complexity:

 Each recursive call requires the creation of an activation
record

 Each activation record contains the following:
- Parameters of the algorithm (PAR)
- Local variable (LC)
- Return address (R @)
- Stack link (SL)

 Example:

SL

R @
PAR
LV
SL

R @
PAR
LV
SL

R @
PAR
LV

Main Program: Local
Variable

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 9

- Complexity:
o Let

 P: parameters
 L: local variables
 2: SL and R @
 n: is the maximum recursive depth

 space= n*(P+L+2)

• Disadvantages:

o Recursive algorithms require more time:

 At each call we have to save the activation record of the
current call and Branch to the code of the called procedure

 At the exit we have the recover the activation record and
return to the calling procedure.

 If the depth of recursion is large the required space may be
significant.

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 10

• Lab Assignments:
o What is the time complexity of the following function:

𝑇(𝑛) = �𝑇(
𝑛
2) 𝑛 > 1
𝐶 𝑛 = 1

�

o What is the time complexity of the following function:

𝑇(𝑛) = �𝑇 �
𝑛
2� + 𝑛 𝑛 > 1
𝐶 𝑛 = 1

�

o Write a recursive function that returns the total number of nodes
in a singly linked list.

