
CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 1

Graphs

• Motivations:

o Networks
o Social networks
o Program testing
o Job Assignment

• Examples:
o Code graph:

S1: int x
S2: If x > 0 then
 S3: X = x + 2;

Else
S4: X =x -1;

End if
S5: While x > 1 do
S6: Print x;
S7: X = x -1;

End while

S1

S2

S3

S4

S5

S6

S7

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 2

o Job Assignment:

o Facebook graph: www.fastcompany.com

Paul

Mary

Steve

Bell

Specifications

Design

Programming

http://www.fastcompany.com/�

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 3

o Flick graph: www.flicker.com

o Enron Emails graph: C.E. Priebe, J.M. Conroy, D.J. Marchette, and

Y. Park, "Scan Statistics on Enron Graphs," SIAM International
Conference on Data Mining, Workshop on Link Analysis.

http://www.flicker.com/�

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 4

• Definitions:
o A graph G is an ordered pair of sets (V,E) where V is a set of

nodes and E is a set of edges or (arcs).
o There are two types:

 directed graphs (Digraphs)
 undirected graphs

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 5

• Examples:
o Directed:

 Note the following:
- the edges: <A,4> != <4,A>
- <C,C> is called a self-loop.

o Undirected:

- Edge: (A,Y)

A

Y

C

Z B

A

10

C

Z 4

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 6

• Adjacency nodes:
o Definition:

 Given an edge <s,d>, d is adjacent to s. The set of all nodes
adjacent to s is called the adjacency set of s.

 Examples:
The adjacency set of A is {B, C, Z, Y}
The adjacency set of Z is {A, B}
The adjacency set of Y is {A}

• Paths:

o Definition:
 is a sequence of edges <x1,x2>, <x2,x3>, ...,<xn-1,xn>

o Simple path:
 All the nodes are distinct except possibly the first and the

last.

o Length of a path:
 The number of edges in the path.
 A simple edge is a path of length 1
 A self-loop is a path of length 1

• Reachability:

o Definition:
 If there is a path from a node x to a node y, we say that y is

reachable from x.

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 7

• Cycles:

o Definition:
 A cycle is a path such that the destination of the last edge is

the source of the first edge.
 A self-loop is a cycle of length 1.
 Simple cycle:

• It is a simple path which is a cycle.
 Acyclic graphs:

• It is a graph with no cycle in it. For example: trees.

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 8

• Degree of a graph
o Directed graphs:

 In-degree:
• The in-degree of a vertex u is the number of edges

entering it.
 Out-degree:

• The out-degree of a vertex u is the number of edges
leaving it.

 Theorem:
• Let G=(V, E) be a graph with directed edges. Then

∑
∈∀

∑
∈∀

==
Vx

E
Vx

x)outdegree()indegree(x

o Undirected graphs:
 Definition:

• The degree of a node is the number of its adjacent
nodes.

 Theorem:
• Let G=(V,E), the sum of the degrees of each node

equals 2|E| where |E| is the number of edges:

 degree(x) 2 E

x V
=

∀ ∈
∑

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 9

• Connected graphs
o Undirected:

 Definition:
- An undirected graph is connected if for every two

vertices i and j there exists at least one path from i to j.
o Directed:

 Connected:
- A directed graph is connected if the undirected graph

obtained by ignoring the edge directions is connected.
 Strongly connected:

- A directed graph is strongly connected if for every two
vertices I and j there exists a path from i to j and from j
to i.

o Subgraph:
 Definition:

- Given a graph H = (V0, E0) is a subgraph of G = (V,
E) where V0 ⊆ V and E0 ⊆ E.

- Example:

- H is a proper subgraph of G if H≠G.

A

Y

C

Z B

B

A C

Z

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 10

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 11

• Special Graphs:
o Complete graph:

 Definition:
- A complete Kn is an undirected graph has n vertices

and has an edge connecting every pair of distinct
vertices.

 Example:
- K1:

- K2:

- K3:

- K4:

- K4:

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 12

o Bipartite (or bigraph) Graph:
 Definition:

- Bipartite is a simple graph in which the vertices can be
partitioned into disjoint sets V1 and V2:

- Edges connect vertices of sets V1 and V2
- No edges connect vertices of: V1 with other vertices

of V1 or V2 with other vertices of V2
 Example:

 A complete bipartite undirected graph

- Definition:
o Km,n=(V1UV2, E) is a bipartite graph where each

vertex in V1 is connected to every vertex in V2.
 Example:

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 13

o Regular Graph:

 Definition:
- A regular undirected graph of degree k is a graph in

which each vertex has degree k.

o Planar Graph:
 Definition:

- If the graph can be drawn on a plane without edges
crossing.

 Examples:

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 14

o Union of two simple graphs
 Definition:

- The union of G1= (V1, E1) and G2= (V2, E2) is the
simple graph with vertex set V1∪V2 and edge set
E1∪E2. The union of G1 and G2 is denoted by
G1∪G2

 Example:

a b

c d

a d e

b
a b

c d e

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 15

o Star graph:
 Definition:

- A star graph Sn is a graph of n vertices with one node
having vertex degree n-1 and the other n-1 vertices
having vertex degree 1.

 Example:
- S1:

- S2:

- S3:

- S4:

- S5:

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 16

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 17

• Graph Representation
o There are two types of representations:

 Adjacency matrix
 Adjacency list

o Adjacency matrix

 No information is associated with edges
 Each edge is associated with a cost or info.: weighted

adjacency matrix

o Unweighted adjacency matrix:
 Definition:

- Let M be the adjacency matrix of a graph G. M is
defined as follows:

[]

M where is theset of square

matricesof diameter V

M i j or TRUE
If thereis anedgebetween
vertex i and vertex j

or False Otherwise

V V V V∈

=




















Π Π

, .
1

0

 Example:

1 2

3 4

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 18

- The adjacency matrix M is:



















=

0110
0011
1001
1010

M

o Weighted adjacency matrix:

 Definition:
- Let M be the adjacency matrix of a graph G. M is

defined as follows:

[]

M where is theset of square

matricesof diameter V

M i j
c

If thereis anedgebetween
vertex i and vertex j whose t isc

If i j
If i j and thereisnoedgebetweeni and j

V V V V∈

=

∞
=

≠


























Π Π

, cos .
0

 Example:

1 2

3 4

3

4

14
10

7

9

11
20 17

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 19

 The adjacency matrix M is:



















∞
∞

∞
=

0920
01017

1404
11730

M

• Notes:

o If the graph is undirected, both unweighted adjacency matrix
and weighted adjacency matrix are symmetric matrices.

• Drawback of adjacency matrix representation:

o Algorithms using adjacency matrix representation require at
least O(n2) where n= V and V is the set of vertices of the input
graph.

• Adjacency list

o There is a list for each vertex in the graph: the nodes in this list
represent the vertices that are adjacent from vertex I.

o Each node of the list associated with vertex i consists of the
following:
 No information is associated with G: if there is an edge

between (i,j):

Vertex j

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 20

 Weighted graph: if there is an edge between (i,j) whose cost

is c:

 Example:

- The adjacency list is:
 Head Nodes

1 2 3 4
2 1 4 /
3 1 2 /
4 2 3 /

C
Vertex j Vertex i

1 2

3 4

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 21

• Graph Traversals
o There are two strategies:

 Depth First Search (DFS)
 Breadth First Search (BFS)

o Depth First Search (DFS)

 Procedure:
 DFS (G,v)
 Begin
 visited(v) = TRUE;
 For every node x neighbor of v do
 If visited x = FALSE
 then DFS(G,x)
 endif
 endfor
 End;

 Analysis:
- For G=(V,E) where n= V and e= E , the time

complexity is:
o Adjacency matrix:

 Since the FOR loop takes O(n) for each
vertex, the time complexity is: O(n2)

 Adjacency list:

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 22

• The FOR loop takes the following:

 dii 1

n
O(e) where di degree(vi)

=
∑ = =

• The setup of the visited array requires:
O(n)

• Therefore, the time complexity is:
O(max(n,e))

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 23

o Breadth First Search (BFS)
 Procedure:

 BFS (v)
 queue Q;
 Begin
 visited(v) = TRUE;
 Make_empty(Q); /* Make the queue empty */
 Add_queue(Q,v);
 While (!Empty_queue(Q)) do
 Begin
 Delete_queue(Q,x);
 For all vertices w adjacent to x do
 If (!visited[w])
 then Begin
 Add_queue(Q,w);
 visited[w]=TRUE;
 end;
 endfor
 End;
 End;

 Analysis:

- For G=(V,E) where n= V and e= E , the time
complexity is:

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 24

o Adjacency matrix:
 Since the while loop takes O(n) for each

vertex, the time complexity is: O(n2)

o Adjacency list:
 The while loop takes the following:

 dii 1

n
O(e) where di degree(vi)

=
∑ = =

 The setup of the visited array requires: O(n)
 Therefore, the time complexity is:

O(max(n,e))

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 25

• Applications:
o Find a path from Source  Destination

 Use either DFS or BSD
 Need to store the edges traversed

- Use depth
- Use breath

 Example:

 Start at node A: push A in the stack

 Z
 X X
 Y Y Y
 C C C C
 B B B B B

A A A A A A
DFS on A DFS on B DFS on C DFS on Y DFS on X DFS on Z

Source

Destination

A Y C

Z B X

CSci 1112 – Algorithms and Data Structures, A. Bellaachia Page 26

o Is an undirected graph connected?

 Think about a DFS based algorithm?

o Check whether an undirected graph is a regular graph. Print the
degree of the graph.

o To find out if a graph contains a cycle.

 How?
boolean DFS(v){
 visited[v] = 1;
 for(each vertex w adjacent to v){
 if (visited[w] == 0){
 parent[w] = v;
 DFS(w);
 }
 else if(visited[w] == 1 and parent[w] != v)
 return true; // cycle detected
 }
 return false; // no cycle detected in this component
}

