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Graphs 
 
 
• Motivations: 

o Networks 
o Social networks 
o Program testing  
o Job Assignment 

• Examples: 
o Code graph: 

 
S1:   int x 
S2:   If x > 0 then  
 S3:   X = x + 2; 

Else  
S4:  X =x -1; 

End if 
S5:  While x > 1 do  
S6:  Print x; 
S7:  X = x -1; 

End while 
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o Job Assignment: 
 

 
 
 

 
 
 
 
 
 

o Facebook graph: www.fastcompany.com 
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Specifications 

Design 
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http://www.fastcompany.com/�
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o Flick graph: www.flicker.com  

 
o Enron Emails graph: C.E. Priebe, J.M. Conroy, D.J. Marchette, and 

Y. Park, "Scan Statistics on Enron Graphs," SIAM International 
Conference on Data Mining, Workshop on Link Analysis. 

 

http://www.flicker.com/�
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• Definitions:  
o A graph G is an ordered pair of sets (V,E) where V is  a set of 

nodes and E is a set of edges or (arcs). 
o There are two types:  

 directed graphs (Digraphs) 
 undirected graphs 
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• Examples: 
o Directed:  

 
 
 
 
  

 Note the following:  
- the edges: <A,4> != <4,A> 
- <C,C> is called a self-loop. 

o Undirected:  
 
 
 
 
 
  

- Edge: (A,Y)  
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• Adjacency nodes: 
o Definition:  

 Given an edge  <s,d>, d is adjacent to s. The set of all nodes 
adjacent to s is called the adjacency set of s. 

 Examples: 
The adjacency set of A is {B, C, Z, Y} 
The adjacency set of Z is {A, B} 
The adjacency set of Y is {A} 

 
• Paths: 

o Definition:  
 is a sequence of edges <x1,x2>, <x2,x3>, ...,<xn-1,xn> 

o Simple path: 
 All the nodes are distinct except possibly the first and the 

last. 
 

o Length of a path: 
 The number of edges in the path. 
 A simple edge is a path of length 1 
 A self-loop is a path of length 1 

 
• Reachability:  

o Definition: 
 If there is a path from a node x to a node y, we say that y is 

reachable from x. 
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• Cycles: 

o Definition: 
 A cycle is a path such that the destination of the last edge is 

the source of the first edge. 
 A self-loop is a cycle of length 1. 
 Simple cycle: 

• It is a simple path which is a cycle. 
 Acyclic graphs: 

• It is a graph with no cycle in it. For example: trees. 
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• Degree of a graph 
o Directed graphs: 

 In-degree:  
• The in-degree of a vertex u is the number of  edges 

entering it. 
 Out-degree:  

• The out-degree of a vertex u is the number of edges 
leaving it. 

 Theorem:  
• Let G=(V, E) be a graph with directed edges. Then  

∑
∈∀

∑
∈∀

==
Vx

E
Vx

x)outdegree()indegree(x  

 
  

o Undirected graphs: 
 Definition:  

• The degree of a node is the number of its adjacent 
nodes. 

 Theorem:  
• Let G=(V,E), the sum of the degrees of each node 

equals 2|E| where |E| is the number of edges: 
 
      degree(x) 2 E

x V
=

∀ ∈
∑  
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• Connected graphs 
o Undirected: 

 Definition:  
- An undirected graph is connected if for every two 

vertices i and j there exists at least one path from i to j. 
o Directed: 

 Connected:  
- A directed graph is connected if the undirected graph 

obtained by ignoring the edge directions is connected. 
 Strongly connected:  

- A directed graph is strongly connected if for every two 
vertices I and j there exists a path from i to j and from j 
to i. 
 

o Subgraph: 
 Definition: 

-  Given a graph H = (V0, E0) is a subgraph of G = (V, 
E) where V0 ⊆ V and E0 ⊆ E. 

- Example: 
 
 
 
 
 

- H is a proper subgraph of G if H≠G. 
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• Special Graphs: 
o Complete graph: 

 Definition:  
- A complete Kn is an undirected graph has n vertices 

and has an edge connecting every pair of distinct 
vertices. 

 Example: 
- K1: 

 
- K2: 

 
- K3: 

 
 

- K4: 
 
 
 

- K4: 
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o Bipartite (or bigraph) Graph: 
 Definition: 

- Bipartite is a simple graph in which the vertices can be 
partitioned into disjoint sets V1 and V2:  

- Edges connect vertices of sets V1 and V2 
- No edges connect vertices of: V1 with other vertices 

of V1 or V2 with other vertices of V2 
 Example: 

 
 
 
 
 

 
 A complete bipartite undirected graph  

- Definition: 
o Km,n=(V1UV2, E) is a bipartite graph where each 

vertex in V1 is connected to every vertex in V2. 
 Example: 
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o Regular Graph: 

 Definition: 
- A regular undirected graph of degree k is a graph in 

which each vertex has degree k. 
 
 
 
 
 

o Planar Graph: 
 Definition: 

- If the graph can be drawn on a plane without edges 
crossing. 

 Examples: 
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o Union of two simple graphs  
 Definition:   

- The union of G1= (V1, E1) and G2= (V2, E2) is the 
simple graph with vertex set V1∪V2 and edge set 
E1∪E2. The union of G1 and G2  is denoted by 
G1∪G2 

 Example: 
 
 
 
 
 
 
 
 
 
 

a b 

c d 

a d e 

b 
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o Star graph:  
 Definition: 

- A star graph Sn is a graph of n vertices with one node 
having vertex degree n-1 and the other n-1 vertices 
having vertex degree 1. 

  Example: 
- S1: 

 
- S2: 

 
- S3: 

 
- S4:     
 

 
 
 

- S5:     
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•  Graph Representation 
o There are two types of representations: 

 Adjacency matrix 
 Adjacency list 

 
o Adjacency matrix 

 No information is associated with edges 
 Each edge is associated with a cost or info.: weighted 

adjacency matrix 
 

o Unweighted adjacency matrix: 
 Definition: 

- Let M be the adjacency matrix of a graph G. M is 
defined as follows: 

     

[ ]

M where is theset of square

matricesof diameter V

M i j or TRUE
If thereis anedgebetween
vertex i and vertex j

or False Otherwise

V V V V∈

=




















Π Π

, .
1

0

 

 
 Example: 

 
 

  
 

1 2 

3 4 
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- The adjacency matrix M is:  

 

     


















=

0110
0011
1001
1010

M
 

 
o Weighted adjacency matrix: 

 Definition: 
- Let M be the adjacency matrix of a graph G. M is 

defined as follows:   

   

[ ]

M where is theset of square

matricesof diameter V

M i j
c

If thereis anedgebetween
vertex i and vertex j whose t isc

If i j
If i j and thereisnoedgebetweeni and j

V V V V∈

=

∞
=

≠







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







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






Π Π

, cos .
0

 

 
 Example: 
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 The adjacency matrix M is:  

 

     


















∞
∞

∞
=

0920
01017

1404
11730

M
 

 
• Notes: 

o If the graph is undirected, both unweighted adjacency matrix    
and weighted adjacency matrix are symmetric matrices. 

 
• Drawback of adjacency matrix representation: 

o Algorithms using adjacency matrix representation require at        
least O(n2) where n= V  and V is the set of vertices of the input     
graph. 

 
• Adjacency list 

o There is a list for each vertex in the graph: the nodes in this list     
represent the vertices that are adjacent from vertex I. 

o Each node of the list associated with vertex i consists of the        
following: 
 No information is associated with G: if there is an edge 

between (i,j):  
 
           

Vertex j 
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 Weighted graph: if there is an edge between (i,j) whose cost 

is c: 
 
 

 Example:   
  
            
 
         
 
 

- The adjacency list is:  
    Head Nodes 
 

1   2   3   4  
2   1   4 /    
3   1   2 /    
4   2   3 /    

 
 

C 
Vertex j Vertex i 

1 2 

3 4 
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• Graph Traversals 
o There are two strategies: 

 Depth First Search (DFS) 
 Breadth First Search (BFS) 

 
o Depth First Search (DFS) 

 Procedure:  
   DFS (G,v) 
   Begin 
    visited(v) = TRUE; 
    For every node x neighbor of v do  
     If visited x = FALSE 
     then DFS(G,x) 
     endif 
    endfor 
   End; 
 

 Analysis: 
- For G=(V,E) where n= V  and e= E , the time 

complexity is: 
o Adjacency matrix: 

 Since the FOR loop takes O(n) for each 
vertex, the time complexity is: O(n2) 

 
 Adjacency list: 
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• The FOR loop takes the following: 

                   dii 1

n
O(e) where di degree(vi )

=
∑ = =  

• The setup of the visited array requires:   
O(n) 

• Therefore, the time complexity is:  
O(max(n,e)) 



CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 23 
 

o Breadth First Search (BFS) 
 Procedure:  

  BFS (v) 
  queue Q; 
  Begin 
   visited(v) = TRUE; 
   Make_empty(Q);  /* Make the queue empty */ 
   Add_queue(Q,v); 
   While (!Empty_queue(Q)) do 
   Begin 
    Delete_queue(Q,x); 
    For all vertices w adjacent to x do 
     If (!visited[w]) 
     then  Begin 
       Add_queue(Q,w); 
       visited[w]=TRUE; 
      end; 
    endfor 
   End; 
  End;  

 
 Analysis: 

- For G=(V,E) where n= V  and e= E , the time 
complexity is: 
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o Adjacency matrix: 
 Since the while loop takes O(n) for each 

vertex, the time complexity is: O(n2) 
 

o Adjacency list: 
 The while loop takes the following: 

                  dii 1

n
O(e) where di degree(vi )

=
∑ = =  

 The setup of the visited array requires: O(n) 
 Therefore, the time complexity is: 

O(max(n,e))  
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• Applications: 
o Find a path from Source    Destination 

 Use either DFS or BSD  
 Need to store the edges traversed 

- Use depth  
- Use breath  

 Example: 
 
 

 
 
 
 
 

 Start at node A: push A in the stack 
 

     Z 
    X X 
   Y Y Y 
  C C C C 
   B B B B B 

A A A A A A 
DFS on A DFS on B DFS on C DFS on Y DFS on X DFS on Z 

 

Source 

Destination 

A Y C 

Z B X 
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o Is an undirected graph connected? 

 Think about a DFS based algorithm? 
 

o Check whether an undirected graph is a regular graph. Print the 
degree of the graph. 

 
o To find out if a graph contains a cycle. 

 How? 
boolean DFS(v){ 
    visited[v] = 1; 
     for( each vertex w adjacent to v ){ 
           if (visited[w] == 0){ 
                 parent[w] = v; 
                 DFS(w); 
            } 
          else if(visited[w] == 1 and parent[w] !=  v) 
                 return true;       // cycle detected 
     } 
    return false;           // no cycle detected in this component 
} 


