
CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 1

Hashing

• Goal:

o Perform insertions, deletions, and search in constant
time: O(1).

o Example:
 Many compilers use Hashing to implement their symbol

tables

• Hash Tables:
o A hash table is an ADT where insertion, deletion, and search

take a constant time: O(1).

o Synonyms: A set of all keys that maps to the same hash @

o Let HT be an array [0..b-1] a table of size b and x1, x2, ..., xn are
n entities to be stored in HT

o Question:

 Where should xi be stored in HT so that it can be found
later in O(1)?

o Answer:
 Find a function F called hash function such that

0≤ F(xi) ≤b-1

 xi is stored in HT[F(xi)].

Function

O(1)

Key Hash @: The index of the
entry in the hash table

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 2

 Example 1:
• Given a set of elements: ab, bit, chair, table, zebra,

group
• Hash function:

F(word) = (rank of the first letter of “word” in the alphabet) mod 7

F(ab) = 1 mod 7 = 1 0 group
F(bit) = 2 mod 7 = 2 1 ab
F(chair) = 3 mod 7 = 3 2 bit
F(table) = 20 mod 7 = 6 3 chair
F(zebra) = 26 mod 7 = 5 4
F(group) = 7 mod 7 = 0 5 zebra
 6 table

 Example 2:

• Given a set of elements: Given a set of numbers: 12,
100015, 7533457, 4

• Hash function:
F(x) = x mod 5

F(12) = 2 = 1 0 100015

F(100015) = 0 1 12

F(7533457) = 2 2 7533457

 3
 F(4) = 4 4 4

 In general the size of the hash table is much smaller that the

set the inputs: How to handle the insertion of synonyms?
Collision Problems !!!!

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 3

• Operations:
o Insert(x):

 Compute F(x)
 insert x in HT: HT[F(x)] = x;

o Delete(x):
 Compute F(x)
 delete x from HT: HT[F(x)] = 0;

o Search(x):
 Compute F(x)
 return(HT[F(x)]);

• Hashing Requirements:

o A hashing function
o A collision resolution policy

o Hashing functions

 Mid-square: F(x) = middle k digits in x2.

 Division: F(x) = x mod M

• The best value of M is prime.

 Folding: Given a Key x1x2...xr

• F1(x1x2...xr) = x1x2+x3x4+...+xr-1xr

• F2(x1x2...xr) = x2x1+x4x3+...+xrxr-1

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 4

• Example: X= 251367

o F1(K) = 25+13+67 = 125
o F2(K= 52+31+76 = 159

 Truncation:

• F(x) = last k digits of x or first k digits of x
o IF the student ID of a student is G123456789 and

we consider the last k=3 digits:

F(G123456789) = 789

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 5

• Collision resolution policies

o Definition:
 If one of the synonyms of a key x is already stored in the

hash table and another element y of the synonym set
arrives. What would be the alternative entry in the hash
table?

o There are two methods of collision handling:
 Open addressing or linear probing
 Chaining or bucket hashing

o Open addressing or linear probing

 Insert x in the next available entry following HT[F(x)] with

a wrap around.
 Insert(x)

begin
if the has table is full then print(“Error”);
else begin

probe = Compute F(x);
While(table[probe] is occupied)
 begin

probe = (probe+1) mod M;
end

table[probe] = x; //insert x
 end;

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 6

 Example:
• Given

o a set of elements: ab, chair, table, zebra
o A hash table of size M=7

• F(word) = (rank of the first letter of “word” in the

alphabet) mod 7

• Insert tool, able, apple?

F(tool) = 20 mod 7 + 1 (collision)
F(able) = 1 mod 7 + 1 (collision)
F(apple) = 1 mod 7 + 3 (collision)

0 tool

1 ab
2 able
3 chair

4 apple

5 zebra
6 table

F(ab) = 1 mod 7 = 1 0
F(chair) = 3 mod 7 = 3 1 ab
F(table) = 20 mod 7 = 6 2
F(zebra) = 26 mod 7 = 5 3 chair
 4
 5 zebra
 6 table

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 7

 Delete Operation
• Empty entry should be classified as either never

occupied or formerly occupied.
• Example:

 Let us consider the previous hash table
0 tool
1 ab
2 able
3 chair
4 apple
5 zebra
6 table

 Delete “table”

• F(table) = 20 mod 7 = 6
• If HT[6] = “table” //Yes

o Then delete “table”
0 tool
1 ab
2 able
3 chair
4 apple
5 zebra
6

 If we leave the HT[6] to null what would happen if we are

trying to delete “tool”?
• F(table) = 20 mod 7 = 6
• Check HT[6]?

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 8

o It is null. Does that mean that the HT does not
have “tool”?

o So instead of setting HT[6] to null when we
delete “table”, we need to set it to “Previously
Occupied” so we can keep looking for “tool”.

0 tool

1 ab
2 able
3 chair

4 apple

5 zebra
6 “Previously

Occupied”

 Problems:
• Slower
• Clustering:

o A group of synonyms will be located adjacently
and mixed together with some official occupants.

o Too many “Previously Occupied” and “Never
Occupied” markers degrades delete
performance

o Rehash if there are too many markers.

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 9

o Non-linear probing
 Insert x in the next available entry following HT[F(x)] with

a wrap around.
 Insert(x)

begin
if the has table is full then print(“Error”);
else begin

probe = Compute F(x);
While(table[probe] is occupied)
 begin

probe = (probe+INC(i)) mod M;
end

HT[probe] = x; //insert x
 end;

 Example:

• Quadratic probing: INC(i) = i2
• The insertion is in the next available position: 1, 4, 9,

etc.
• Given a set of elements: chair, table, zebra

• F(word) = (rank of the first letter of “word” in the

alphabet) mod 7

 0
F(chair) = 3 mod 7 = 3 1
F(table) = 20 mod 7 = 6 2
F(zebra) = 26 mod 7 = 5 3 chair
 4
 5 zebra
 6 table

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 10

• Insert tool, zoo, apple?

F(tool) = (6 + 1) mod 7 = 0
F(zoo) = (5 + 4) mod 7 = 2
F(apple) = 1 mod 7 = 1

 0 tool
 1 apple
 2 Zoo
 3 chair
 4
 5 zebra
 6 table

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 11

o Double Hashing
 Use two hashing functions
 Distributes keys more uniformly than linear probing does
 Insert x in the next available entry following HT[F(x)] with

a wrap around.
 Insert(x)

begin
if the has table is full then print(“Error”);
else begin

probe = Compute F1(x);
offset = Compute F2(x);
While(table[probe] is occupied)
 begin

probe = (probe+offset) mod M;
end

HT[probe] = x; //insert x
 end;

 Example
• Two hash functions:

o F1(x) = x mod 7
o F2(x) = 4 - x mod 4

• Given the following list of elements: 15, 20, 13

F1(15) = 15 mod 7 = 1
F1(20) = 20 mod 7 = 6
F1(13) = 13 mod 7 = 6
HT[6] is occupied, compute the offset
Offset = F2(13) 4 – 13 mod 4 = 3

0 1 2 3 4 5 6
 15 13 20

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 12

• Chaining or bucket hashing

o In this strategy insertion of synonyms is in a separate storage
(Linked lists)

o Example:
 Given a set of elements: 3, 4, 7, 40, 45, 50, 80
 F(x) = x mod 4

0 4 40 80 /

1 45 /

2 /

3 3 7 /

