Graphs

e Motivations:
o Networks
o Social networks
O Program testing
o0 Job Assignment
e Examples:
o Code graph:

S1. intx

S2: If x>0 then

S3: X=X+2;
Else

4. X =x-1,;
End if

S5: While x> 1 do

S6: Print Xx;

ST X=x-1;
End while

CSci 1112 - Algorithms and Data Structures, A. Bellaachia

Page 1

o0 Job Assignment:

[72)
c
S
=}
I
2
=
O
D
o
2]

Programming

o Facebook graph: www.fastcompany.com

Page 2

CSci 1112 - Algorithms and Data Structures, A. Bellaachia

http://www.fastcompany.com/�

o Flick graph: www.flicker.com

o Enron Emails graph: C.E. Priebe, J.M. Conroy, D.J. Marchette, and
Y. Park, "Scan Statistics on Enron Graphs," SIAM International
Conference on Data Mining, Workshop on Link Analysis.

emmil3s criail79 d - Emall 51
enwiid6 =resilB0 emailg3 e lg emaiki4s
emmil37 emgildd4 2 7 emai 46

email38 srailas b | email45
emeil3s emeilsT emgild emag143
emel42 emelag . . emgil3 emag142
emailds emalod emaila0 email53 EI‘_.I|2 emay139
emal45 emasloT emﬂ_l‘lﬁ& emal136
emai4s emad9s emgl180 email135
emalls1 emaild 02 emgil177 emal134
emall52 803 . emmill7e emmil132
emali53 il email127 emmil174 emeil131
Einae enmmil 167 email129
ermail165 emil125
emil124

Bai164
B0

Page 3

CSci 1112 - Algorithms and Data Structures, A. Bellaachia

http://www.flicker.com/�

e Definitions:

o A graph G is an ordered pair of sets (V,E) where V is a set of
nodes and E is a set of edges or (arcs).

0 There are two types:
= directed graphs (Digraphs)
= undirected graphs

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 4

e Examples:
o Directed: 4

—(A =
OO

= Note the following:
- the edges: <A,4> 1= <4 A>
- <C,C> is called a self-loop.

o0 Undirected:
=1
X
OO

- Edge: (A)Y)

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 5

e Adjacency nodes:
o Definition:

= Given an edge <s,d>, dis adjacent to s. The set of all nodes
adjacent to s is called the adjacency set of s.

= Examples:
The adjacency set of Ais {B, C, Z, Y}
The adjacency set of Z is {A, B}
The adjacency set of Y is {A}

e Paths:
o Definition:
= is a sequence of edges <X;,X>>, <X»,X3>, ...,<Xp.1,Xp>
o Simple path:
= All the nodes are distinct except possibly the first and the
last.

o Length of a path:
= The number of edges in the path.
= A simple edge is a path of length 1
= A self-loop is a path of length 1

e Reachability:
o Definition:
= |f there is a path from a node x to a node y, we say that y is
reachable from x.

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 6

e Cycles:
o Definition:

= A cycle is a path such that the destination of the last edge is
the source of the first edge.

= A self-loop is a cycle of length 1.
= Simple cycle:
e |t is a simple path which is a cycle.
= Acyclic graphs:
e [t is a graph with no cycle in it. For example: trees.

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 7

e Degree of a graph
o Directed graphs:
» In-degree:

e The in-degree of a vertex u is the number of edges
entering it.

= Qut-degree:

e The out-degree of a vertex u is the number of edges
leaving it.

= Theorem:

o Let G=(V, E) be a graph with directed edges. Then

>, indegree(x)= 3 outdegree(x)=E|
VxeV vxeV

o Undirected graphs:
= Definition:

e The degree of a node is the number of its adjacent
nodes.

= Theorem:

o Let G=(V,E), the sum of the degrees of each node
equals 2|E| where |E| is the number of edges:

> degree(x)=2|E|
VX eV

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 8

e Connected graphs
o Undirected:
= Definition:

- An undirected graph is connected if for every two
vertices i and j there exists at least one path fromi to j.

o Directed:
= Connected:

- A directed graph is connected if the undirected graph
obtained by ignoring the edge directions is connected.

= Strongly connected:

- A directed graph is strongly connected if for every two
vertices | and j there exists a path from i to j and from j
to I.

O Subgraph:
= Definition:

- Given a graph H = (V,, Ep) is a subgraph of G = (V,
E) where Vo € V and Ey; C E.

- Example:

=L
& C

- His a proper subgraph of G if H#G.

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 9

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 10

e Special Graphs:
o Complete graph:
= Definition:

- A complete K, is an undirected graph has n vertices
and has an edge connecting every pair of distinct

vertices.
= Example:

CSci 1112 - Algorithms and Data Structures, A. Bellaachia

Page 11

o0 Bipartite (or bigraph) Graph:
= Definition:

- Bipartite is a simple graph in which the vertices can be
partitioned into disjoint sets V1 and V2:

- Edges connect vertices of sets V1 and V2

- No edges connect vertices of. V1 with other vertices
of V1 or V2 with other vertices of V2

= Example:

= A complete bipartite undirected graph
- Definition:

o0 K n=(V1UV,, E) is a bipartite graph where each
vertex in Vy Is connected to every vertex in V5.

= Example:

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 12

o Regular Graph:
= Definition:

- Aregular undirected graph of degree k is a graph in
which each vertex has degree k.

—

o Planar Graph:
= Definition:

- If the graph can be drawn on a plane without edges
crossing.

= Examples:

[

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 13

o Union of two simple graphs
= Definition:
- The union of G1= (V1, E1) and G2= (V2, E2) is the
simple graph with vertex set V1UV2 and edge set

E1UEZ2. The union of G1 and G2 is denoted by
GluG2

= Example:

p
N

d b
a b
C d

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 14

o Star graph:
= Definition:

- Asstar graph S, is a graph of n vertices with one node
having vertex degree n-1 and the other n-1 vertices
having vertex degree 1.

= Example:

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 15

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 16

e Graph Representation
o0 There are two types of representations:
= Adjacency matrix
= Adjacency list

o Adjacency matrix
= No information is associated with edges

= Each edge is associated with a cost or info.: weighted
adjacency matrix

o Unweighted adjacency matrix:
= Definition:

- Let M be the adjacency matrix of a graph G. M is

defined as follows:
M eIl . wherell . isthesetof square

IVIIvI VIV

matricesof diameter |V/|

If thereisanedge between

. .1 JlorTRUE .)
M[i, j]= vertex i and vertex j.
Oor False Otherwise
= Example:
3/ 4

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 17

- The adjacency matrix M is:

O kO
=
P O O O

o O - BB

o Weighted adjacency matrix:
= Definition:
- Let M be the adjacency matrix of a graph G. M is
defined as follows:
Mell, , wherell, isthesetof square

matricesof diameter |V/|

If thereisanedge between
C
M 1= vertexiand vertex jwhosecostisc.
[13]=10 Ifi=]
o Ifi# jandthereisnoedgebetweeniand j

= Example: 4

11
17

14

10
3 j« {4

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 18

» The adjacency matrix M is:

0 3 7 11
4 0 o 14
M =
17 10 0 o
o 20 9 0

e Notes:

o If the graph is undirected, both unweighted adjacency matrix
and weighted adjacency matrix are symmetric matrices.

e Drawback of adjacency matrix representation:

o Algorithms using adjacency matrix representation require at
least O(n°) where n=|v| and V is the set of vertices of the input

graph.

e Adjacency list

o0 There is a list for each vertex in the graph: the nodes in this list
represent the vertices that are adjacent from vertex |I.

0 Each node of the list associated with vertex i consists of the
following:

= No information is associated with G: if there is an edge
between (1,)):

Vertex j ——

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 19

= Weighted graph: if there is an edge between (i,j) whose cost
IS C:

C
Vertex i > Vertex | I

= Example:

- The adjacency list is:

Head Nodes

1 12 13 14
2 711 14 /

3 1 12 |/

4 12 13 /

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 20

e Graph Traversals
o0 There are two strategies:
= Depth First Search (DFS)
» Breadth First Search (BFS)

0 Depth First Search (DFS)
* Procedure:
DFS (G,v)
Begin
visited(v) = TRUE;
For every node X neighbor of v do
If visited x = FALSE
then DFS(G,X)
endif
endfor
End;

= Analysis:
- For G=(V,E) where n=|v| and e=|g|, the time
complexity is:
o Adjacency matrix:

= Since the FOR loop takes O(n) for each
vertex, the time complexity is: O(n?)

= Adjacency list:

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 21

e The FOR loop takes the following:

n
> di:O(e) where di:degree(vi)
i=1

e The setup of the visited array requires:
O(n)

e Therefore, the time complexity is:
O(max(n,e))

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 22

o0 Breadth First Search (BFS)
* Procedure:
BFS (V)
queue Q;
Begin
visited(v) = TRUE;
Make empty(Q); /* Make the queue empty */
Add_queue(Q,v);
While ('Empty_queue(Q)) do
Begin
Delete_queue(Q,Xx);
For all vertices w adjacent to x do
If (Ivisited[w])
then Begin
Add_queue(Q,w);
visited[w]=TRUE;
end,;
endfor
End;
End;

= Analysis:

- For G=(V,E) where n=)v| and e=|g|, the time
complexity is:

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 23

o Adjacency matrix:

= Since the while loop takes O(n) for each
vertex, the time complexity is: O(n?)

o Adjacency list:
= The while loop takes the following:
E di =0(e) where di =degree(vi)
i=1
» The setup of the visited array requires: O(n)

= Therefore, the time complexity is:
O(max(n,e))

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 24

e Applications:
o Find a path from Source -> Destination
= Use either DFS or BSD

= Need to store the edges traversed

Source

- Use depth
- Use breath
= Example:

0’3

Destination

W Start at node A: push A in the stack

(¥
)

Z

X X

Y Y Y

C C C C

B B B B B

A A A A A A
DFSonA DFSonB DFSonC DFSonY DFSonX DFSonZ

CSci 1112 - Algorithms and Data Structures, A. Bellaachia

Page 25

o Is an undirected graph connected?
= Think about a DFS based algorithm?

o0 Check whether an undirected graph is a regular graph. Print the
degree of the graph.

o To find out if a graph contains a cycle.

= How?
boolean DFS(v){
visited[v] = 1;

for(each vertex w adjacent to v){
If (visited[w] == 0){
parent[w] = v;
DFS(w);
¥
else if(visited[w] == 1 and parent[w] = v)
return true; I/ cycle detected

}

return false; // no cycle detected in this component

CSci 1112 - Algorithms and Data Structures, A. Bellaachia Page 26

