
Performance Analysis

 Motivation:

o Estimation of required resources such as memory space, computational

time, and communication bandwidth.

o Comparison of algorithms

 Model of implementation:

o One-processor RAM (random-access machine) model.

o Single operations, such arithmetic operations & comparison operation,

take constant time.

 What algorithm should we choose?

o COST:

 Time Complexity

 Space Complexity

 Time Complexity:

o The time complexity of a program is the time it needs to run to

completion.

 Space Complexity:

o The space complexity of a program is the amount of memory it

needs to run to completion

 Asymptotic Notation:

o Objective:

 What is the rate of growth of a function?

 What is a good way to tell a user how quickly or slowly an

algorithm runs?

o Definition:

 A theoretical measure of the comparison of the execution

of an algorithm, given the problem size n, which is usually

the number of inputs.

 To compare the rates of growth:

o Big-O notation: Upper bound

o Omega notation: lower bound

o Theta notation: Exact notation

o Big-O notation:

 Definition: F(n)=O(g(n)) iff there exist positive constants C

and n0 such that F(n) Cg(n) when nn0.

 g(n) is an upper bound of F(n).

o Example 1:

 F(n) = 3n+2

 F(n) = O(?)

 For 2 n ====> 3n+2 3n+n = 4n

 ==> F(n) = 3n+2 4n ===> F(n) = O(n).

 Where C=4 and n0=2

o Example 2:

 F(n) = 6*2n+n2

 F(n) = O(?)

 n2 2n is true only when n 4

 ===> 6*2n+n2 6*2n+n2 = 7*2n

 ===> C=7 and n0=4 and F(n) 7*2n

 ===> F(n) = O(2n)

o Theorem:

 If F(n) = am n m + am-1 n
 m-1+...+ a1 n+ a0= a ni

i

i 0

m

 Then F(n) = O(n m).

o Note:

 O(log(n)) < O(n) < O(nlogn) < O(n2) < O(n3) < O(2n).

o Omega notation:

 Definition:

F(n)=(g(n)) iff there exist positive constants C and n0

such that F(n) Cg(n) when nn0.

 g(n) is a lower bound of F(n).

 Example 1:

 F(n) = 3n+2

 F(n) = (?)

 Since 2 0 ===> 3n+2 3n for n 1

Note that the inequality holds also for n 0, however, the

definition of requires n0 > 0.

 ===> C=3, n0=1, and F(n) 3n.

 ===> F(n) = (n).

 Be Careful:

 Note also that 3n+2 1 for n 1

 ===> F(n) = (1).

 Theorem:

 If F(n) = am n m + am-1 n
 m-1+...+ a1 n+ a0= a ni

i

i 0

m

 and am > 0 then F(n) = (n m).

o Theta notation:

 Definition:

F(n)=(g(n)) iff there exist positive constants C1, C2 and n0

such that C1*g(n) F(n) C2*g(n) when nn0.

 g(n) is called an exact bound of F(n).

 Example 1:

 F(n) = 3n+2

 F(n) = (?)

 We have shown that F(n) 4n and F(n) 3n

 ===> 3n F(n) 4n

 ===> C1 = 3, C2 = 4 and n0= 2.

 ===> F(n) = (n)

 Example:

 Show that the exact bound of F(n) = i
k

i 1

n

 = (n k+1)

 Theorem:

 If F(n) = am n m + am-1 n
 m-1+...+ a1 n+ a0= a ni

i

i 0

m

 and am > 0 then F(n) = (n m).

o Common Functions:

If F is: Say that F is: If F is: Say that F is:

O(1) Constant O(nr), 1<r<2 Subquadratic

O(logn) Logarithmic O(n2) Quadratic

O(logcn), c>=1 Polylogarithmic O(n3) Cubic

O(nr), 0<r<1 Sublinear O(nc), c>=1 Polynomial

O(n) Linear O(rn), r>1 Exponential

 Properties:

o Let T1(n) = O(f(n)) and T2(n) = O(g(n))

o The sum rule:

 Definition:

 If T(n) = T1(n) + T2(n)

 then T(n) = O(max(f(n),g(n)).

 Example:

 T(n) = n3 +n2 ===> T(n) = O(n3).

o The product rule:

 Definition:

 If T(n) = T1(n) * T2(n)

 then T(n) = O(f(n)*g(n)).

 Example:

 T(n) = n*n*n ===> T(n) = O(n3).

o The scalar rule:

 Definition:

 If T(n) = T1(n) * K where K is a constant

 then T(n) = O(f(n)).

 Example:

T(n) = n2* 1

2
 ===> T(n) = O(n2).

 Be Careful:

 Which is better F(n) = 5* n3 or G(n) = 95*n2?

F(n)

G(n)

5n

95n

1

19
n

3

2

 Case 1:
n

19
1 n 19

 ===> 5* n3 < 95*n2 F(n) is better .

 Case 2:
n

19
1 n 19

 ===> 5* n3 > 95*n2 G(n) is better .

 Time Complexity of a Program:

o Comments: no time

o Declaration: no time

o Expressions and assignment statements: 1 time unit

o Iteration statements:

For i =< exp1 > to < exp2 > do

Begin

Statements.

End

The number of iterations of the loop

times the time of Statements

 While <exp> do: Similar to For loop.

 Space Complexity of a Program:

o The total number of memory locations used in the declaration

part

o The memory needed for execution (Recursive programs)

 Examples:

o Ex. 1: Fibonacci numbers:

 1 Procedure FIB: 0

 2 integer n, fn1, fb2, fn; 0

 3 integer i; 0

 4 Begin 1

 5 read (n); 1

 6 If n<2 Then 1

 7 Print(n) 1

 8 else begin 1

 9 fn1=1; fn2=0; 1

 10 For i=2 to n do n

 11 begin n-1

 12 fn = fn1 + fn2; n-1

 13 fn2 = fn1; n-1

 14 fn1 = fn; n-1

 15 end; n-1

 16 end 1

 17 print(fn); 1

 18 end; 1

 Let T(n) be the time complexity of FIB:

 Total: T(n) = 6n+8 ====> T(n) = O(n)

o Ex. 2:

 Procedure BUBBLE(integer a: array); 0

 integer i,j,temp; 0

 begin 0

 1 For i=1 to n-1 do n-1

 2 For j=n downto i+1 do n-i

 3 begin 1

 4 If aj-1 > aj then 1

 5 begin 1

 6 temp = aj-1; 1

 7 aj-1 = aj; 1

 8 aj = temp; 1

 9 end; 1

 10 end; 1

 end;

 Let T(n) be the time complexity of BUBBLE:

 Line 3, 4, 5, 6, 7, 8, 9, 10

O(max(1, 1, 1, 1, 1, 1, 1, 1) = O(1)

 move up line 2: O((n-i)*1) = O(n-i)

 move up line 1: (n i)

i 1

n (n 1)n

2

n
2

2

n

2
O(n

2
)

o Ex. 3:

 Compute the time complexity of the following program:

Procedure Mystery (int n)

 For i=1 to n-1 do

 For j = i+1 to n do

 For k = 1 to j do

 x =x +1;

o Ex. 4:

 Compute the time complexity of the following program

fragment:

sum = 0;

for i=1 to n do

 for j=1 to i do

 k = n**2

 while k>0 do

 sum=sum+1;

 k = k div 2;

o Ex. 5:

 Compute the time complexity of the following program:

Procedure Puzzle (int n)

 For i=1 to n do

 For j = 1 to 10 do

 For k = n to n+5 do

 x =x +1;

o Ex. 6:

 Compute the time complexity of the following program:

Procedure Foo (int n)

 For i=1 to n do

 For j = 1 to n do

 For k = 1 to n -j+1do

 x =x +1;

