Linked Lists Structures

e Motivation:

o Insertion & Deletion in an ordered array require moving
elements up or down (left or right).

o Manipulating ordered lists of varying sizes

o Example:
a a a
b b b
d | Delete(d) ====> | f f
f m| Insert(k) ====> | k
m m
e Solution:

0 Use linked lists

O creation of variable’s storage space in memory during the
execution (rather than compilation) of the program

o0 Each data (a set of data) is associated with an address: form a
node.

Linked Lists, A. Bellaachia Page 1

e Linked Lists:

0 A linked list consists of a number of nodes, each of which has a
reference to the next link.

N L — N NULL

o Adding and removing a node in the middle of a linked list is
efficient.

v

o Visiting the nodes of a linked list in sequential order is efficient
0 Random access is not efficient

o0 Operations:

= |Insert:
- insertFirst(Object obj)
- InsertLast(Object obj)
= Delete:
- removeFirst()
- removeLast()
» Find:
- findNode()

Linked Lists, A. Bellaachia Page 2

e [mplementation:
o0 Use memory heap

o Allocation of variable’s storage space: needs a variable that
holds the address of that space.

= Java: An instance of a given class.

= Pascal: pointer variable

= Ada: Access variable

= C: For any type in C, there is a corresponding type pointer-
to-T: The value of the pointer is an address of memory.

e Requirements:
0 Mechanism to define the structure of a node (all fields)
o A way to create a node

o A way to free no longer needed nodes in some languages such as
C.

e Declaration of a node: Java

private int data;

private Node next;

public Node(){
data = 0;
next = null;

}

Linked Lists, A. Bellaachia Page 3

public Node(int d, Node 1){

data = d;
next = I;

}

public int getData(){
return(data);

}

public Node getNext(){
return(next);

}

}

o0 Node p = new Node(1, null);
e Constant:

= the pointer does not point to any node
= Node first = nil or null;

e Operations on pointers:
= comparison; start == end, etc.
= Assignments: start = end, etc.

= Arithmetic: depending on the language

Linked Lists, A. Bellaachia

Page 4

e Creation of a node:
O Primitive procedure: malloc, new, etc.

Heap

start

end

e Disposition of a node:
O Primitive procedure: free(p), dispose(p), etc.

o Java: done my JVM

e Singly Linked Lists
0 One-way linked lists
0 One-way linked lists with head and tail

o Circular one-way linked lists

Linked Lists, A. Bellaachia Page 5

e One-way linked lists

o0 An example:

Start

Np—a g N

o0 Operations: Sorted or Unsorted
= |nsertion
= Deletion
= Find
o Insertion in an unsorted list:
= Creation of a node:
Node p = new Node(A,null);

"I A
Nl

= Case 1: When the list is not empty; start = null.

p.next = start;
start = p;

= Case 2:When the list is empty; start=null.
start = p;

Linked Lists, A. Bellaachia

Page 6

0 Deletion :

= Case 1: The first element of the list

P 9

Y
art A m m m

Delete(A):
p =(Q = start
start = start.next;

= Case 2: An element different than the first one in the list
Delete the node pointed by p

] P

C
i \\ > null
g.next = p.next;
/1 You would need to free the pointer p if the language does not

automatically free memory like in C: free(p);
//In Java, JVM takes care of garbage collection.

Linked Lists, A. Bellaachia Page 7

e One-way linked lists with Head and Talil

o0 An example:

3

NULL

e Operations: Sorted or Unsorted
o Insertion
0 Deletion
o Find

e Insertion in an unsorted list:

o Creation of a node;

p P~/ James O\

N~

Linked Lists, A. Bellaachia

Page 8

= Case 1. When the list is not empty; start != null and End !=
null;

p.next = start;
start = p;

= Case 2:When the list is empty; start=null.

start = p;
End = p; P

James

NULL
NULEE
NULE

Start

End

Linked Lists, A. Bellaachia Page 9

0 Deletion :
= Case 1: The first element of the list
p q
AN

(A N (B vy

Star

\ A \\T// > NULL
t

End

Delete(A):

p =(q = Start

Start = Start.next;

/] You would need to free the pointer p if the language does
not automatically free memory like in C: free(p);

//In Java, JVM takes care of garbage collection.

= Case 2: An element different than the first one in the list

Same as in the case of one-way linked list.

Linked Lists, A. Bellaachia Page 10

e Singly Circular Linked Lists

o0 An example:

Start

0 Operations: Sorted or Unsorted
= |nsertion
= Deletion
» Find

o Insertion in an unsorted list:

= Creation of a node:

p\m
N NULL S

Linked Lists, A. Bellaachia Page 11

= Case 1: When the list is not empty; start != null;

(3) start = p;
I
Start | P
v
AN B Y Z
k /> \\I /’ 4\\/
/
K
|/ .

(2) start.next = p;

= Case 2:When the list is empty; start=

(1) p.next = start.next;

null.

~

start

P~z
Nt

start = p;
p.next = p;

Linked Lists, A. Bellaachia

Page 12

0 Deletion :

= Case 1: The first element of the list

start

N
\‘/

/
\

Delete(A):

q = start.next;

start.next = g.next;

/1 You would need to free the pointer p if the language does
not automatically free memory like in C: free(p);

//In Java, JVM takes care of garbage collection.

= Case 2: The last element of the list
Try this case on your own.

= Case 3: An element different from the first and last element
of the list.

Same as in the case of one-way linked list.

Linked Lists, A. Bellaachia Page 13

e Doubly Linked Lists
o Type of nodes: Declaration of a node:
private int data;
private Node Rnext;

private Node Lnext;

public Node(){

data = 0;
Lnext = null;
Rnext = null;

}

public Node(int d, Node I, Node r){
data = d;
Rnext = I;
Lnext =r;

}

public int getData(){
return(data);

}

public Node getRnext(){
return(Rnext);

}

public Node getLnext(){
return(Lnext);

}

}
P~~~ v

Linked Lists, A. Bellaachia Page 14

O Types:
= Simple doubly linked lists

= Circular doubly linked lists

Linked Lists, A. Bellaachia Page 15

e Simple doubly linked lists

o0 An example:

start

SN e N

null

il | 2 [T~

o0 Operations: Sorted or Unsorted
= |nsertion
= Deletion

= Find

o Insertion in an unsorted list;

= Creation of a node:

Linked Lists, A. Bellaachia

¢

Page 16

= Case 1. When the list is not empty; start != null;

@/ T |
2 1
start @ @

¢

/%/fgﬁ ;iéinuu

(1) p.Rnext = start;
(2) start.Lnext = p;
(3) start =p;

= Case 2: When the list is empty; start=null.
start = p;
0 Deletion :

= Case 1: An element different from the first and last
element of the list.

Linked Lists, A. Bellaachia Page 17

- . : 5 v
Schem ce
(1)

Delete(B):

(1) p.Lnext.Rnext = p.Rnext;
(2) p.Rlink.Lnext = p.Lnext;
/1 You would need to free the pointer p if the language does
not automatically free memory like in C: free(p);
//In Java, JVM takes care of garbage collection.
= Case 2: The first element of the list.
Try this case on your own.

= Case 3: The last element of the list.

Try this case on your own.

Linked Lists, A. Bellaachia Page 18

e Circular doubly linked lists

o An example:

ATa N B N Y

o0 Operations: Sorted or Unsorted
= |nsertion
= Deletion
= Find

o Insertion in an unsorted list;

= Creation of a node:

null null

¢

Linked Lists, A. Bellaachia Page 19

= Case 1. When the list is not empty; start != null;

P

® /lzL\

start _ﬁ /
A

A N e N (v ?

\T\f / :/: <

(1) p.Lnext = start;

(2) p.Rnext = start.Rnext
(3) start.Rnext = p;

(4) start =p;

= Case 2: When the list is empty; start=null.

P

start

Linked Lists, A. Bellaachia Page 20

0 Deletion :

= Case 1: An element different from the first and last element
of the list.

= Case 2: The first element of the list.

= Case 3: The last element of the list.

Linked Lists, A. Bellaachia Page 21

e Lab Assignment:
o Given the following Java package for a singly linked list,
complete the implementation of the missing methods.

package List;

public class Node {
private int data;
private Node next;
public Node(){
data = 0;
next = null;

}

public Node(int d, Node 1){
data = d;
next = 1;

public int getData(){
return(data);

b

public Node getNext(){
return(next);

}

by
package List;
import java.util_NoSuchElementException;

public class OneWayLinkedList {
private Node Start = null;

public OneWayLinkedList(){
Start = null;

// Returns true if the list is empty
public boolean isEmpty(){
return Start == null;

// Inserts a new node at the beginning of this list.
public void addFirst(int element){
Start = new Node(element, Start);

// Returns the first element in the list.
public int getFirst(){
if(Start == null) throw new NoSuchElementException();
return Start.getData();

// Removes the first element in the list.
public boolean deleteFirst(){
// Implement this function

// Find whether and element is in the list.
public boolean findData(int d){
//1Implement this function

Linked Lists, A. Bellaachia

Page 22

// Print list.
public void printList(){
if (Start == null)
System.out.printIn("Your list is empty)'™);
else {
Node move = Start;
System.out.printIn(’"-----—-- Print Your List -----—-- "Y;
while (move = null) {
System.out.print(""-->" + move.getData());
move = move.getNext();

Linked Lists, A. Bellaachia Page 23

	 Disposition of a node:
	o Primitive procedure: free(p), dispose(p), etc.
	o Java: done my JVM
	 Singly Linked Lists
	o One-way linked lists
	o One-way linked lists with head and tail
	o Circular one-way linked lists

