
ADT, A. Bellaachia Page 1

Abstraction and Abstract Data Types

• Abstraction:

o Whatever is visible to the user?

• Examples: Variable names & real numbers.

o How real numbers are implemented?
o How arrays are implemented?

 The abstraction is rectangular arrays

 The implementation is one-dimensional array.

• Given the following algorithm:

 S = set of persons.
 X in S;
 smallest-age = X;
 S = S-{X};
 While S is not empty do
 Y in S;
 S = S-{Y};
 If age(Y) < age(X)
 Then smallest = Y;
 Endwhile;

o What do you need to implement such a problem?

ADT, A. Bellaachia Page 2

o For a given implementation,

 we need to make the following assumptions:

1. The data we are dealing with are of some data types.
2. A construct to store the data types: Data Structures
3. The set of operations on the data types defined in(1).

o (1) & (3) =====> Abstract Data Types (ADT).
o (2) =====> A way to implement the ADT.

• Data Types: (1)

o Definition: The data type of a variable determines the set of
values the variable can take.

o Simple data types:

 Integer, real, character, enumeration types, etc.

o Structured data types:

 arrays, records, files, and sets.

• Data Structures: (2)

o Definition:
 A data structure (D. S.) is a construct that you can define

within a programming language to store a collection of data
types.

• Examples:

o All structured data types are D.S.
o Trees, Linked lists, etc.

ADT, A. Bellaachia Page 3

• Abstract Data Types (ADT): (3)
o Definition:

 An abstract data type (ADT) is characterized by the
following properties:

- It exports a type, called domain.
- It exports a set of operations. This set is called

interface.
- Operations of the interface are the one and only access

mechanism to the type's data structure.
- Axioms and preconditions define the application

domain of the type.

- The first property allows the creation of more than one

instance of an ADT object.
- The second property defines the only possible

operations on the ADT object.
- The third property prevents using other operations

different from the ones defined in the interface.
- Finally, the application domain is defined by the

semantical meaning of provided operations. Axioms
and preconditions include statements such as:
o The denominator of a fraction is different from

zero.
o An empty list is a list.'

ADT

Data Types

Interface: Operations

ADT, A. Bellaachia Page 4

• OOP and ADT:
o A class is an actual representation of an ADT.

o It provides implementation details for the data structure used

and operations.

o OOP supports the implementation of an ADT using information
hiding.

o Information hiding
 is used to hide the implementation details
 Prevent users from directly accessing data members

(private access modifier).

ADT, A. Bellaachia Page 5

• Example:

o ADT: Fraction
 Data type:

- numerator: integer;
- denominator: integer;

 Data structure: data types
 Operations:

- Add, multiply, equal, reduce, divide, etc.
 Axioms and preconditions:

- The denominator should be different from zero.

o Java Implementation:

//Fraction ADT
public class Fraction {

 private int numerator;
 private int denominator;
 public Fraction(){
 numerator = 0;
 denominator = 1;
 }
 public Fraction(int num, int deno){
 numerator = num;
 denominator = deno;
 if (denominator == 0){
 throw new IllegalArgumentException("Denominator cannot be zero");
 }
 }
 public void reduceF(){
 int n = numerator;
 int d = denominator;

 while (d != 0) {
 int t = d;
 d = n % d;
 n = t;
 }
 numerator /= n;
 denominator /= n;
 }

ADT, A. Bellaachia Page 6

 public int getNumerator() {
 return this.numerator;
 }

 public int getDenominator() {
 return this.denominator;
 }
 public Fraction add(Fraction f1, Fraction f2){
 Fraction f = new Fraction();
 f.numerator = f1.numerator * f2.denominator + f1.denominator *
f2.numerator;
 f.denominator = f1.denominator * f2.denominator;
 f.reduceF();
 return(f);
 }
 public Fraction sub(Fraction f1, Fraction f2){
 //Implement this function.
 }
 public Fraction multiply(Fraction f1, Fraction f2){
 //Implement this function.
 }
 public Fraction divide (Fraction f1, Fraction f2){
 //Implement this function.
 }
 public boolean equals(Fraction f2){
 return getNumerator()*f2.getDenominator() ==
f2.getNumerator()*getDenominator();
 }
 public void printF(Fraction f){
 System.out.println (f.numerator + "/" + f.denominator) ;
 }
}

o Programming Assignment:
 Design and implement the missing operations in the Fraction

ADT:
- Subtraction:

 𝑎
𝑏

 + 𝑐
𝑑

 = 𝑎𝑑 + 𝑏𝑐
𝑏𝑑

- Multiplication:

 𝑎
𝑏
∗ 𝑐

𝑑
 = 𝑎𝑐

𝑏𝑑

- Division

 𝑎
𝑏

÷ 𝑐
𝑑

 = 𝑎𝑑
𝑏𝑐

 Test your implementation.

