
Linked Lists, A. Bellaachia Page 1

Linked Lists Structures

• Motivation:

o Insertion & Deletion in an ordered array require moving

elements up or down (left or right).

o Manipulating ordered lists of varying sizes

• Example:

a a a

b b b

d Delete(d) ====> f f

f m Insert(k) ====> k

m m

• Solution:

o Use linked lists

o creation of variable’s storage space in memory during the

execution (rather than compilation) of the program

o Each data (a set of data) is associated with an address: form a

node.

Linked Lists, A. Bellaachia Page 2

• Linked Lists:

o A linked list consists of a number of nodes, each of which has a
reference to the next link.

o Adding and removing a node in the middle of a linked list is

efficient.

o Visiting the nodes of a linked list in sequential order is efficient

o Random access is not efficient

o Operations:

 Insert:

- insertFirst(Object obj)
- insertLast(Object obj)

 Delete:
- removeFirst()
- removeLast()

 Find:
- findNode()

…
NULL

Bello Maria Paul

Linked Lists, A. Bellaachia Page 3

• Implementation:

o Use memory heap

o Allocation of variable’s storage space: needs a variable that
holds the address of that space.

 Java: An instance of a given class.
 Pascal: pointer variable
 Ada: Access variable
 C: For any type in C, there is a corresponding type pointer-

to-T: The value of the pointer is an address of memory.

• Requirements:

o Mechanism to define the structure of a node (all fields)

o A way to create a node

o A way to free no longer needed nodes in some languages such as

C.

• Declaration of a node: Java

 private int data;
 private Node next;
 public Node(){
 data = 0;
 next = null;
 }

Linked Lists, A. Bellaachia Page 4

 public Node(int d, Node l){
 data = d;
 next = l;
 }
 public int getData(){
 return(data);
 }
 public Node getNext(){
 return(next);
 }
}

o Node p = new Node(1, null);

• Constant:

 the pointer does not point to any node
 Node first = nil or null;

• Operations on pointers:

 comparison: start == end, etc.

 Assignments: start = end, etc.

 Arithmetic: depending on the language

Linked Lists, A. Bellaachia Page 5

• Creation of a node:
o Primitive procedure: malloc, new, etc.

 Heap

• Disposition of a node:

o Primitive procedure: free(p), dispose(p), etc.

o Java: done my JVM

• Singly Linked Lists

o One-way linked lists

o One-way linked lists with head and tail

o Circular one-way linked lists

start

end

Linked Lists, A. Bellaachia Page 6

• One-way linked lists

o An example:

o Operations: Sorted or Unsorted

 Insertion
 Deletion
 Find

o Insertion in an unsorted list:

 Creation of a node:

Node p = new Node(A,null);

 Case 1: When the list is not empty; start != null.
 p.next = start;

start = p;

 Case 2:When the list is empty; start=null.
start = p;

NULL

Start

A B Y

null
A

p

Linked Lists, A. Bellaachia Page 7

o Deletion :

 Case 1: The first element of the list

 Delete(A):
 p = q = start
 start = start.next;

 Case 2: An element different than the first one in the list
Delete the node pointed by p

 q.next = p.next;

// You would need to free the pointer p if the language does not
automatically free memory like in C: free(p);
//In Java, JVM takes care of garbage collection.

Y

null

p q

start A B C X

A

q p

start B C

X
Y

null

Linked Lists, A. Bellaachia Page 8

• One-way linked lists with Head and Tail

o An example:

• Operations: Sorted or Unsorted

o Insertion

o Deletion

o Find

• Insertion in an unsorted list:

o Creation of a node:

NULL
A B Y

Start

End

NULL p James
null

Linked Lists, A. Bellaachia Page 9

 Case 1: When the list is not empty; start != null and End !=

null;

p.next = start;
start = p;

 Case 2:When the list is empty; start=null.

start = p;
End = p;

NULL

Start

End

A B Y

p

James
null

X

 NULL

James

Start

End NULL

 NULL

P

Linked Lists, A. Bellaachia Page 10

o Deletion :

 Case 1: The first element of the list

 Delete(A):

 p = q = Start
 Start = Start.next;

// You would need to free the pointer p if the language does
not automatically free memory like in C: free(p);
//In Java, JVM takes care of garbage collection.

 Case 2: An element different than the first one in the list

 Same as in the case of one-way linked list.

NULL
A B Y

Start

End

p q

X
X

Linked Lists, A. Bellaachia Page 11

• Singly Circular Linked Lists

o An example:

o Operations: Sorted or Unsorted

 Insertion

 Deletion

 Find

o Insertion in an unsorted list:

 Creation of a node:

A B Y

Start

p
NULL

Z

Linked Lists, A. Bellaachia Page 12

 Case 1: When the list is not empty; start != null;

 Case 2:When the list is empty; start=null.

 start = p;
 p.next = p;

p

Z

start

p Start

A B Y Z

(1) p.next = start.next; (2) start.next = p;

(3) start = p;

X

X

Linked Lists, A. Bellaachia Page 13

o Deletion :

 Case 1: The first element of the list

 Delete(A):

 q = start.next;
 start.next = q.next;

// You would need to free the pointer p if the language does
not automatically free memory like in C: free(p);
//In Java, JVM takes care of garbage collection.

 Case 2: The last element of the list

 Try this case on your own.

 Case 3: An element different from the first and last element
of the list.

 Same as in the case of one-way linked list.

A B Y

start
q

X

Linked Lists, A. Bellaachia Page 14

• Doubly Linked Lists

o Type of nodes: Declaration of a node:

private int data;
private Node Rnext;
private Node Lnext;

 public Node(){
 data = 0;
 Lnext = null;
 Rnext = null;
 }
 public Node(int d, Node l, Node r){
 data = d;
 Rnext = l;
 Lnext = r;
 }
 public int getData(){
 return(data);
 }
 public Node getRnext(){
 return(Rnext);
 }
 public Node getLnext(){
 return(Lnext);
 }
}

p

Z

null null

Linked Lists, A. Bellaachia Page 15

o Types:

 Simple doubly linked lists

 Circular doubly linked lists

Linked Lists, A. Bellaachia Page 16

• Simple doubly linked lists

o An example:

o Operations: Sorted or Unsorted

 Insertion

 Deletion

 Find

o Insertion in an unsorted list:

 Creation of a node:

A
null

B

Y
 null

start

p Z
null null

Linked Lists, A. Bellaachia Page 17

 Case 1: When the list is not empty; start != null;

(1) p.Rnext = start;
(2) start.Lnext = p;
(3) start = p;

 Case 2: When the list is empty; start=null.

 start = p;

o Deletion :

 Case 1: An element different from the first and last

element of the list.

A
null

B

Y
 null

start

p M
null null

(1) (2)
(3)

X

Linked Lists, A. Bellaachia Page 18

Delete(B):
 (1) p.Lnext.Rnext = p.Rnext;
 (2) p.Rlink.Lnext = p.Lnext;

// You would need to free the pointer p if the language does
not automatically free memory like in C: free(p);
//In Java, JVM takes care of garbage collection.

 Case 2: The first element of the list.

 Try this case on your own.

 Case 3: The last element of the list.

 Try this case on your own.

p

A
null

B

Y
 null

start

B

(1)

(2)

Linked Lists, A. Bellaachia Page 19

• Circular doubly linked lists

o An example:

o Operations: Sorted or Unsorted

 Insertion
 Deletion
 Find

o Insertion in an unsorted list:

 Creation of a node:

A

B

Y

start

p

Z
null null

Linked Lists, A. Bellaachia Page 20

 Case 1: When the list is not empty; start != null;

(1) p.Lnext = start;
(2) p.Rnext = start.Rnext
(3) start.Rnext = p;
(4) start = p;

 Case 2: When the list is empty; start=null.

start

X

p

Z
null null

(1)
(2)

(3) X

A

B

Y

(4)

start

p

Z
null null

Linked Lists, A. Bellaachia Page 21

o Deletion :

 Case 1: An element different from the first and last element

of the list.

 Case 2: The first element of the list.

 Case 3: The last element of the list.

Linked Lists, A. Bellaachia Page 22

• Lab Assignment:
o Given the following Java package for a singly linked list,

complete the implementation of the missing methods.

package List;

public class Node {
 private int data;
 private Node next;
 public Node(){
 data = 0;
 next = null;
 }
 public Node(int d, Node l){
 data = d;
 next = l;
 }
 public int getData(){
 return(data);
 }
 public Node getNext(){
 return(next);
 }
}

package List;

import java.util.NoSuchElementException;

public class OneWayLinkedList {
 private Node Start = null;

 public OneWayLinkedList(){
 Start = null;
 }
 // Returns true if the list is empty
 public boolean isEmpty(){
 return Start == null;
 }
 // Inserts a new node at the beginning of this list.
 public void addFirst(int element){
 Start = new Node(element, Start);
 }
 // Returns the first element in the list.
 public int getFirst(){
 if(Start == null) throw new NoSuchElementException();
 return Start.getData();
 }
 //---
 // Removes the first element in the list.
 public boolean deleteFirst(){
 // Implement this function
 }
 // Find whether and element is in the list.
 public boolean findData(int d){
 //Implement this function
 }
 //---

Linked Lists, A. Bellaachia Page 23

 // Print list.
 public void printList(){
 if (Start == null)
 System.out.println("Your list is empty)");
 else {
 Node move = Start;
 System.out.println("------- Print Your List ------- ");
 while (move != null) {
 System.out.print("-->" + move.getData());
 move = move.getNext();
 }
 }
 }

}

	 Disposition of a node:
	o Primitive procedure: free(p), dispose(p), etc.
	o Java: done my JVM
	 Singly Linked Lists
	o One-way linked lists
	o One-way linked lists with head and tail
	o Circular one-way linked lists

