

Introduction

• Objectives:
o Organizing the data for processing is a computer program is a

critical step in the solution of a problem.
o Selecting the best data organization strongly affect the

performance of the computer program solution
o Most programming languages offer a set of primitive (basic)

data types and ways to build complex data types.

• Basic definitions.
o A data type is a set of values and a set of operations defined on

those values:
 Values
 Operations

o For example, the values of the primitive data type int are

integers between -231 and 231 - 1;

o The operations of int are the basic arithmetic and logical
operations.

o Java:
 Programming in Java is largely based on doing so with data

types known as reference types.
 Java has eight primitive data types: boolean, byte, char,

double, float, int, long, and short.

o Java Basic Data Types:

 byte:
- The byte data type is an 8-bit signed two's

complement integer.
- It has a minimum value of -128 and a maximum value

of 127 (inclusive).
- The byte data type can be useful for saving memory in

large arrays, where the memory savings actually
matters.

 short:
- The short data type is a 16-bit signed two's

complement integer.
- It has a minimum value of -215=-32,768 and a

maximum value of 215= 32,767 (inclusive).
- Use short to save memory in large arrays, in situations

where the memory savings actually matters.
 int:

- The int data type is a 32-bit signed two's complement
integer.

- It has a minimum value of
 -215 = -2,147,483,648 and a maximum value of
 -215 = 2,147,483,647 (inclusive).

- It is the default for integral values,
 long:

- The long data type is a 64-bit signed two's
complement integer.

- It has a minimum value of
-263 = -9,223,372,036,854,775,808
and a maximum value of

263 = 9,223,372,036,854,775,807
(inclusive).

- Use this data type when you need a range of values
wider than those provided by int.

 float:

- The float data type is a single-precision 32-bit IEEE
754 floating point.

- Use a float (instead of double) if you need to save
memory in large arrays of floating point numbers.

 double:
- The double data type is a double-precision 64-bit

IEEE 754 floating point.
- It is the default data type for decimal values

 boolean:

- The boolean data type has only two possible values:
true and false.

- Use this data type for simple flags that track true/false
conditions.

- This data type represents one bit of information
 char:

- The char data type is a single 16-bit Unicode
character.

- It has a minimum value of '\u0000' (or 0) and a
maximum value of '\uffff' (or 65,535 inclusive).

 Java Data Type Default Values:

- Bad programming style: Do not depend on default
values.

Data Type Default Value
Byte 0
Short 0
Int 0
Long 0L
Float 0.0f
Double 0.0dchar'\u0000'
String (or
any object)

null

Boolean false

• Data Structure:
o A means of storing a collection of data
o It is the requirement of the elements of the structure, the

relationships between them, and the operations that may be
performed on them

o The choice of a data structure can affect the performance of a
solution: slow vs. fast

o Data Structure Taxonomy:
 Linear and non-linear data structures
 Homogenous and non-homogenous data structures
 Primitive and non-primitive data structures

o Primitive and Non-primitive Data Structures

 Primitive Data Structures
- Are primitive types
- Integer, float

 Non-primitive Data Structures
- Composite data structures
- Array, records

o Linear and Non-linear Data Structures

 Linear Data Structures
- Data elements are arranged in a linear sequence
- Examples:

o Array
o Linked List
o Queue
o Stack

 Non-linear Data Structures:
- Data elements are not stored in a sequence

- Examples:
o Tree
o Graph
o Forest

o Homogeneous and Non-homogeneous Data Structures

 Homogenous Data Structures:
- Data elements are of the same type:
- Example:

o Array
 Non-homogenous Data Structures:

- Data elements are of different types
- Examples:

o Records or Structure

o Data structures in Computer Science:
 Use a computer to efficiently solve a problem:

- Understand the requirements of the problem
- Implementing these requirements with a computer

program
- Computer programs consist of the following:
- Computer Program = Algorithm + Data Structure

• Algorithm:

o To implement the business logic of the problem
o It is a concise list of steps to solve a problem
o There are more than one algorithm for a problem:

 Choose an efficient algorithm
o How to choose the best algorithm?

 Performance Analysis.

• Developing Your Application:

o Preconditions and Postcondions

 Increase the reliability of your application.

 They are a method of specifying what a function
accomplishes.

 Frequently a programmer must communicate precisely
what a function accomplishes, without any indication of
how the function does its work.

 What Preconditions and Postconditions?

 The precondition statement:

- Indicates what must be true before the function is
called.

- The programmer who calls the function is responsible
for ensuring that the precondition is valid when the
function is called.

 The postcondition statement

- Indicates what will be true when the function finishes
its work.

- The programmer who writes the function counts on
the precondition being valid, and ensures that the
postcondition becomes true at the function’s end.

 Example:

void write_sqrt(double x)
// Precondition: x >= 0.
// Postcondition: The square root of x has

// been written to the standard output.
• In this example, the precondition requires that: x >= 0

be true whenever the function is called.

• The postcondition always indicates what work the
function has accomplished. In this case, when the
function returns the square root of x has been written.

 Another Example:

bool is_vowel(char letter)
// Precondition: letter is an uppercase or
// lowercase letter (in the range 'A' ... 'Z' or 'a' ... 'z') .
// Postcondition: The value returned by the
// function is true if Letter is a vowel;
// otherwise the value returned by the function is
// false.

• What values will be returned by these function calls?

is_vowel('A');
is_vowel(' Z');
is_vowel('?');

• In Java:

o Uses assert statement to implement both preconditions and
postconditions.

o Enable Assertions:
 Command Line::
• java -enableassertions ClassName

 IDE:
• You need to enable assertion in your IDE(e.g., Eclipse)
• In Eclipse:
o Windows -> Preferences -> Java -> Installed JREs.
o Select your JDK and
o Click the Edit… button.
o In the “Default VM Arguments” box, add -ea.

o Example:

import java.util.*;
public class Precondition {

public static void main(String args[]) {
 int value;
 Scanner scanner = new Scanner(System.in);

 System.out.print("Enter a non-negative value: ");
 value = scanner.nextInt();
 assert(value >= 0) : "Your input should be positive: " +
value;
 System.out.println("You have entered: " + value);
 System.out.println("\nThe square root of your input is: " +
Math.sqrt(value));
}

 }

• Testing and Debugging

o Is Compile-Run-Generate-Outputs enough?

o Required Testing!!!

o Which test data?

 You must know which output a correct program should
produce for each test data.

 The test inputs should include those inputs that are most
likely to cause errors.

o Tips for Test data:

 Boundary values

 Fully Exercising Code: make sure each line of your code is
executed.

 Values of variables: negative, zero, positive, Expecting a
numbers or strings, etc.

	 Developing Your Application:
	o Preconditions and Postcondions
	 Increase the reliability of your application.
	 They are a method of specifying what a function accomplishes.
	 Frequently a programmer must communicate precisely what a function accomplishes, without any indication of how the function does its work.
	 What Preconditions and Postconditions?
	 The precondition statement:
	- Indicates what must be true before the function is called.
	- The programmer who calls the function is responsible for ensuring that the precondition is valid when the function is called.
	 The postcondition statement
	- Indicates what will be true when the function finishes its work.
	- The programmer who writes the function counts on the precondition being valid, and ensures that the postcondition becomes true at the function’s end.
	 Example:
	 Testing and Debugging
	o Is Compile-Run-Generate-Outputs enough?
	o Required Testing!!!
	o Which test data?
	 You must know which output a correct program should produce for each test data.
	 The test inputs should include those inputs that are most likely to cause errors.
	o Tips for Test data:
	 Boundary values
	 Fully Exercising Code: make sure each line of your code is executed.
	 Values of variables: negative, zero, positive, Expecting a numbers or strings, etc.

