
Translation of Serial Recursive Codes to Parallel SIMD Codes

Abdou Youssef
Department of EE & CS

The George Washington University
Washington, DC 20052

USA
email: youssef@seas.gwu.edu

Abstract

Parallelizing compilers are an important way for making
parallel systems easy to use and more acceptable to the
mainstream of computing. Several approaches to paral-
lelization have been taken, such as loop parallelization and
dependence-graph based parallelization. This paper will un-
dertake another approach: the exploitation of recursion in
serial recursive coders to translate the latter to parallel non-
recursive SIMD codes. The principal idea is to perform
first a formal data-dependence data-flow analysis on both
the input partitioning process and the subsolution-merge
process to determine the computation and communication
of each partition and each merge, then develop a system
of equations whereby we derive the sequences of computa-
tion instructions and communication instructions along with
their processors-enabling/disabling masks for the SIMD tar-
get code. We develop the approach, give a code translation
algorithm, and apply it to a sample of common recursive
algorithms to illustrate its power. The approach is very ef-
fective and efficient, especially for recursive algorithms that
are balanced and whose input can be padded to an appro-
priate size without affecting the desired output. For some
recursive algorithms that do not fit this category, it will be
argued that a top-down MIMD execution of these algorithms
is preferable to SIMD execution. Finally, we note that our
approach is generalizable to interleaved recursion.

1 Introduction

Parallelism is a powerful approach to high-performance com-
puting, and great advances have been made in building and
programming parallel systems. Despite these advances, how-
ever, parallelism has not entered the general mainstream of
computing. One important way to greatly improve this situ-
ation is to have parallelizing compilers, which allow users to
continue to program in the conventional (i.e., serial) man-
ner, while still benefiting from the speedup of parallel ma-
chines. Various approaches to parallelizing compilers have
been taken, such as loop parallelization [1, 11] and depen-
dence graph based parallelism [2, 10]. Another fruitful ap-
proach, which will be undertaken in this paper, is the ex-
ploitation of recursion.

Recursion has proved to be a highly useful program-
ming mechanism. It is a natural and effort-saving way of
designing and expressing algorithms based on powerful al-
gorithmic paradigms, e.g., divide and conquer. Interest-
ingly, recursion is very suitable for parallel systems with-
out requiring any change or additional effort on the part
of programmers. In the top-down view, recursion yields
to control-level parallelism by spawning a new process for
each recursive call and assigning it to a new processor. This
is suitable for multiple-instruction, multiple-data machines
(MIMD). In the bottom-up view of recursion, where the re-
cursive structure is unfolded and converted into an iterative
tree-like structure, there is usually a considerable amount
of data parallelism, i.e., in each level of the tree the vari-
ous computational nodes can run simultaneously on differ-
ent processors. This matches data-parallel machines, often
implemented as single-instruction, multiple-data machines
(SIMD). Since data parallelism incurs much less control and
synchronization overhead than control-level parallelism, we
will pursue the bottom-up view of recursion to convert (se-
rial) recursive codes to data-parallel non-recursive SIMD
codes.

In the SIMD model, a program consists of a sequence of
instructions, very much like serial programs for serial ma-
chines, with two major differences. First, every SIMD in-
struction is broadcast to all processors and then executed
by the enabled processors, each on its own local data. Sec-
ond, more than computation instructions are needed. In
fact, for the proper execution of a SIMD program, the data
has to be appropriately laid out and distributed to the in-
dividual processors at the outset, and communication in-
structions must be provided so that enabled processors can
exchange data when needed. Also, a mechanism is required
to enable/disable processors. Therefore, the SIMD com-
piler envisioned here converts a recursive serial code into
a non-recursive SIMD sequence of instructions comprising
four categories: data layout instructions, computation in-
structions, communication instructions, and processor en-
abling/disabling (E/D) instructions (i.e., if-then instructions
or masks).

Our code generation approach is general in the sense that
it applies to any recursive code, however structured, and in
many cases the generated SIMD codes are optimal with re-
spect to speed and efficiency. For example, in well-balanced
recursive codes, as in two-way recursive codes where each
of the two recursive calls operates on half of the original
input data, the generated SIMD code is optimal. For not
so balanced recursive codes, the generated SIMD code may

not be optimal; in fact, we will point out later which kind
of recursive serial codes is best translated into SIMD code
(using our approach), and which kind is better executed in
MIMD mode. Another current limitation is that interleaved
recursion is not handled here. This may not be terribly
restrictive, however, since most recursive codes are not in-
terleaved. Also, the approach may be extended in the future
to handle interleaved recursion.

The paper is organized as follows. In the next section
we overview the SIMD model. Section 3 develops the code
generation algorithm, which converts a serial recursive code
into a sequence of SIMD instructions. That section also
carries out an analysis of when a SIMD target code for a
recursive source code is good and when a MIMD target is
preferable. Section 4 illustrates the working of the code
generation algorithm by applying it to two representative
recursive algorithms, namely, semi-group computations, and
FFT [5]. Finally, concluding remarks and future work are
presented in Section 5.

2 The SIMD Model

In this section we overview the relevant elements of the
SIMD model, particularly the aspects of computation, com-
munication, and processor enabling/disabling mechanisms.

A SIMD system consists of a single control unit (CU), a
number of identical processors, a global broadcast bus con-
necting the control unit to all the processors to broadcast
instructions and data from the CU, an interconnection net-
work over which the processors can communicate with one
another, and an input/output system connected to the CU
and possibly to some nodes in the network.

A SIMD program is a sequence of instructions and re-
sides in the control unit. The instructions are IO instruc-
tions, computation instructions, or communication instruc-
tions. The execution of a computation instruction is carried
out as follows. If the instruction is a single, serial operation,
then it is executed locally in the control unit. On the other
hand, if the instruction is an operation to be applied uni-
formly on many data elements, such as the addition of two
vectors, then the instruction is broadcast to all the proces-
sors, and some (or all) of the processors, the enabled ones,
execute the instruction on their local data. The mechanism
to enable/disable processors is explained later in this sec-
tion.

If the instruction is a communication instruction, it is
broadcast to all the processors to be executed by the en-
abled ones. Typically, the SIMD communication instruc-
tions can have one of two possible forms. The first form
involves having a set of single-step basic communication in-
structions in terms of which any communication pattern is
expressed. For example, in a mesh network there can be
4 basic communication instructions: north, south, east, and
west. A north-instruction broadcast to the processors causes
each enabled processor to send the data item in its local out-
put register to its north neighbor. In the n-cube, as another
example, there can be n basic communication instructions
(ei), for i = 0, 1, . . . , n − 1, where ei ≡ “send along di-
mension i”, that is, the processors whose binary ID’s differ
only in the i-th bit exchange data. As will be seen, many of
the widely used recursive algorithms are best implemented
using these n-cube basic communication steps (ei). It’s wor-
thy to note that besides the n-cube several other networks
support the (ei)’s, most notably the Omega network [8] and

the Benes/Clos network [4].
The second form of communication instructions involves

a stronger abstraction of the communication process, decou-
pling the operation of the network from the operation of the
processors. In this form, each processor has, among other
things, one (or more) pair of registers: an output register
(the processor’s gateway to the network) and an address reg-
ister containing the ID of the destination processor. In this
case, only one communication instruction is needed, send,
which is broadcast to all the processors when needed, and
every enabled processor executes it by passing to the net-
work the data in its output register(s) and the address(es)
in its address register(s). The network then independently
makes sure that the data is delivered to the destination pro-
cessors. This form clearly frees the compiler designer from
worrying about communication in its lowest hardware level,
thus allowing for portable software.

Before proceeding to other types of instructions, note
that special data movement instructions are used to move
data from local memory to local registers in each processor
prior to computation or communication operations. Data
movement can be done in a standard way like in any SIMD
system. Therefore, for our purposes, we need not concern
ourselves with this local data movement, to keep the pre-
sentation clear and focused, without compromising much
the completeness of the code generation process.

The instructions for IO and for data layout are a special
form of communication instructions. Therefore, although IO
is critical to performance, we need not treat it separately in
our code translation, but address it as communication.

Finally, a SIMD system must have an enable/disable
(E/D) mechanism. There are at least two E/D mechanisms.
The first is through if-then control instructions executed by
all the processors to determine which processors are to ex-
ecute the next instruction or block of instructions. For ex-
ample, “if processor-ID is even, then enable, else disable”
clearly enables all even-numbered processors and disables
the others. The second approach is to associate a mask with
each instruction, where the processors that “fit” the mask
are enabled and execute the corresponding instruction. The
mask mechanism, though less general, is clearly faster than
the first mechanism if additional bus wires are available for
the mask bits, since the E/D is done on the fly simulta-
neously with the execution of the instructions. Although
our code generation algorithm can work with either or both
types of E/D mechanisms, we will mostly focus on the mask
mechanism because of its elegance and speed.

A mask is simply a tertiary string over the alphabet
{0, 1, ∗}, where a star signifies a “don’t care”. For example,
0 ∗ ∗0, 1 ∗ 0∗, 0110, and ∗ ∗ ∗∗ are four masks. The non-
star symbols of a mask are called fixed bits. A processor ID,
which is a binary string, is said to fit a given mask if the fixed
bits of the mask are identical to the corresponding bits of the
processor ID. In the mask E/D mechanism, the processors
that fit the mask are enabled, while all other processors are
disabled, until a new mask is broadcast. For instance, the
all-star mask enables all processors, an all-fixed-bits mask
enables exactly one processor (whose ID is the mask it-
self), and 0 ∗ ∗0 enables processors {0000, 0010, 0100, 0110}.
The power and limitations of this masking scheme should
be clear.

Before closing this section, we will give the notation for
two operations that will be used in the target code genera-
tion: string concatenation (for masks), and instruction-mask
joining. The concatenation x • y of two strings x = a1 . . . an

PRM(input I)
begin
if input size is small enough then

do the necessary work; {Comment: the basis step}
return;

endif

Partition the input into n parts I1, I2, . . . , In;
{Comment: the input partitioning can be a
simple subdivision of the input into contigu-
ous parts, often of equal size, or an elaborate
processing of the input before invoking recur-
sion. }

Call PRM(I1) to get subsolution S1;
Call PRM(I2) to get subsolution S2;

...
Call PRM(In) to get subsolution Sn;
{n is most often equal to 2. In any case,
n will be assumed here to be a power of 2.}

Merge subsolutions S1, . . . , Sn into one solution S;
end

Figure 1: The Recursive Source Code Template to Be
Considered

and y = b1 . . . bm is the string xy = a1 . . . anb1 . . . bm. The
join of an instruction i and a mask m, denoted i ⊕m, is a
convenient way to designate a SIMD instruction i that will
be executed by the processors that fit the mask m. If I
is a sequence of q instructions, and M is a sequence of q
masks, then I ¯ M is the sequence of q pointwise joins of
the respective elements.

3 The Recursive-Serial to SIMD Code Translation

The principal idea of the translation process is to perform
first a formal data-dependence data-flow analysis on both
the input partitioning process and the subsolution merge
process, and then conclude the sequences of computation in-
structions and communication instructions along with their
E/D masks for the SIMD target code.

In principle, our translation approach can translate any
non-interleaved recursive code. However, we will apply the
approach to just one recursive structure, which we term the
n-way partition-recur-merge (PRM) structure; a template of
the n-way PRM is presented in Figure 1, and a simple exam-
ple (addition of N numbers) is shown in Figure 2. We choose
this structure for several reasons. First, it captures most of
the common and important recursive algorithms that are
designed using divide and conquer. Second, by restricting
ourselves to a clean structure, we simplify the presentation
and highlight better the main ideas of our approach. Finally,
as will become apparent later, for more involved recursive
structures, and even for the same structure but with un-
balanced input size (e.g., not a power of 2), the generated
SIMD code may take significantly longer to execute than a
MIMD counterpart.

function Add(a(i..j))
begin

if i = j { input size equal to 1}
z = a(i); return (z);

elseif j = i + 1 { input size equal to 2}
z = a(i) + a(i + 1);
return (z);

endif

{ Now the data size is > 2, and recursion is used}
x = Add(a(i.. i+j

2
));

y = Add(a(i+j
2

+ 1..j));
z = x + y;
return (z);

end

Figure 2: A Recursive Code for the Addition of N (=
j − i + 1) Numbers

º

¹

·

¸
z=a0+a1

º

¹

·

¸
z=a2+a3

º

¹

·

¸
z=a4+a5

º

¹

·

¸
z=a6+a7

º

¹

·

¸
z = x + y

º

¹

·

¸
z = x + y

º

¹

·

¸
z = x + y

¶
¶
¶7

S
S

So

¶
¶
¶7

S
S

So

´
´

´
3́

Q
Q

Q
Qk

x y x y

x y

This x is actually the
value z from right be-
low. The same is true
for all the other x’s
and y’s.

C
C
C
C
CCW

– The full tree of the Add code for input a0, . . . , a7

q q q q q q q q q q q q q
p0

a0

a1

p2

a2

p3

a3

a4

p4

a5

a6

p6

a7

p7

a8

a9

p8

a10

a11

p10

a12

p11

a13

a14

p12

a15

p13

a16

a17

p14

a18

p15

a19

a20

q q q q qp2 p6 p10 p12 p14

¶
¶
¶

¢¢ AA ¶
¶
¶

¢¢ AA ¶
¶
¶

¢¢ AA ¢¢ AA ¢¢ AA

q q q qp0 p4 p8 p12

@@ @@ @@ ¡¡ @@

q qp0 p8

,
,

,

l
l

l

,
,

,

l
l

l

qp0

!!!!!!

aaaaaa

– The non-full tree of Add-ing 21 numbers a0, . . . , a20.
– The pi’s are the ID’s of the host processors.
– Below each leaf is 1 or 2 input data for the basis step .

Figure 3: A Full Tree and a Non-Full Tree of the Add
Code

To develop the code translation algorithm, we observe
first that if the recursion in the n-way PRM source code is
unfolded, we obtain a tree with the following features (the
reader may refer to Figure 3 for illustrations):

• The root has n children, and the i-th subtree of the
root corresponds to the i-th recursive call. Also, each
node in the tree has at most n children.

• Each leaf node is an instance of the basis step of the
source code, executed on a piece of the original input
(that may possibly have been modified as part of the
partitioning process) of size at most σ, where σ is the
maximum allowed input size of the basis step in the
source code..

• The tree is executed top-down first (for input parti-
tioning), and then bottom-up for merging. In top-
down, each internal node is an instance of the par-
tition step, partitioning its input into parts that are
passed to the children nodes. In bottom-up, each in-
ternal node is an instance of the merge step merging
the outcomes (i.e., subsolutions) of its children nodes.

• All the nodes (computations) in any one level of the
tree are independent and identical computations (but
performed on different data). Therefore, they are suit-
able for parallel SIMD execution, where each node of
the level runs on a separate set of (one or more) pro-
cessors. Once a level is complete, some communica-
tion takes place, and then the next level can start.
Note that we number the levels in an upward data-
dependence fashion: the leaves are in level 0, all the
nodes that can run after the leaves are in level 1, and
so on up to level l of the root, for some l.

• Based on the last three observations, the target SIMD
code to be generated has the format shown in Figure
4. The code translation must then focus on determin-
ing the exact computation and communication instruc-
tions — along with their associated masks (see below)
— in the main for-loops of Figure 4.

• The number of nodes varies from level to level. There-
fore, not all the processors are always needed in each
level, and E/D masking has to be used.

• The communication needed between successive levels
of computation is between the processors hosting a
parent node and the processors hosting its children.
The choice of the host processors of a parent node af-
fects both the pattern of communication and the mask-
ing needed for the communication and computation.
The number and choice of the host processors will be
determined by symbolic analysis of the partition step
and the merge step of the source code.

• The exact shape of the tree from the same n-way PRM
source code varies depending on the input size (see Fig-
ure 3). Thus, the communication and masks are data-
size dependent. This complicates the code generation
process considerably.

In addressing the difficulty arising from data-size depen-
dent trees, we distinguish three important cases:

1. The tree is a full n-ary tree. Examples include addition
of 2K numbers, FFT of 2K numbers [5], bitonic sort-
ing of 2K elements [3], and certain inherently power-
of-two transforms in digital signal processing [6] such
as the Haar transform, the Walsh transform, and the
Hadamard transform. This case will be handled satis-
factorily.

2. The tree is not full but the input I of the source code
can be padded by a certain number of a certain value
so that (1) the resulting tree of the new input I ′ is full,
and (2) the desired output corresponding to I is a well-
defined zone of the output corresponding to input I ′.
This case covers most of the common and important
recursive algorithms. Since this case reduces to the
previous case, it will be handled effectively.

3. The tree is not full and the input I cannot be padded
as in the previous case. In this case, there is no way
around run-time mask generation and run-time iden-
tification of the communication patterns. As will be
seen later, under this case the execution of the tree in a
top-down MIMD way, where a new process is spawned
for every recursive call, may often be a preferable way
of execution.

We now handle each case separately.

3.1 Case 1: Full Tree

To streamline the discussion, we assume first that the input
partitioning is a straightforward contiguous subdivision of
the input I into equal parts, and focus on merging. Later,
involved partitioning will be easily addressed in a very sim-
ilar fashion — partitioning is the reverse process of merging
and yields to the same treatment as merging.

In the case of full tree, the number of leaves in the tree
is nl for some l. This arises when the input size N = σ× nl

(e.g., in the addition of N numbers, σ = 2 and n = 2, leading
to a power-of-2 input size N).

Layout

The layout under the assumption of the contiguous sub-
division of the data into equal parts is straightforwad. First,
since there are nl leaves, we use nl processors, logically la-
beled 0, 1, . . . , nl− 1. Second, we subdivide the input I into
nl contiguous parts Ri of size σ each. Third, we assign part
Ri to processor i, for all i = 0, 1, . . . , nl − 1. We call this
layout the canonical layout.

The computation/communication sequences

of instructions and their masks

The instructions of the basis step of the source code are
executed by all the nl processors, each processor i on its local
data Ri. The mask for each of these instructions is simply
the all-star mask, that is, all the processors are enabled.

In the remaining levels of the tree, each node is a merge
node merging the subsolutions from its n children. This sub-
pattern of the tree is very critical, and will be addressed in a
symbolic formal manner. We term it the merge-kernel(N),
where N is the size of the input of the merge node (see Fig-

ure 5-(b)). For example, the N of the root merge node is nl.
The analysis of the merge kernel will yield all the compu-
tation and communication instruction sequences and their
corresponding masks for the SIMD target code.

SIMDcode(input I)
begin

1- for k = l down to 1 do
– Perform the partition at level k of the tree: every en-

abled processor performs the partition-computation
on the data it has just received from its parent node;
some intermittent communication between the pro-
cessors hosting the node may be needed to complete
the partition-computation at this level;

{Comment: Denote by Down.CPk the sequence
of computation instructions needed here, and by
Down.MCP

k the associated mask sequence. Also,
denote by Intra.part.CMk the communication in-
structions required here, and by Intra.part.MCM

k

the associated mask sequence.}

– Perform the partition-communication from level k to
level k − 1 to send the subinputs to the processors
hosting the children nodes;

{Comment: Denote by Down.CMk the sequence of
partition-communication instructions needed here,
and by Down.MCM

k the associated mask sequence.
This communication is different from the one above.}

endfor

{Comment: Note that if no partition-processing of
the input is specified in the source code, i.e., the
partitioning is a straightforward subdivision of the
input into contiguous parts, then the previous for-
loop need not be performed. Rather, the layout of
the input data is done canonically.}

2- Every leaf-hosting processor does the basis step of
the source code on its local data;

3- for k = 1 to l do
– Perform the merge-communication from level k − 1

to level k;

{Comment: Denote by Up.CMk the sequence of
communication instructions needed here, and by
Up.MCM

k the associated mask sequence.}

– Perform the merge-computation at level k of the
tree: every enabled processor performs the merge-
computation on the data it has just received from
its children nodes; some intermittent communica-
tion between the processors hosting a node may be
needed to complete the merge at this level;

{Comment: Denote by Up.CPk the sequence
of computation instructions needed here, and by
Up.MCP

k the associated mask sequence. Also, de-
note by Intra.mrg.CMk the communication instruc-
tions required here, and by Intra.mrg.MCM

k the as-
sociated mask sequence.}

endfor
end

Figure 4: The Format of the Target SIMD Code to
Be Generated

¾

½

»

¼
REC

¾

½

»

¼
REC • • •

¾

½

»

¼
REC

¾

½

»

¼
partition

´
´

´
´

´
´́+

£
£

£
££°

Q
Q

Q
Q

Q
QQs

I1 I2 In• • •

The Partition Kernel

(REC ≡ recursive call)

(a)

¾

½

»

¼
REC

¾

½

»

¼
REC • • •

¾

½

»

¼
REC

¾

½

»

¼
merge

´
´

´
´

´
´́3

£
£
£
££±

Q
Q

Q
Q

Q
QQk

S1 S2 Sn• • •

The Merge Kernel

(b)

Figure 5: The Partition-Kernel and the Merge-
Kernel

In this pursuit, a symbolic data-dependence analysis is
performed on the merge-kernel(nl), where nl is treated as
a formal argument in the analysis. Symbolic analysis is now

a mature area [2, 7, 9, 10] and will not be elaborated here.
The analysis determines in a simple manner (1) which ele-
ments of each subsolution Si is needed in the computation of
new values of the merged solution, and (2) which elements
(if any) of each subsolution will be included without change
in the merged solution. The next step of the analysis is
performed under the following assumptions:

1. The n subsolutions S1, S2, . . . , Sn reside (in a speci-
fied way) in n disjoint parts Ei’s of the SIMD machine.
Similarly, the final solution S is to reside in a certain
specified set E of processors. The residing of each Si

relative to its machine part Ei is identical to the way
S resides in E.

2. To prevent the requirement of too large a number of
processors by the final SIMD target code, we adopt
the layout convention that the merge node will be exe-
cuted by at most as many processors as the combined
number of processors needed by its n children. This as-
sumption may lead perhaps to larger granularity as we
go up the tree, but for most applications the number
of processors needed by each merge node is equal to 1
or to exactly the combined number of processors of the
children nodes, thus causing no increase in granularity.

3. To take full advantage of the independence between
the subtrees of the recursive-code tree structure, and
based on the above, the processors that execute a merge
node are taken to be a subset of the processors that
execute its children nodes. This limits the communica-
tion between two successive levels of the tree to being
internal to each machine part that hosts a node and
its children. It will also simplify the masking.

4. Since most SIMD systems have a power-of-2 number
of processors and are naturally partitionable into sub-
machines of a power-of-2 size, we adopt the convention
that each merge-kernel(nl) will reside in a part of the
machine of size a power of 2. The merge node of the
kernel will be assumed to reside in a power-of-2 sub-
part.

Based on the outcome of the symbolic data-dependence
data-flow analysis, and under the assumptions just stated,
the computation/communication steps and their masks can

be easily determined in a symbolic form in terms of nl. For-
mally, the outcome of this analysis is:

• CPmerge(n
l): The computation sequence of the merge

step.

• MCP
merge(n

l): the mask sequence of the computation

sequence CPmerge(n
l).

• Intra.mrg.CM(nl): The intra-communication sequence
of the merge step.

• Intra.mrg.MCM (nl): The mask sequence of the se-
quence Intra.mrg.CM(nl).

• CMmerge(n
l): The inter-level communication sequence

of the merge step.

• MCM
merge(n

l): The mask sequence of the communication

sequence CMmerge(n
l).

REMARK 1:
The communication sequence Intra.mrg.CM(nl) must be
appropriately intertwined with the computation sequence
CPmerge(n

l) because the merge-computation and the intra
merge communication may have to be intermixed for the
merging to take place. The way to implement that is to put
markers in these two sequences so we know how to intermix
the two sequences into one whole. We will not complicate
the notation any further; rather, we leave these markers im-
plicit. This is justifiable since the lengths of these sequences
do not depend on l, neither do the locations of the markers.
(l plays a role in the contents of the instructions of these
two sequences but not in their length.)

The heart of the SIMD code generation process is to
compute the sequences Up.CPk, Up.CMk, Intra.mrg.CMk,
Up.MCP

k , Up.MCM
k , and Intra.mrg.MCM

k , i.e., the compu-
tation instruction sequence and the 2 communication in-
struction sequences, along with their masks sequences, for
iteration k of the second for-loop of the code SIMDcode (of
Figure 4) . The next theorem gives a system of relations
that makes the computation of these sequences a straight-
forward process. (The reader may refer back to Figure 4 to
recall the notation.)

Theorem 1 For k = 1, 2, . . . , l, the following statements
hold:

1. Up.CPk = CPmerge(n
k)

2. Up.MCP
k = ∗(l−k)log2n •MCP

merge(n
k)

3. Intra.mrg.CMk = Intra.mrg.CM(nk)

4. Intra.mrg.MCM
k = ∗(l−k)log2n • Intra.mrg.MCM (nk)

5. Up.CMk = CMCM
merge(n

k)

6. Up.MCM
k = ∗(l−k)log2n •MCM

merge(n
k)

7. The locations where Up.CPk and Intra.mrg.CMk must
intermix are the same as those of CPmerge(n

l) and

Intra.mrg.CM(nl).

Proof: At level k there are nl−k merge nodes (recall that
the tree is a full n-ary tree), each being the merge node of a
merge-kernel(nk) because the partitioning is simply a subdi-
vision of the input into n equal contiguous parts. Each such
kernel runs on a separate part of the SIMD system, and, rel-
ative to its machine part, has the sequences CPmerge(n

k),

MCP
merge(n

k), Intra.mrg.CM(nk), Intra.mrg.MCM (nk),

CMmerge(n
k) and MCM

merge(n
k). As the kernels have identi-

cal computations and communications (on their own local
data), then Up.CPk, Intra.mrg.CMk and Up.CMk must
be simply the same computation/communication of each
kernel. Thus statements 1, 3 and 5 of the theorem are
proved. The same arguments apply to statement 6; the
reason that the locations of the markers do not depend
on k (or l) can be found in Remark 1 made earlier. As
for the masks, if M is a mask for each kernel relative to
its SIMD system part (treated as a standalone SIMD sys-
tem), then the same mask relative to the whole system is

IDpart •M , where IDpart is the ID of the system part con-
sidered. Therefore, the enabled processors for all the ker-
nels at level k are the union of all the enabled processors

of all the parts, that is, ∪nl−k−1
i=0 (IDpart i • M), which is

equal to (∪nl−k−1
i=0 IDpart i) •M ; by labeling the parts con-

tiguously, i.e., IDpart i = i, (∪nl−k−1
i=0 IDpart i) becomes the

set {0, 1, . . . , nl−k − 1}, which is represented by the mask

∗log2 nl−k

= ∗(l−k) log2 n. This proves statements 2, 4 and 6
of the theorem. Q.E.D.

Now we return to the case where the input partition-
ing is more involved, that is, it requires some processing
(termed here partition-processing) of the input I before sub-
inputs (Ii)1≤i≤n are generated and passed to the recur-

sive calls. The same analysis done on the merge-kernel(nl)
can and should be done on the partition-kernel(nl), yield-
ing the corresponding communication and computation in-
struction sequences along with their masks: CPpartition(nl),

Intra.part.CM(nl), CMpartition(nl), MCP
partition(nl),

Intra.part.MCM (nl), and MCM
partition(nl). We stipulate that

the initial input layout is such that the partition-processing
(i.e., CPpartition(nl)) can start before any communication is
needed. One exception is when the partitioning is nothing
more than reordering of the input. In that case, the initial
layout is simply the canonical layout, and the reordering is
treated as pure communication. The communication must
guarantee that the layout of subinput Ii in its hosting ma-
chine part is canonical. Finally, we make the simplifying
assumption that the input size remains the same after the
partition-processing stage. If this is not the case, some mi-
nor changes have to be made to our analysis, but the essen-
tial points and arguments are the same.

By doing the same analysis on the partition-kernel(nl)
as was done on the merge-kernel, a theorem similar to the
previous theorem can be derived. We thus present the next
theorem without proof.

Theorem 2 For k = 1, 2, . . . , l, the following statements
hold:

1. Down.CPk = CPpartition(nk)

2. Down.MCP
k = ∗(l−k)log2n •MCP

partition(nk)

3. Intra.part.CMk = Intra.part.CM(nk)

4. Intra.part.MCM
k = ∗(l−k)log2n • Intra.part.MCM (nk)

5. Down.CMk = CMCM
partition(nk)

6. Down.MCM
k = ∗(l−k)log2n •MCM

partition(nk)

7. The locations where Down.CPk and Intra.part.CMk

must intermix are the same as those of CPpartition(nl)
and Intra.part.CM(nl).

The SIMD code generation algorithm can now be easily
derived. It is shown in Figure 6. The time complexity of this
code generation algorithm is clearly dominated by the time
to perform symbolic analysis of the merge-kernel and the
partition-kernel, which is linear in the number of variables
and program statements of the merge step and the partition
step of the source code. Consequently, it is a fast algorithm.

SIMD-CODE-GENERATE(input: Recursive Source Code)
begin
1- if the input partitioning involves processing then

– identify partition-kernel(nl) from the source code,
perform symbolic analysis on it, and compute
the sequences CPpartition(nl), Intra.part.CM(nl),

CMpartition(nl), MCP
partition(nl), Intra.part.MCM (nl),

and MCM
partition(nl);

– for a formal argument k compute
Down.CPk = CPpartition(nk);

Down.MCP
k = ∗(l−k)log2n •MCP

partition(nk);
Down.CMk = CMCM

partition(nk);

Down.MCM
k = ∗(l−k)log2n •MCM

partition(nk);
Intra.part.CMk = Intra.part.CM(nk);

Intra.part.MCM
k = ∗(l−k)log2n • Intra.part.MCM (nk);

{Next, join instructions with masks}
Masked.Down.CPk = Down.CPk ¯Down.MCP

k ;
Masked.Down.CMk = Down.CMk ¯Down.MCM

k ;
Masked.Intra.part.CMk = Intra.part.CMk¯

Intra.part.MCM
k ;

endif
2-merge-kernel(nl) analysis:

– identify merge-kernel(nl) from the
source code, perform symbolic analysis on it, and com-
pute the sequences CPmerge(n

l), Intra.mrg.CM(nl),
CMmerge(n

l), MCP
merge(n

l), Intra.mrg.MCM (nl), and

MCM
merge(n

l);
3- for a formal argument k compute

Up.CPk = CPmerge(n
k);

Up.MCP
k = ∗(l−k)log2n •MCP

merge(n
k);

Up.CMk = CMCM
merge(n

k);

Up.MCM
k = ∗(l−k)log2n •MCM

merge(n
k);

Intra.mrg.CMk = Intra.mrg.CM(nk);

Intra.mrg.MCM
k = ∗(l−k)log2n • Intra.mrg.MCM (nk);

{ Next, join instructions with their masks}
Masked.Up.CPk = Up.CPk ¯ Up.MCP

k ;
Masked.Up.CMk = Up.CMk ¯ Up.MCM

k ;
Masked.Intra.mrg.CMk = Intra.mrg.CMk¯

Intra.mrg.MCM
k ;

4-Generate the following SIMD code:
SIMDcode(I) {Size of I is σ × nl}
begin

for k = l down to 1 do
{This is for input partitioning and data layout}
Masked.Down.CPk intertwined-with

Masked.Intra.part.MCP
k ;

Masked.Down.CMk;
endfor
The basis step; {By all the processors}
for k = 1 to l do {for upward merging}

Masked.Up.CMk;
Masked.Up.CPk intertwined-with

Masked.Intra.mrg.MCP
k ;

endfor
end

end

Figure 6: The SIMD-Code-Generation Algorithm for
Full-Tree n-Way PRM

3.2 Case 2: Input Paddable to the Desired Size

Recall that for an algorithm (or a problem) to fall under
this case, its input must be extendable to a desired size (e.g.,
power of 2) and the solution corresponding to the original in-
put must be easily recoverable from the solution correspond-
ing to the extended input. Fortunately, many interesting
and widely used algorithms have this property. All semi-
group computations where the associative operator has an
identity element, prefix computations, the Discrete Fourier
Transform (DFT), and sorting, are just a few examples.

A semi-group computation is the computation of a[0] ∗
a[1] ∗ · · · ∗ a[N − 1] for a given input array a, where ∗ is
an associative binary operator. If ∗ has an identity element
e (i.e., x ∗ e = e ∗ x = x for all x), then any input array
a is extendable to a power-of-two size by padding it with
a certain number of e’s. The output of the extended in-
put is clearly identical to the output of the original input.
Examples of such binary operators include addition, mul-
tiplication, minimum, maximum, Boolean “and”, Boolean
“or”, and “exclusive or”, with identity elements 0, 1, +∞,
−∞, 1, 0, and 0, respectively.

A prefix computation is the computation of an array
A[0..N − 1] from an input array a[0..N − 1]: A[k] = a[0] ∗
a[1] ∗ · · · ∗ a[k], where ∗ is an associative binary operation.
Here again, if ∗ has an identity element e, and if N is not a
power of two, we can pad the input a with enough elements
of value e to make the input size a power of two. The de-
sired output is clearly the first N elements of the obtained
output.

DFT [5, 6] is a transformation that takes as input an
array X[0..N−1] and computes the array Y [0..N−1]: Y [k] =∑N−1

l=0
X[k]e

2πi
N

kl. If N is not a power of 2, we can pad
enough zeros to the input array X to make its size a power
of 2 (2K , say), and then apply FFT, obtaining an array Y ′

of size 2K . The desired output Y [0..N−1] is simply the first
N elements of Y ′.

Finally, sorting behaves similarly. If the size N of the
input X[0..N −1] to be sorted is not a power of two, we pad
a certain number of +∞ to X to raise its size to a power
of two (2K), then apply a parallelizable sorting algorithm
such as bitonic sorting [3]. The desired output consists of
the first N elements of the obtained output.

Translating such serial recursive algorithms to parallel
SIMD code clearly reduces to the previous case (of full trees).
The code translation algorithm first generates a SIMD tar-
get code exactly as in the previous subsection (for full trees),
then adds one piece of code to the beginning of the SIMD
target code, and another piece to the end. The first piece
pads the input of the target code with an easily determinable
number of copies of a certain value; that value may be auto-
matically computed for cetain standard operations, or may
be supplied by the user in an interactive program restruc-
turing environment. The other piece of code is to recover
the desired solution from the solution of the extended in-
put. This recovery code may be generated automatically for
certain algorithms by standard scalar data-flow analysis, or
may be done interactively with the user in more complex
situations.

3.3 Case 3: Non-Paddable Input

Recall that in this case the tree is not full, and the input
I cannot be padded as in the previous case. Therefore,
the structure of the tree varies depending on the input size

(and possibly on the input values). This lack of a priori
knowledge of the tree structure prevents us from knowing
the masks and the communication patterns before run time
of the supposed target code. In other terms, for every new
input, the code translation algorithm has to be invoked to
generate the masks and communication instructions, and
integrate them to the previously generated computation in-
structions, effectively producing a new version of the SIMD
target code for every new input.

This scenario is very slow for two reasons. First, the re-
generation of a new target code for each new input slows
down the execution. Second and more importantly, some of
the levels of the tree for certain input sizes may be so irregu-
lar as to make the set of hosting processors unrepresentable
by just one or even a small number of masks (or even by
a small number of free-style if-then statements); rather, a
large number of masks (or if-statements), sometimes lin-
early proportional to the number of involved processors, may
be needed. The time to broadcast all these masks per in-
struction could make the SIMD code take longer time than
the serial code that the SIMD code is supposed to speed
up. Consequently, executing the tree in a top-down MIMD
way, where a new process is spawned for every recursive call,
avoids this problem and may yield better speedup. Although
considerable work has been done on SIMD vs. MIMD com-
putation, none of this work relates to recursive code trans-
lation, particularly to our problem at hand. Further work is
then needed to characterize the serial recursive algorithms
that are better suited for MIMD than for SIMD, and to
study the tradeoffs.

4 Applications

In this section we apply our code generation algorithm to 2
representative recursive codes, namely, addition and FFT,
each applied to N elements; N is assumed to be a power of 2
(if not, the input is padded appropriately to make N a power
of 2 as we saw in the previous section). For brevity, we just
derive the instruction sequences and their masks, without
presenting the SIMD code of each of these algorithms, since
the code is identical to that generated by SIMD-CODE-
GENERATE of Figure 6. Each of these algorithms will be
treated separately.

4.1 Addition

The recursive code for addition was presented earlier in Fig-
ure 2. Here is a brief but systematic analysis and develop-
ment of the instruction/mask sequences.

• σ=2. n = 2. N = σ × nl = 2l+1.

• Specified output layout: the final output is to be in
processor 0.

• Analysis of the partition step

– Canonical layout; no partition processing.

– Therefore, each processor will have σ (=2) input
elements: a[2i] and a[2i+1] assigned to processor
i, for i = 0, 1, . . . , 2l − 1.

• Analysis of the basis step: A single instruction, namely,
addition of the 2 local elements.

• Analysis of the merge step

– CPmerge(2
l): one instruction, namely, addition of

the subsolutions.

– MCP
merge(2

l): 0l (because processor 0, whose bi-

nary ID is 0l, was specified to hold the final out-
put, and must thus compute it).

– Communication: No intra-merge communication
because the merging is done by a single processor.
As for inter-level communication, note that since
the final output is to be put in processor 0, it fol-
lows that the output from each merge-kernel must
be put in the 0-th processor of the machine part
hosting that kernel. Consequently, the 0-th pro-
cessor of the part hosting the right REC-node of
merge-kernel(2l) must send its local output to the
0-th processor of the part hosting the left REC-
node of the merge-kernel. The 0-th processor of
the right REC-node is 10l−1, and that of the left
REC-node is 0l. Thus,

– CMmerge(2
l): 10l−1 → 0l, which is covered by

the n-cube basic instruction el.

– MCM
merge: 10l−1 (i.e., the ID of the sending proces-

sor).

• Conclusion

– Up.CPk = CPmerge(2
k)= one instruction, namely,

addition of the subsolutions from the 2 children.

– Up.MCP
k = ∗l−k •MCP

merge(2
k) = ∗l−k0k.

– Up.CMk = CMmerge(2
k) = ek.

– Up.MCM
k = ∗l−k •MCM

merge(2
k) = ∗l−k10k−1.

– No intra-merge communication

4.2 FFT

The definition of the Discrete Fourier Transform (DFT) was
reviewed earlier, and the recursive serial code for FFT is
shown below.

FFT (input:X(0..N − 1), output: Y (0..N − 1))
begin

if N = 1
Y (0) = X(0); {The basis step}
return;

endif

{ Now N > 1, and the input X will be partitioned
into two arrays X ′(0..N/2− 1) and X ′′(0..N/2− 1)}.
for j = 0 to N/2− 1

X ′(j) = X(2× j);
X ′′(j) = X(2× j + 1);

endfor

{Next is recursion}
FFT(X ′, U(0..N/2− 1));
FFT(X ′′, V (0..N/2− 1);

{Merge is next}
for j = 0 to N/2− 1

Y (j) = U(j) + e
2πi
N

jV (j); {i =
√−1}

Y (j + N/2) = U(j)− e
2πi
N

jV (j);
endfor

end

As in the previous subsection, we present a brief but sys-
tematic analysis and development of the instruction/mask
sequences.

• σ=1. n = 2. N = σ × nl = 2l.

• Layout of the final output: Y (j) in processor j, for
k = 0, 1, . . . , 2l − 1.

• Analysis of the partition step

– The partitioning is simply a reordering of the in-
put before it is split into 2 equal halves X ′ and
X ′′.

– Therefore, no CPpartition and no intra-partition
communication.

– Input layout: Canonical, as stipulated in the pre-
vious section. that is, X(j) is assigned to proces-

sor j, for j = 0, 1, . . . , 2l − 1.

– Inter-level communication: Under the same stip-
ulation, X ′(j) must be in the j-th processor of
the first half of the machine, and X ′′(j) must be
in the j-th processor of the second half of the ma-
chine. That is, X ′(j) is in processor j, and X ′′(j)
is in processor j + 2l−1. Therefore,

– CMpartition(2l): 2j → j, and 2j + 1 → j + 2l−1,

for j = 0, 1, . . . , 2l−1 − 1. This happens to be the
perfect unshuffle Ul.

– MCM
partition: All the processors, i.e., ∗l.

• Analysis of the basis step: A single instruction, namely,
assignment of the input element to the output element.

• Analysis of the merge step

– CPmerge(2
l): 3 instructions {i1, i2, i3}. i1 is the

multiplication of e
2πi
N

j by the local data output
V (j), for all j = 0, 1, . . . , 2l−1 − 1, by processors
j + 2l−1. i2 is one addition to compute Y (j) by

processor j for all j = 0, 1, . . . , 2l−1 − 1. i3 is one
subtraction to compute Y (j + 2l−1) by processor
j + 2l−1 for all j = 0, 1, . . . , 2l−1 − 1.

– MCP
merge: 1∗l−1 for i1; 0∗l−1 for i2; and 1∗l−1 for

i3.

– Inter-level communication: For j = 0, 1, . . . , 2l−1−
1, processor j needs e

2πi
N

jV (j) from processor

j+2l−1, and the latter processor needs U(j) from
the former processor. Hence, one single commu-
nication instruction is needed, namely, the n-cube
el−1, to be performed by all the processors. That
is,

– CMmerge(2
l): el−1.

– MCM
merge(2

l): ∗l.

– Intra-merge communication: None.

• Conclusion

– No partition computation

– Down.CMk = the unshuffle Uk.

– Down.MCM
k = ∗l−k∗k = ∗l;

– Up.CPk = {i1, i2, i3}, defined above.

– Up.MCP
k = {∗l−k1∗k−1, ∗l−k0∗k−1, ∗l−k1∗k−1}.

– Up.CMk = ek−1.

– Up.MCM
k = ∗l−k∗k = ∗l.

– No intra-merge communication

5 Conclusions and Future Work

In this paper we have developed an approach and an ef-
ficient translation algorithm that translates recursive serial
codes of a common recursive structure to SIMD target codes.
The translation works very well on balanced recursive codes
where the input can be padded to an appropriate size (e.g.,
power of 2). The translation algorithm was applied to semi-
group computations and FFT to illustrate its working and
its power. It was also argued that for recursive codes where
the input size is not a desired value and the input cannot be
padded appropriately, the SIMD mode of execution is too
slow, and the MIMD mode is preferable.

Future work should focus on the tradeoff of SIMD vs.
MIMD execution of recursive codes whose input cannot be
appropriately padded to a desired size. The tradeoff study
is to characterize further this class of codes and determine
more closely when the MIMD mode is preferable, and pos-
sibly to automate this arbitration. Another extension of the
work is to generalize the approach to other recursive struc-
tures such as interleaved recursion and irregular recursion
(e.g., when partitioning itself uses recursion).

References

[1] J. R. Allen and K. Kennedy, “Automatic Loop Inter-
change,” Proc. SIGPLAN ’84 Symp. on Compiler Con-
struction, Montreal, Canada, pp. 233–246, June 1984.

[2] U. Banerjee, Dependence Analysis for Supercomputing,
Kluwer Academic Publishers, Norwell, Mass., 1988.

[3] K. E. Batcher, “Sorting Networks and their Applica-
tions,” 1968 Spring Joint Comput. Conf., AFIPS Conf.
Vol. 32, Washington, D.C.: Thompson, 1968, pp. 307–
314.

[4] V. E. Benes, Mathematical Theory on Connecting Net-
works and Telephone Traffic, Academic Press, New
York, 1965.

[5] J. W. Cooley and J. W. Tuckey, “An Algorithm for the
Machine Calculation of Complex Fourier Series,” Math.
of Comput., Vol. 19, pp. 297–301.

[6] R. Gonzales and R. Woods, Digital Image Processing,
(Chapter 3) Addison-Wesley, 1992.

[7] M. R. Haghighat and C. D. Polychronopoulos, “Sym-
bolic Dependence Analysis for High-Performance Par-
allelizing Compilers,” in Advances in Languages and
Compilers for Parallel Processing, A. Nicolau, A. Gel-
ertner, T. Gross, and D. Padua (Eds.), MIT Press,
1991.

[8] D. K. Lawrie, “Access and Alignment of Data in an Ar-
ray Processor,” IEEE Trans. Comput., C-24, pp. 1145–
155, Dec. 1975.

[9] M. Wolfe, Optimizing Supercompilers for Supercomput-
ers, MIT Press,1989.

[10] M. Wolfe, and U. Banerjee, “Data Dependence and
its Application to Parallel Processing,” Int’l Journal of
Parallel Programming, 16(2), pp. 137–178, April 1987.

[11] M. Wolfe, and M. Lam, “An algorithmic Approach
to Compound Loop Transformations,” in Advances in
Languages and Compilers for Parallel Processing, A.
Nicolau et al (Eds.), MIT Press, 1991.

