Performance Analysis

Motivation:

o Estimation of required resources such as memory space, computational
time, and communication bandwidth.

o Comparison of algorithms

Model of implementation:
o One-processor RAM (random-access machine) model.

o Single operations, such arithmetic operations & comparison operation,
take constant time.

What algorithm should we choose?
o COST:
= Time Complexity
= Space Complexity
Time Complexity:

o The time complexity of a program is the time it needs to run to
completion.

Space Complexity:

o The space complexity of a program is the amount of memory it
needs to run to completion

e Asymptotic Notation:

o Objective:
= What is the rate of growth of a function?

= What is a good way to tell a user how quickly or slowly an
algorithm runs?

o Definition:
= A theoretical measure of the comparison of the execution
of an algorithm, given the problem size n, which is usually
the number of inputs.
= To compare the rates of growth:
o Big-O notation: Upper bound
o Omega notation: lower bound
o Theta notation: Exact notation

____________ ., . |
f(n) = ©(g(n)) "0 fm) = 0 (m)) " Fn) = Qgn))
(a) (b) {c)

o Big-O notation:
= Definition: F(n)=0(g(n)) iff there exist positive constants C

and ng such that F(n) < Cg(n) when n>n,,.
g(n) is an upper bound of F(n).
o Example 1:
F(n) = 3n+2
F(n) = O(?)

For2<n ====>3n+2 <3n+n =4n
==> F(n) = 3n+2 < 4n ===> F(n) = O(n).

Where C=4 and ny=2

o Example 2:
F(n) = 6*2"+n°

F(n) = O(?)
n* < 2"is true only when n > 4

===> 6*2"+n* < 6*2"+n* = 7*2"
===> C=7 and ny=4 and F(n) < 7*2"

===>F(n) = O(2')

o Theorem:

If F(N) = am N™ + amg N ™.+ a; N+ 3= 2. &N Then F(n) = O(n™).
i=0

o Note:
O(log(n)) < O(n) < O(nlogn) < O(n?) < O(n*) < O(2").

o Omega notation:
= Definition:
F(n)=Q(g(n)) iff there exist positive constants C and ng
such that F(n) > Cg(n) when n>n,.

g(n) is a lower bound of F(n).

= Example 1:
F(n) =3n+2
F(n) = Q(?)

Since2>0 ===> 3n+2>3n forn>1
Note that the inequality holds also for n > 0, however, the
definition of Q requires ny > 0.

===> C=3, ng=1, and F(n) > 3n.
===>F(n) = Q (n).

= Be Careful;

Note also that 3n+2>1forn>1
===> F(n) = Q(1).

= Theorem:

m
i
If F(N) = am N™ + amq N™ ..+ a; N+ ap= 2.an

i=0
and a,, > 0 then F(n) = Q(n™).

o Theta notation:
= Definition:
F(n)=0G(g(n)) iff there exist positive constants C,, C, and nq
such that C,;*g(n)< F(n) < C,*g(n) when n>n,.
g(n) is called an exact bound of F(n).

= Example 1:
F(n) = 3n+2
F(n) = ©(?)

We have shown that F(n) < 4n and F(n) > 3n

===>3n<F(n)<4n
===>C,;=3,C,=4and ny= 2.
===>F(n) = ©(n)

= Example:
Show that the exact bound of F(n) = iik =0(n“?

= Theorem:
If F(n) = am N™+ am.g N™ .+ 8y N+ 8= Yan'
i=0

and a,, > 0 then F(n) = ®(n™).

o Common Functions:

If Fis: Say that F is: If Fis: Say that F is:
O(1) Constant O(n"), 1<r<2 | Subquadratic
O(logn) Logarithmic O(n?) Quadratic
O(log®n), c>=1 | Polylogarithmic | O(n°) Cubic
O(n"), 0<r<1 Sublinear O(n®), ¢c>=1 |Polynomial
O(n) Linear o(r"), r>1 Exponential

e Properties:
o Let Ty(n) = O(f(n)) and T»(n) = O(g(n))
o The sum rule:
= Definition:
If T(n) = T1(n) + Ty(n)
then T(n) = O(max(f(n),g(n)).

= Example:
T(n) =n®+n* ===> T(n) = O(n°).

o The product rule:
= Definition:
1T T(n) = Ty(n) * Ta(n)
then T(n) = O(f(n)*g(n)).

= Example:
T(n) =n*n'n ===> T(n) = O(n®).

o The scalar rule:

= Definition:
If T(n) = Ty(n) * K where K is a constant
then T(n) = O(f(n)).

= Example:

T(n) = nz*% ===> T(n) = O(n%).

= Be Careful:
e Which is better F(n) = 5* n®or G(n) = 95*n*?

F(n) 5n° 1 0
G(n) 95n° 19

n
e Case 1: E <1l=n<19
===> 5% n® < 95*n* F(n) is better .
n
e Case 2: E >1=>n>19

===> 5% n* > 95*n® G(n) is better .

e Time Complexity of a Program:

o Comments: no time
o Declaration: no time
o Expressions and assignment statements: 1 time unit

o lteration statements:

Fori=<expl> to <exp2> do
Begin The number of iterations of the loop
Statements. times the time of Statements
End
= While <exp> do: Similar to For loop.

e Space Complexity of a Program:

o The total number of memory locations used in the declaration

part

o The memory needed for execution (Recursive programs)

e Examples:
o Ex. 1: Fibonacci numbers:

1 Procedure FIB: 0
2 integer n, fnl, fb2, fn; 0
3 integer i; 0
4 Begin 1
5 read (n); 1
6 If n<2 Then 1
[Print(n) 1
8 else begin 1
9 fnl1=1; fn2=0; 1
10 For i=2 to n do n
11 begin n-1
12 fn =fnl + fn2; n-1
13 fn2 = fnl; n-1
14 fnl = fn; n-1
15 end; n-1
16 end 1
17 print(fn); 1
18 end; 1

Let T(n) be the time complexity of FIB:

Total: T(n)=6n+8 ====> T(n) =0(n)

o EXx. 2:

Procedure BUBBLE(integer a: array);

integer i,j,temp;

begin

Fori=1ton-1do

For j=n downto i+1 do

1
—_ =

begin

If aj-1 > aj then

begin

temp = aj-1;

aj-1 = aj;

aj = temp;

end:;

PO ONOO ORI WN|EF

0 end:

N e I G I ===

end;

Let T(n) be the time complexity of BUBBLE:

= Line3,4,5,6,7,8,9, 10
O(max(1,1,1,1,1,1,1,1)=0()

= move up line 2: O((n-1)*1) = O(n-1)

2
= move up line 1: sm-p="-Dn_n° n_5n2)
2 2 2 2

o Ex. 3:
= Compute the time complexity of the following program:
Procedure Mystery (int n)
Fori=1ton-1do
Forj=i+ltondo
Fork=1tojdo
X =X +1;
o EX. 4.
= Compute the time complexity of the following program
fragment:
sum = 0;
fori=1tondo
forj=1toido
K =n**2
while k>0 do
sum=sum+1;
k =kdiv 2;

o Ex. 5:
= Compute the time complexity of the following program:
Procedure Puzzle (int n)
Fori=1tondo
Forj=1to 10 do
Fork =nton+5do
X =X +1;

o EX. 6:
= Compute the time complexity of the following program:
Procedure Foo (int n)
For i=1to vn do
Forj=1to vn do
Fork=1to vn-j+1do
X =X +1;

