Abstraction and Abstract Data Types

e Abstraction;
o Whatever is visible to the user?

e Examples: Variable names & real numbers.
o How real numbers are implemented?
o How arrays are implemented?

= The abstraction is rectangular arrays

» The implementation is one-dimensional array.

e Given the following algorithm:

S = set of persons.
XinS;
smallest-age = X;
S = S-{X};
While S is not empty do
Y inS;
S =35-{Y};
If age(Y) < age(X)
Then smallest = Y;
Endwhile;

o0 What do you need to implement such a problem?

ADT, A. Bellaachia Page 1



o For a given implementation,
= we need to make the following assumptions:
1. The data we are dealing with are of some data types.

2. A construct to store the data types: Data Structures
3. The set of operations on the data types defined in(1).

0 (1) & (3) =====> Abstract Data Types (ADT).
0 (2) =====> Away toimplement the ADT.

e Data Types: (1)
o Definition: The data type of a variable determines the set of
values the variable can take.
o Simple data types:
= |nteger, real, character, enumeration types, etc.

O Structured data types:

= arrays, records, files, and sets.

e Data Structures: (2)
o Definition:
= A data structure (D. S.) is a construct that you can define
within a programming language to store a collection of data

types.

e Examples:
o All structured data types are D.S.
o Trees, Linked lists, etc.

ADT, A. Bellaachia Page 2



e Abstract Data Types (ADT): (3)
o Definition:
= An abstract data type (ADT) is characterized by the
following properties:

ADT, A. Bellaachia

It exports a type, called domain.

It exports a set of operations. This set is called
interface.

Operations of the interface are the one and only access
mechanism to the type's data structure.

Axioms and preconditions define the application
domain of the type.

ADT

Data Types |

Interface: Operations

The first property allows the creation of more than one
instance of an ADT object.
The second property defines the only possible
operations on the ADT object.
The third property prevents using other operations
different from the ones defined in the interface.
Finally, the application domain is defined by the
semantical meaning of provided operations. Axioms
and preconditions include statements such as:

o0 The denominator of a fraction is different from

Zero.
o An empty list is a list.’

Page 3



e OOP and ADT:
o0 A class is an actual representation of an ADT.

o It provides implementation details for the data structure used
and operations.

0 OOP supports the implementation of an ADT using information
hiding.

o Information hiding
= |s used to hide the implementation details
= Prevent users from directly accessing data members
(private access modifier).

ADT, A. Bellaachia Page 4



o Example:

o ADT: Fraction
= Data type:
- numerator: integer;
- denominator: integer;
= Data structure: data types
= QOperations:
- Add, multiply, equal, reduce, divide, etc.
= Axioms and preconditions:

- The denominator should be different from zero.

o Java Implementation:

//Fraction ADT
public class Fraction {

private int numerator;
private int denominator;
public Fraction(){
numerator = 0;
denominator = 1;
+
public Fraction(int num, Int deno){
numerator = num;
denominator = deno;
if (denominator == 0){

throw new IllegalArgumentException(‘'Denominator cannot be zero™);

}
}
public void reduceF(){
int n = numerator;
int d = denominator;

while (d 1= 0) {

int t = d;
d—nood,
n =

}

numerator /= n;
denominator /= n;

+

ADT, A. Bellaachia

Page 5




public int getNumerator() {
return this.numerator;
}

public int getDenominator() {
return this.denominator;
}

public Fraction add(Fraction fl, Fraction f2){
Fraction ¥ = new Fraction();
f.numerator = fl_numerator * f2.denominator + fl.denominator *

f2._.numerator;

f.denominator = fl.denominator * f2.denominator;
f.reduceF();
return(f);

¥

public Fraction sub(Fraction fl, Fraction f2){
//1mplement this function.

public Fraction multiply(Fraction f1, Fraction f2){
//1mplement this function.

public Fraction divide (Fraction fl, Fraction 2){
//1Implement this function.

public boolean equals(Fraction 2){
return getNumerator()*f2.getDenominator() ==
T2 _.getNumerator()*getDenominator();

public void printF(Fraction ){
System.out.println (f.numerator + /" + Tf.denominator) ;
s

0 Programming Assignment:
= Design and implement the missing operations in the Fraction
ADT:
- Subtraction:

a c ad + bc
o b d bd
- Multiplication:
a (6 ac
—_ K - = —
o b d bd
- Division
a . 6 c _ ad
b d bc

= Test your implementation.

ADT, A. Bellaachia Page 6




