Performance Analysis

• Motivation:

- Estimation of required resources such as memory space, computational time, and communication bandwidth.
- Comparison of algorithms
- Model of implementation:
 - One-processor RAM (random-access machine) model.
 - Single operations, such arithmetic operations & comparison operation, take constant time.
- What algorithm should we choose?
 - COST:
 - Time Complexity
 - Space Complexity
- Time Complexity:
 - The time complexity of a program is the time it needs to run to completion.
- Space Complexity:
 - The space complexity of a program is the amount of memory it needs to run to completion

• Asymptotic Notation:

- Objective:
 - What is the rate of growth of a function?
 - What is a good way to tell a user how quickly or slowly an algorithm runs?

• **Definition:**

- A theoretical measure of the comparison of the execution of an algorithm, given the problem size n, which is usually the number of inputs.
- To compare the rates of growth:
 - o Big-O notation: Upper bound
 - Omega notation: lower bound
 - Theta notation: Exact notation

• **Big-O notation**:

Definition: F(n)=O(g(n)) iff there exist positive constants C and n₀ such that F(n) ≤ Cg(n) when n≥n₀.
 g(n) is an **upper bound** of F(n).

• Example 1:

F(n) = 3n+2F(n) = O(?)

For
$$2 \le n ===> 3n+2 \le 3n+n = 4n$$

==> F(n) = $3n+2 \le 4n ===> F(n) = O(n)$.

Where C=4 and $n_0=2$

• **Example 2**: $F(n) = 6*2^{n}+n^{2}$

F(n) = O(?)

 $n^2 \le 2^n$ is true only when $n \ge 4$

$$==>6*2^{n}+n^{2} \leq 6*2^{n}+n^{2} = 7*2^{n}$$

===> C=7 and $n_0=4$ and $F(n) \leq 7*2^n$

$$==>F(n)=O(2^{n})$$

\circ Theorem:

If $F(n) = a_m n^m + a_{m-1} n^{m-1} + ... + a_1 n + a_0 = \sum_{i=0}^m a_i n^i$ Then $F(n) = O(n^m)$.

 \circ Note:

 $O(log(n)) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n).$

• Omega notation:

• Definition:

 $F(n)=\Omega(g(n))$ iff there exist positive constants C and n₀ such that $F(n) \ge Cg(n)$ when n≥n₀.

g(n) is a lower bound of F(n).

 Example 1: F(n) = 3n+2 F(n) = Ω(?)

> Since $2 \ge 0 = => 3n+2 \ge 3n$ for $n \ge 1$ Note that the inequality holds also for $n \ge 0$, however, the definition of Ω requires $n_0 > 0$.

```
===> C=3, n_0=1, and F(n) ≥ 3n.
===> F(n) = \Omega (n).
```

• Be Careful:

Note also that $3n+2 \ge 1$ for $n \ge 1$ ===> $F(n) = \Omega(1)$.

• <u>Theorem</u>:

If
$$F(n) = a_m n^m + a_{m-1} n^{m-1} + ... + a_1 n + a_0 = \sum_{i=0}^m a_i n^i$$

and $a_m > 0$ then $F(n) = \Omega(n^m)$.

- Theta notation:
 - Definition:
 F(n)=Θ(g(n)) iff there exist positive constants C₁, C₂ and n₀ such that C₁*g(n)≤ F(n) ≤ C₂*g(n) when n≥n₀.
 g(n) is called an exact bound of F(n).
 - Example 1:
 F(n) = 3n+2
 F(n) = Θ(?)

We have shown that $F(n) \le 4n$ and $F(n) \ge 3n$

===> $3n \le F(n) \le 4n$ ===> $C_1 = 3$, $C_2 = 4$ and $n_0= 2$. ===> $F(n) = \Theta(n)$

• Example:

Show that the exact bound of $F(n) = \sum_{i=1}^{n} i^{k} = \Theta(n^{k+1})$

• <u>Theorem</u>: If $F(n) = a_m n^m + a_{m-1} n^{m-1} + ... + a_1 n + a_0 = \sum_{i=0}^{m} a_i n^i$ and $a_m > 0$ then $F(n) = \Theta(n^m)$.

• Common Functions:

If F is:	Say that F is:	If F is:	Say that F is:
O(1)	Constant	O(n ^r), 1 <r<2< td=""><td>Subquadratic</td></r<2<>	Subquadratic
O(logn)	Logarithmic	$O(n^2)$	Quadratic
$O(\log^{c} n), c \ge 1$	Polylogarithmic	$O(n^3)$	Cubic
O(n ^r), 0 <r<1< td=""><td>Sublinear</td><td>$O(n^{c}), c >= 1$</td><td>Polynomial</td></r<1<>	Sublinear	$O(n^{c}), c >= 1$	Polynomial
O(n)	Linear	$O(r^{n}), r>1$	Exponential

• Properties:

- Let $T_1(n) = O(f(n))$ and $T_2(n) = O(g(n))$
- \circ The sum rule:
 - Definition: If $T(n) = T_1(n) + T_2(n)$ then T(n) = O(max(f(n),g(n))).

$$T(n) = n^3 + n^2 \implies T(n) = O(n^3).$$

- \circ The product rule:
 - Definition:
 - If $T(n) = T_1(n) * T_2(n)$ then T(n) = O(f(n)*g(n)).
 - Example:

$$T(n) = n*n*n ==> T(n) = O(n^3).$$

 \circ The scalar rule:

• Definition:

If $T(n) = T_1(n) * K$ where K is a constant then T(n) = O(f(n)).

• Example:

$$T(n) = n^{2*} \frac{1}{2} ==> T(n) = O(n^{2}).$$

Be Careful:

• Which is better $F(n) = 5^* n^3$ or $G(n) = 95^* n^2$?

$$\frac{F(n)}{G(n)} = \frac{5n^3}{95n^2} = \frac{1}{19}n$$

• Case 1:
$$\frac{n}{19} < 1 \Rightarrow n < 19$$

===> $5* n^3 < 95*n^2$ F(n) is better .

• Case 2:
$$\frac{n}{19} > 1 \Rightarrow n > 19$$

===> $5^* n^3 > 95^* n^2 G(n)$ is better .

• Time Complexity of a Program:

0	Comments:	no time
0	Declaration:	no time
0	Expressions and assignment sta	tements: 1 time unit
0	Iteration statements:	
	•	
	For $i = \exp 1 > to < \exp 2 > do$	
	Begin	The number of iterations of the loop
	Statements.	times the time of Statements
	End	

- While <exp> do: Similar to For loop.
- Space Complexity of a Program:
 - The total number of memory locations used in the declaration part
 - The memory needed for execution (Recursive programs)

• Examples:

○ Ex. 1: Fibonacci numbers:

Procedure FIB:	0
integer n, fn1, fb2, fn;	0
integer i;	0
Begin	1
read (n);	1
If n<2 Then	1
Print(n)	1
else begin	1
fn1=1; fn2=0;	1
For i=2 to n do	n
begin	n-1
fn = fn1 + fn2;	n-1
fn2 = fn1;	n-1
fn1 = fn;	n-1
end;	n-1
end	1
<pre>print(fn);</pre>	1
end;	1
	Procedure FIB:integer n, fn1, fb2, fn;integer i;Beginread (n);If n<2 Then

Let T(n) be the time complexity of FIB:

Total: T(n) = 6n+8 ====> T(n) = O(n)

• Ex. 2:

	0	
integer i,j,temp;		0
begin		0
1	For i=1 to n-1 do	n-1
2	For j=n downto i+1 do	n-i
3	begin	1
4	If $aj-1 > aj$ then	1
5	begin	1
6	temp = $aj-1$;	1
7	aj-1 = aj;	1
8	aj = temp;	1
9	end;	1
10	end;	1
	end;	

Let T(n) be the time complexity of BUBBLE:

- Line 3, 4, 5, 6, 7, 8, 9, 10 O(max(1, 1, 1, 1, 1, 1, 1, 1) = O(1)
- move up line 2: O((n-i)*1) = O(n-i)

• move up line 1:
$$\sum_{i=1}^{n} (n-i) = \frac{(n-1)n}{2} = \frac{n^2}{2} - \frac{n}{2} = O(n^2)$$

• Ex. 3:

 Compute the time complexity of the following program: Procedure Mystery (int n) For i=1 to n-1 do For j = i+1 to n do For k = 1 to j do

$$x = x + 1;$$

• Ex. 4:

Compute the time complexity of the following program fragment:

```
sum = 0;
for i=1 to n do
for j=1 to i do
k = n^{**2}
while k>0 do
sum=sum+1;
k = k \text{ div } 2;
```

• Ex. 5:

 Compute the time complexity of the following program: Procedure Puzzle (int n)

For i=1 to n do
For j = 1 to 10 do
For k = n to n+5 do
$$x = x + 1;$$

• Ex. 6:

 Compute the time complexity of the following program: Procedure Foo (int n)

```
For i=1 to \sqrt{n} do
For j = 1 to \sqrt{n} do
For k = 1 to \sqrt{n} -j+1do
x = x + 1;
```