
Equivalence Detection Using Parse-tree Normalization for
Math Search

Mohammed Shatnawi
Department of Computer Info. Systems
Jordan University of Science and Tech.
Jordan-Irbid (22110)-P.O.Box (3030)

 mshatnawi@just.edu.jo

Abstract

 In recent years, efforts have begun to put math

contents on the Web. As for other types of Web
information, search capabilities should be provided
to enable users to find what they need because
without the ability to search the data for specific
items, the data is useless. Conventional (i.e. text-
based or even multimedia-based) search engines fall
short of providing math-search capabilities.
Preliminary efforts to create math-search systems
have started, and many of the issues and the
challenges for building such systems have been
identified. One of the more difficult challenges is the
detection of mathematical equivalence between
expression in users’ queries and expressions in math
contents.

 The purpose of this research is to develop
techniques and algorithm for equivalence-detection
based math search. In particular, this research aims
to explore some proposed normalization rules, then
to develop a general way that can be utilized to
transform both the repository contents and users’
input expressions into a unified normalized form.

1.1 Introduction

 Finding needed information on the Web is not
easy to achieve with a high degree of accuracy.
Information retrieval systems have been designed
to help users locate and retrieve their requests on the
Web. Information retrieval systems are composed of
some algorithms that try to make the search and
retrieval of the requested information as accurate and
fast as possible.

Among all of these, "the text aspect has been the
only data type that lends itself to a full functional

Abdou Youssef
Department of Computer Science

The George Washington University
Washington, DC 20052

ayoussef@gwu.edu

processing" [1]. Many algorithms that work together
trying to refine text search have achieved a good
level of maturity. Unfortunately those search engines
did not achieve the same progress in terms of
mathematical expression as a separate distinguished
type of text
 The major obstacle to math search in current
text search systems is that those systems do not
differentiate between a user query that contains a
mathematical expression and any other query that
contains text term. Therefore, they process
mathematical expressions as other texts, regardless
of its nature of being well-structured and having
properties that make it different from other forms of
text.

1.2 Accessing Math Expressions on the

Web

There are many items that contain mathematical
expressions in their content. Unfortunately, many of
these items can not be accessed and retrieved by
current search engines for the following reasons:
• Virtually all searches are text-based [14], thus,

unless we have an agreed upon technique that is
understood by both users and search engines, a
user needs to know the best search terms and the
best way to write a query to be used in searching
for any mathematical expression.

• The same expression can be rewritten in many
different but equivalent ways (e.g. 1/x and x^-1)
[13] [12].

• Text-based search engines do not consider the
syntax of a mathematical expression as one of its
main features [13] [12].

• The way used to search for equivalent text terms
(i.e. thesaurus to search for synonyms) is not
feasible for searching for an equivalent
mathematical expression [13].

1.2.1 Equivalence and Inconsistency

Equivalence.

 One major problem in being able to retrieve
relevant items is the inconsistency between the
author's vocabulary and the user's vocabulary.
Therefore, the user may search for a term the author
does not provide. This problem has been studied in
text search and there are some proposed solutions
such as searching for the synonyms during the search
process using thesaurus lookup. A similar problem
exists when you search for a mathematical
expression because the term y+x is the same as x+y
mathematically, and 0.5 is the same as 1/2. This
problem adds another obstacle that makes the current
search engines fail in retrieving items that contain
mathematical expressions. More precisely, the same
mathematical expression can be represented in many
(sometimes infinite) numbers of ways; thus, it is not
feasible to use a thesaurus structure to search for all
equivalent expressions.

Even if the current search engines are
equipped with tools to enhance their ability in
retrieving items that contain a certain type of a
mathematical expression, they will still fail in
retrieving the documents that contain variants of that
mathematical expression. Therefore, there is a need
for a way to retrieve the documents that contain not
only the expression itself but also the expression's
equivalent forms.

1.2.2 Syntax Interpretation

 Another important reason that makes current
search engines fail in retrieving mathematical
expressions is that search engines do not understand
mathematical structures but they well-understand
text because a word in an unstructured text is simply
a word with no data type definition and no
conceptual definition.

Mathematical expressions are well structured
and the structure itself holds their correct
interpretations.

1.3 Relation with Theorem Proving

Systems

 Generally, in theorem proving we want to
verify whether some statement (the conjecture) is a
logical consequence of a set of statements (e.g.
axioms and hypotheses) [5]. In particular, theorem
proving concerns itself with proving whether two
given mathematical expressions are equivalent.
 Our problem is different form theorem proving
in that we have only one mathematical expression as

input and we need to find its many equivalent forms
as our output after applying rules of equivalence that
have been fed to the system based on predefined
Grammar of Equivalence Rules (GER) on the input
expression.

1.4 Objectives

The objective of this research is to design and
implement an effective and reliable technique that
transforms a user input expression into a unique
normalized form. This form will be used in searching
for a mathematical expression in a way that takes
into account its unique properties. The way that
expressions are stored in the searchable database
must be compliant with the way normalized
expressions are interpreted.

1.5 Definition of Normalization

 Normalization is a sequence of transformations
that transforms an original expression form one
algebraic/structural form into an equivalent one.
According to this definition we divided the
normalization into two types, algebraic and structural
normalization.
 In algebraic normalization, the process of
normalization is done on the expression in its
algebraic form. For example, the expression z+y+x
will be normalized into x+y+z.
 In structural normalization, the expression's parse
tree structure will change after normalizing the
mathematical expression. For this reason, we call it
structural normalization.

1.6 Significant Contributions

This research makes two significant contributions
to the field of math search.
- Introduction of a new approach for addressing the
math equivalence and detection techniques.
- Development of a completely new method to
discover different equivalent math expressions and
map all of them into one normalized form.

2. A Mathematical Expression Parser

(MEP)

The first step of our work is to create a
Mathematical Expression Parser
(MEP), which creates a parse tree for a certain
mathematical expression.

2.1 Equivalence Detection and Normalization

(EDN)

The equivalence detection and normalization is

the most important part of our work. Indeed it is the
core of our research. The EDN aims to transform the
expression tree that we have created earlier using
MEP into a normalized tree. This tree is equivalent
to the original tree but it is an agreed upon
representation, based on some rules, to facilitate the
search process.

In the first part of this research and for better
understanding of our research we propose four fixed
rules that can be applied to the tree that results from
the MEP. Therefore, after applying them as needed,
we shall be able to get the final normalized tree form.
After that, the last normalized tree is used for
comparison and matching during the search process.

2.2 Group Removal Rule

A mathematical expression is grouped if it
appears between left and right parentheses.

It is obvious that the above expression can
be transformed to the following expression tree using
MEP: Figure 1: Tree representation of (d +c) +f^-a/3
before rule one

The parse tree after applying this rule is depicted in
figure 2.
Figure 2: Tree representation of (d+c) +f^-a/3 after
the first rule

2.3 to the Negative Power Rule

The previous example has "to the negative
power" sub expression (i.e. f^-a). This part can be
transformed to an equivalent expression by using the
following mathematical rule:

• x^-y is equivalent to 1/x^y
Therefore, according to this rule, the previous

expression should be transformed to d+c+1/f^a/3
Figure 3: Tree representation for (d+c) +f^-a/3 after
the second rule

2.4 Tree Height Compression

 In this section we will follow the same procedure

of decreasing the height of the tree by applying the
rule of Height Compression. This rule works as
follows:

All the similar parent nodes that are descending
from the same node are combined with lowest level
parent node. Therefore, the leaves will be children of
that common node given that the parent of each of
those leaves will not change but their level will be
changed after applying this rule. All of the above can
be illustrated more by applying this rule on our
example in figure 5. Therefore, the tree now would
look like the following tree:
Figure 4: Tree representation for (d+c) +f^-a/3 after
the third rule

2.5 Tree Reorder Rule

Sorting or reordering the leaves is done by
following a user defined rule of reordering. For
example, we proposed our defined rule, which is:

Numbers < Alphabetic (string, character)
<Operations (*, +) < Grouped Parenthesis

Since we proposed the above rule, this does not
mean that other users can not propose their own rule.
But we have to apply the same proposed rule
consistently on both the user query and the
searchable database.

After applying this rule, the expression tree
looks like the following:
Figure 5: Tree representation for (d+c) +f^-a/3 after
the fourth rule

3. Grammar of Equivalence Rules

A Grammar is used to generate an infinite set of
valid mathematical equivalence rules (e.g. x^-2
mathematically equivalent to 1/x^2). The grammar
rules will impose some desired structure on the
equivalence rules; the system administrator should
follow this structure in order to add a valid
mathematical equivalence rule to the GER.
Moreover, our system should not accept an invalid
rule (i.e. a rule that does not comply with the
grammar rules).

3.1 Syntax of GER Rules

The basic syntax for the rules in GER would be
in the form of:
E: E (E is a non terminal symbol which represents a
mathematical expression)

The left hand side of the ":" operator is the
expression before applying certain rule of
equivalence, while the right hand side of the ":"
operator is the expression after applying certain rule
of equivalence.

3.2 GER's Grammar: Formal Definition

 The grammar that we will start explaining is a
Context Free Grammar (CFG), where every
production rule is in the form V → w where V is
non-terminal symbol and w is a string consisting of
terminals and/or non-terminals.
Our grammar G is a quadruple (T, N, S, R), where:
T is a finite set of terminal symbols,
N is a finite set of non-terminal symbols,
S is a unique starting symbol.
R is a finite set of productions of the form α β,
where α and β are strings of non-terminals and
terminals.

We build the following grammar to start with for
our normalization system, we use the notational
shorthand '|', which can be read as "or", to represent
multiple production rules within a single line:
 G= {T, N, S, R,}
 T= {0, 1, 2... 9, -1, $, #,-},
 N= {S, E, T, F, B, D},

R= {S E: E,
 E E+T | E-T | T, T T*F | T/F | T^F | F,
 F (E) | B, (i.e. B stands for basic term)
 B $D | -$D | #D | 0 | 1 | -1, D 0...9 |
DD}

Our normalization system will be built based on
the above basic grammar. Based on that grammar
one can expand it to include many valid
mathematical equivalence rules.

3.3 Tree Compression Rule's Grammar

This rule has a distinct grammar in order to make
it easier to add such those rules (i.e. tree compression
rule for different operators). Tree Compression rule
goes under the structural normalization; the grammar
for this rule will be as follows:
 First of all, the general rule format that is
discussed earlier is a little different form this rule
format, which should be specified as follows:
 E: G

Here, in the tree compression rule, the structure
of the tree is going to be changed after applying any
form of the above rule. Therefore the right sub
expression (i.e. the one after applying this rule) has a
different structure from the left sub expression.
The grammar for this rule is explained as follows:
T= {0, 1, 2... 9, $, -},
N= {S, E, T, F, B, G, K, D},
R= {S E: E| E: G, E E+T | E-T | T,
T T*F | T/F | T^F | F, F (E) | B, B $D | -$D
D 0...9 | DD, G +GK | -GK | /GK | ^GK | (G) | K
| KK, K B

 Based on the above grammar, the system
administrator can use to add the following tree
compression rules:

3.4 Generic Normalization

 The normalization system that is built based on
GER is termed generic normalization. Based on
GER the system administrator should be able to add
any valid mathematical equivalence rules, our
normalization system should be able to detect
equivalence for those added rules. We have
developed algorithms that detect equivalence for any
added rule that conforms to the grammar; any added
rule to the generic normalization system is derived
from a general principle in which a rule is admissible
if and only if there is a corresponding transformation
on the parse-tree [9].

Our universal normalization algorithm’s idea is
straight forward and based on the idea of pattern
matching. The algorithm scans the input expression
looking for a match with the left hand side of a rule
so a rule can be applied on that expression (i.e. or
sub-expression).

3.5 Rule Validation

Our normalization system should not allow the
system administrator to add an equivalence rule that
does not comply with the specified format. In other
words, if a rule does not comply with the format that
we have specified earlier and/or does not comply

with the above GER grammar, the system rejects the
rule.

The system administrator should have the basic
mathematical knowledge in order to ovoid adding an
invalid mathematical equivalence rule, or the system
administrator should have a trusted mathematical
reference to refer to, in order to verify the
equivalence rule correctness.
 The Validator is a component of our
normalization system that is responsible for
validating the correctness of any equivalence rules
that is added by a system administrator. The
Validator verifies if the added rule is compliant with
the GER grammar format. This validation process is
done using a compiler compiler such as javaCC.
Figure 6: General Normalization System Based on
GER (Administrator’s Part)

4. Performance Analysis

Measuring the performance of any newly

developed system is required to evaluate its
effectiveness and to compare it with other systems.

The major problem in measuring the performance
of math search systems is the lack of any math query
benchmark because this area is relatively new. In the
absence of an agreed upon query benchmark, the
performance of our normalization system is based on
the searchable database content. Therefore, the result
of a certain search using the same set of
normalization rules on two different database
contents results in two different outcomes [3].

The main goal of the normalization system is to
increase the number of true hits when a user searches
for a math expression. Therefore, after applying a set
of normalization rules on both; a certain type of
database content and a user math query, this process
will result in new math expressions which will not be
founded without applying that set of normalization
rules. The following examples will clarify the above
concepts.

Suppose the database content has the following
math expression:

 (a^b)^c+k^(-g)
And the user searches for a^(b*c)+1/k^g or the user
searches for part of the previous expression (i.e.
a^(b*c) or 1/k^g). In this case, without applying any
kind of normalization rules, the searches does not
retrieve the expression (a^b)^c+k^(-g) since this
expression does not match the user request or the
search may retrieve many irrelevant items before it
retrieves the relevant one. The search engine uses the
techniques for text retrieval and probability of
occurrences (i.e. a, b, c, k, and g may not achieve the
required threshold to be retrieved as a result of the
user search).

There are two normalization rules that have been
accepted and added to a list of normalization rules to
be applied on the database content and on the user
math query. These normalization rules are:

1- (a^b)^c:a^(b*c)
2- a^(-b):1/a^b

If the above two rules were applied, the database
content and the user query will be normalized
according to them. Therefore, the database content
will be normalized to a^(b*c)+1/k^g.
 In case of a complete database and enough
normalization rules, the number of relevant retrieved
items will be increased (i.e. precision will be
increased). Some of the items that would not be
retrieved without normalization, normalization
increases the chance for such those items to be
retrieved, therefore, the recall will be effected
positively as well [2][1].

5. Conclusion

This research shows that we have achieved some

progress in searching for a mathematical expression
(e.g. y+x). In our research we focused more on
mathematical expression search process in terms of
search engines and the Web search issues.

After applying the normalization and
equivalence rules, the recall and even precision of
our search will be increased. Since we are
transforming different equivalent mathematical
expression into a common form, this common form
will be compared against the searchable database,
which contains the normalized form of that
expression as well. According to that, the
comparison process will end up finding most of the
items that have the common mathematical
expression [2][1].

According to the above, our research is good in
terms of enhancing the mathematical expression web
search process. This way of enhancing is done by
using GER in which a system administrator can add

different kind of normalization rules based on the
predefined grammar. This normalization system
transforms a user input, which is a mathematical
expression, to a normalized unique form. The latter
is equivalent to the original user input. In order to
transform the input expression into its normalized
form the system applies a set of rules on the input
expression.

6.Future Work

Much remains to be done. The following is a

small list of possible directions of future work:
• Once digital libraries of mathematics (e.g. the

DLMF of NIST [13]) become available and
“standard” benchmark mathematical queries
have been developed and accepted, it will be
logical to measure the improvement in recall
(and precision) that normalization brings to math
search.

• Quantification of the performance improvement
of each added equivalence rule.

• Testing on human subjects in various science/
math communities and at various professional
levels which equivalence rules are helpful and
which would be confusing.

• Expanding the grammar of equivalence rule by
adding more operations.

• Relevance ranking can be adjusted to reflect:
• How widely recognized is the equivalence rule

that caused the matching and
• The profile of the users.

7. References

[1] Kowalski, Gerald J., Maybury, Mark T.

"Information Storage and Retrieval Systems:
Theory and Implementation", Springer, 2nd
edition, 2000.

[2] Precision/Recall,
http://www.hsl.creighton.edu/hsl/Searching/Reca
ll-Precision.html

[3] Joydeep Ghosh “Performance Evaluation of
Information Retrieval Systems”,
http://www.cs.utexas.edu/users/mooney/ir-
course/slides/Evaluation.ppt

[4] Sergey Brin and Lawrence Page, "The
Anatomy of a Large-Scale Hypertextual Web
Search Engine”, Proceedings of the 7th
international conference on World Wide Web,
Brisbane, Australia, 1998.

[5] Automated Theorem Proving,
http://www.cs.miami.edu/~tptp/OverviewOfATP
.html

[6] Semantic Web, http://www.w3.org/2001/sw/
[7] Thomas W. Parsons, "Introduction to Compiler

Construction", Computer Science Press, W.H.
Freeman and Company, 1992.

[8] Geoffrey Weglarz "Two Worlds of Data –
Unstructured and Structured", DM Review
Magazine, September 2004.

[9] Derivations and Parse Trees,
http://www.cs.nuim.ie/~jpower/Courses
/parsing/node24.html

[10] Saracevic, T. “Relevance: A Review of and a
Framework for the Thinking on the Notion”,
Journal of the American Society of Information
Science, 26(4), 1975, 321-343.

[11] Baeza- Yates, R. and Ribeiro-Neto, B. “Modern
information retrieval”, Reading, MA, Addison-
Wesley, 1999.

[12] Youssef, A. “Information Search And Retrieval
of Mathematics Contents: Issues and Methods”,
The proceeding of the ISCA 14th International
Conference on Intelligent and Adaptive Systems
and Software Engineering (IASSE-2005), July
20-22, 2005, Toronto, Canada.

[13] Abdou Youssef, Bruce R. c "Technical Aspects

of the Digital Library of Mathematical
Functions, Annals of Mathematics and Artificial
Intelligence, Volume38, pp. 121-136, 2003.

[14] Robert Miner "Math Searching and MathML in

the NSDL", presentation, 2004.

