Topology of efficiently
controllable Banyan
multistage networks

Abdou Youssef* and Bruce Ardent examine several control classes of Banyan
multistage interconnection networks and study their structure

Due to their unique path property, Banyan multistage
interconnection networks (MINs) can be self-routed using
-ontrol tags. This paper introduces a number of routing
-ontrol classes of MINs and studies their structure. These
include the D-controllable networks where the control
tags are the destination labels, the FD-controllable networks
where the contrgl tags are functions of the destination
labels, and the doubly D- or FD-controllable networks
which are D- or FD-controllable forward and backward.
The paper shows that all D- and FD-controllable networks
have a recursive structure, and that all doubly D-controllable
(resp., FD-controllable) networks are strictly (resp., widely)
functionally equivalent to the baseline network. The
subclass of MINs where the interconnections are operations
on bits or digits is also studied and shown to be doubly FD-
controllable and hence equivalent to the baseline. Finally,
the paper presents an efficient, parallel algorithm that
relabels the terminals of the baseline to simulate any
network in that subclass. .

multistage interconnection networks

routing control  topology

Banyan multistage interconnection networks (MINs) are
increasingly important in parallel computing systems.
Theirimportance grows with the need for fast computation
and with the increasing feasibility of systems of thousands
of processing elements afforded by VLS! technology.
Several networks of this type have been proposed and
studied, such as omega and its inverse', the indirect

.nary n-cube?, the baseline® and the generalized cube
network?,

*"Department of Electrical Engineering and Computer Science, The
George Washington University, Washington, DC 20052, USA.

*Coﬂege of Engineering and Applied Science, University of Rochester,
Rochester, NY 14627, USA

Paper received: 22 August 1991

The efficiency of MINs is critical to overall system
performance, and depends on the speed of the routing
control, among other things. As these networks have the
unique path property, that is, each source has a unique
path to each destination, they can be self-routed via
control tags. The control efficiency depends then on the
speed of control tag computation. if the control tags are
stored, the resulting memory cost is prohibitive for large
systems. Therefore, networks whose control tags are
efficiently computable and need not be stored are of
special interest. The most efficiently controllable networks
are clearly those whose control tags are the destination
addresses. The second most efficient are those whose
control tags are simple functions of the destination
tags.

Several research efforts addressed equivalence relations
between MINs, using the functional or structural approach
without consideration of the routing control aspect®”.
This paper will study the relationship between the control
and the structure of MINs. The understanding of this
relationship is important for the design of efficiently
controllable networks. Aiso, new insight into functionality
and network equivalence is gained from the study of the
control-structure relationship. Particularly, one of the
contributions is tying together and superseding the
different approaches and results in References 3, 4 and 7
related to the existing multistage interconnection net-
works, their underlying structure, their control and their
equivalence to one another.

In this paper various control schemes or classes are
introduced and the structure of the networks in each class
is studied. These control classes include D-controllable
networks where the control tags are simply the destination
tags; FD-controllable networks where the control tags are
functions of the destination tags; doubly D-controllable
networks which are D-controllable from input to output
and from output to input; and the doubly FD-controllable
networks which are FD-controllable from input to output

0141-9331/92/010003-11 © 1992 Butterworth-Heinemann Ltd

Vol 16 No 1 1992



and from output to input. The last two control classes
include all existing MINs and are useful for two-way
communication needed in shared-memory systems.

The paper focuses also on the subclass of Banyan
multistage networks where the interconnections between
columns are bit permutations (or digit permutations in
general), which are operations that permute bits in a
specified manner. These networks are called digit per-
mutation networks. The reason for studying this subclass
is twofold. First, it includes all existing Banyan multistage
networks. Second, it tums out that all digit permutation
networks are doubly D- or FD-controllable networks and
therefore share the same underlying structure as the latter
networks.

The main contributions of this paper are the following.
First, the topological structure of the D-controllable and
FD-controllable networks is determined and shown to be
recursive. Second, it is shown that all doubly D-controllable
(resp., FD-controllable) networks are strictly (resp., widely)
functionally equivalent to the baseline network. This
allows the baseline network to simulate any doubly FD-
controllable network by relabelling the input and output
terminals of the baseline. Third, the paper establishes
necessary and sufficient conditions for a sequence of digit
permutations to construct a digit permutation network
with the unique path property. An optimal algorithm is
developed to decide if a sequence of digit permutations
meets the aforementioned conditions. Fourth, all digit
permutation networks are shown to be doubly FD-
controllable and hence widely functionally equivalent to
the baseline network. in addition, the control tags are
shown to be digit permutations of destination tags, thus
allowing for very fast routing control. Finally, an efficient,
parallel algorithm that relabels the input and output
terminals of one digit permutation network in order to
simulate another digit permutation network is given. Such
simulation is possible when two networks are widely
functionally equivalent.

The paper is organized as follows. The next section
gives some preliminary definitions and fundamental
concepts related to network control and equivalence.
The following section explores the structure of D-
controllable networks. FD-controliable networks are
treated in the next section. The functional equivalence of
doubly D-controllable and doubly FD-controllable net-
works is established in the section after and the following
section studies digit permutation networks. Conclusions
and future directions are given in the final section.

DEFINITIONS AND FUNDAMENTAL CONCEPTS

In this section Banyan multistage interconnection net--

works are specified, functional and topological relations
among them are reviewed, their routing control is
discussed and various control classes are defined.

Banyan multistage networks

Banyan multistage interconnection networks have N
input terminals, N output terminals and k interconnected
columns of (N/r) r X r crossbar switches, where N = r*and
r > 2. Each r X r crossbar switch realizes all r! permutations.
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Figure 1. A Banyan multistage network in MIN(2,3)

The interconnection between every two successive
columns is a permutation of Sy =101,..., N — 14{.
Similarly, the interconnection from the input terminals to
the leftmost column is a permutation of Sy, and is called
the left-end interconnection. The interconnection from
the rightmost column to the output terminals is a
permutation of Sy, and is called the right-end inter-
connection. The connectivity of these networks is such
that they have the unique path property. That is, between
every input terminal i and every output terminal j there is
one and only one path, which will be denoted i — j. The
class of these networks is denoted MIN(r.k). Omega anc’
its inverse', the indirect binary n-cube? and the baseline
network® are examples of such networks where r = 2.
Figure 1 shows a network which is in MIN(2,3).

For ease of reference, the input (i.e., left) terminals of
networks in MIN(r,k) are labelled 0,1,...,N — 1 from
top to bottom, and so are the output (right) terminals. The
input ports and output ports of each column are similarly
labelled 0,1,...,N — 1 from top to bottom. The ports
are also labelled locally relative to each switch: the ports
(input or output) of each switch are labelled
0,1,...,r—1, from top to bottom. The distinction
between the two labels will be clear from the context. The
columns are numbered 0, 1,..., k — 1 from left to right,
and the switches of each column are labelled
0,1,...,(N/r) —1 from top to bottom. The labels of
terminals and column ports are often represented in r-ary,
each label having k r-ary digits. In this context, the local
label of a switch port is represented by a single r-ary
digit.

If Wis a network of MIN(r.k) and f a permutation of Sy, f
can be viewed as an interconnection and can be
appended to the right ehd of W, forming a network
denoted Wf. That is, if the permutation g is the right-end
interconnection of W, then gf is the right-end inter-
cgnnection of Wf. Another way of viewing Wf is as W
except that the output terminals of W are relabelied by f,
that is, output terminal j is relabelled by f(j), for every
j=0,1,...,N-1. Similarly, f can be appended to th
left of W, forming fW with left-end interconnection fh,
where h is the left-end interconnection of W. Viewed
differently, fW is the same as W except that the input
terminals of W are relabelled by ™7, that is, every input
terminal i of W is relabelled by f~'(j).

It should be noted that the composition-of functions is
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taken from left to right, that is, (x)fg = g(f(x)). If P(W)
denotes the set of permutations realizable by W, then
P(gWf) = {ghf|h € P(W)}}, which clearly follows from the
definition of gWf and the left-to-right view of
composition. )

Finally, a network W in MIN(r.k) is said to be left bare-
ended if its left-end interconnection is the identity
permutation. It is said to be right bare-ended if the right-
end interconnection is the identity permutation. A
network is bare-ended if it is both left and right bare-
ended.

Network equivalence relations

Two networks W and W' in MIN(r k) are strictly functionally

equivalent (denoted W = W) if they realize the same
permutations. The two networks are widely functionally
equivalent if they can be made to realize the same
permutations by relabelling the input and/or output
terminals of one of the networks, that is, if there exist two
permutations g and f of Sy, such that W = gW'f.

Topological relations are defined next. To this effect,
two simple operations on networks are specified. The
first, called permute-links-within-switch (PL), consists of
disconnecting the links connected to one side {input or
output) of anr X rswitch of the network and reconnecting
them to different ports of the same side of the same
switch. The second, called permute-switches-within-
column (PS), consists of permuting the switches within a
column in such a way that the links wired to a repositioned
switch remain wired to it. Two networks in MIN(r.k) are
strictly topologically equivalent if one network can be
derived from the other by a sequence of PL and PS
operations, and widely topologically equivalent if one can
be derived from the other by a sequence of PL and PS
operations and by relabelling the input and output
terminals.

It has been shown® ? that two networks in MIN(r.k) are
strictly topologically equivalent if and only if they are
strictly functionally equivalent. Similarly, they are widely
topologically equivalent if and only if they are widely
functionally equivalent. For that reason, we will often
drop the terms topotogical and functional and speak
merely of equivalence, strict or wide.

Control of Banyan mulitistage interconnection
networks

Due to the unique path property, the networks of
MIN(rk) can be self-routed using control tags (CT).
Specifically, since there is a unique path between any
input terminal / and any output terminal jin anetwork W
in MIN(r.k), there exists a unique r-ary tag ¢, _ 1 - 2-.-Co
which can be used to establish the path i— j. To show
this, let sq, sq,...,5,_; be the consecutive switches
through which the path i—j goes. The unigue link
between switch s, and switch Sy + 1 that lies on the path
i— j leaves switch s, through some output port of local
label by (O<b<r—1). Let ¢=b_, —; for all
I=01,...,k-1. Now that ¢, _ ¢ - 5. .. Cq is defined,
it can be used as a control tag as follows. Input terminal i
sends ¢, - 1Cx — 5 . .. ¢othrough the control lines of W, and
column [ uses the r-ary digit ¢, _ ; _  to link the input port
of switch s;, to which the control signal comes, to output
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port ¢, _ 1 - . Clearly then, switch s, uses digit ¢, . ¢, s
uses digit ¢, _ , and so on, establishing the path to output
terminal j.

The uniqueness of the path between iandjimplies the
uniqueness of the tag ¢, - ¢, _ 5. .. Co. This tag is called
the control tag, denoted CT(W, i j), or just CT(i,j} when no
confusion arises. As an example, the control tag CT(2,6) is
110(in binary) for the path 0 — 6 in the network of Figure 1.

Itis clear that the control tag CT(W.ij) for the pathi—j
depends on the structure of W. The control tags CT(W.i,j)
can be computed and stored in a two-dimensional array
such that the ith row is stored in the input terminal /. The
amount of storage needed is NZklogr bits, .which is
prohibitive for large N. Therefore, it is preferable to have
networks for which the CT(ij)s are simple to compute
and need not be stored, like for instance when CTG,j) = §,
or when CT(i,j) = f(j) for some easy-to-compute f.

A network W in MiN(r,k) is D-controllable if for every
input terminal i and every output terminal i, CT(W,i,j) =
(in r-ary), that is, the control tags are the destination tags.
The baseline and omega networks are examples of D-
controllable networks. A network W in MIN(r.k) is FD-
controllable if there exists a permutation f of Sy such that
for every input terminal i and every output terminal j
CT(W,ij) = f(j), that is, the control tags are functions of
destination tags. In this case, f is called the control
function of W. Omega inverse is FD-controllable with
control function p where p(x _1xc—;5...%0) = Xg. . .
X - 2% — 1. Note that in general, the control tags may be a
function of both the input terminals and the output
terminals,

In shared memory systems the input terminals represent
processors and the output terminals memory modules. In
this case, communication is from processors to memories
and from memories to processors. The above two control
definitions concern processor-to-memory communication
only. To have efficient memory-to-processor routing,
those two definitions should be extended to double
controllability as follows. A network W in MIN(r.k) is
doubly D-controllable if it is D-controllable from left to
right (i.e., input to output) and from right to left (i.e.,
output to input). In particular, to go from output terminal i
to input terminal i, the control tag needed is /. Similarly, a
network is doubly FD-controllable if it is FD-controllable
from left to right and from right to left. Double controllability -
can be better understood with the help of inverse
networks. The inverse of network W, denoted W™ is the
mirrorimage of W, where the input terminals of W are the
output terminals of W™ and vice versa. A network W is
doubly D-controllable (resp., doubly FD-controllable) if
both W and W™ are D-controllable (resp., FD-controllable).

STRUCTURE OF D-CONTROLLABLE NETWORKS

In this section a subclass of MINs, called generalized
recursive networks (GRN), will be defined recursively.
Then, it will be shown that every network in GRN is
D-controllable and conversely. That is, the structure of
D-controllable networks is the same as the GRN structure.

Definition

The class of generalized recursive networks GRN(rk) is a
subclass of MIN(r.k), defined recursively as follows.
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Figure 2. GRN structure

(@) k=1. The networks of GRN(r,1) are mere r X r
switches with left interconnections, as shown in
Figure 2a, for the case r = 2.

k > 1. GRN(rk) is the class of networks of the form
W =T(WoW;,...,W,_;) as shown in Figure 2b,
where T is the interconnection (i.e., permutation)
between column 0 and column 1 of W, each of the
Wis is a network in GRN(r.k ~ 1) such that the input
terminals as well as the output terminals of W; are
labelled ir* =", ik =1+ 1, . (i+ """ =1,and T
links the ith output port of every switch in column 0
of W to an arbitrary input terminal of W;, for
i=01,...,r—1.

IfWisasin (b) and fis a permutation of Sy, then fW is
also in GRN(r,k) (see Figure 2¢).

Non-canonical form. If W is as in (¢), and if the
switches are permuted within columns, the resulting
network is considered to be in GRN(r.k) but is said to
be in a non-canonical form. The form of networks as
in (¢} is called canonical.

(b)

(c)
(d)

Note that the control of a GRN network is the same
whether the network is in canonical form or not.

The baseline network?, an instance of which is shown
in Figure 1, is an example of a network in GRN(2,k). In
particular, if we denote by B(2,k) the 2% x 2% baseline
network with 2 X 2 switches as building blocks, then
BQ,k) = R(B(2k — 1),B(2,k — 1)), where R is the unshuffle.
The baseline can be generalized to B{(rk) such that
B(r,1) is a mere bare-ended r X r switch, and B(rk) =
R(B(rk —1),...,B(rk — 1)), where R is the unshuffle in
the system of base r, that is, RO _ 1% _5...Xg) =
Xk—2...X1XoXx~1 for every k-digit r-ary label
Xie — 1 X, -2 --.Xgp.

— 0

[~ [¢)
— |
w
[¢]
= N/2-)
- N/2
¥,
/ - N =1

- T—
— - e W-T (W W )——
[+

The following two theorems will show that GRN is the
same as the class of D-controllable networks.

Theorem 1

Every network in GRN(r.k) is D-controliable.

‘Proof

Let W be anetwork in GRN(r,k). We need to show that the
control tag jx _ ... jo establishes the path i —j in W,
where j = ji _ ;... j,in base r. The proof is by induction
onk1. :

Basis. k = 1. In this case W has only one r X r switch as in
Figure 2a. The control tag j, links any input i to the output
Jo. which is |.
Induction. Assume the statement is true for all networks in
GRN(r.k — 1). it will be proved for the network W in
GRN(rk). LetW = fT(Wy, W,, ..., W, _ ;) beanetworkin
GRN(r,k), and assume without loss of generality that it is in
canonical form. The digit j; .- 1, used to control column 0,
will cause the input terminal i to link to the ji, _ ;th output
port of aswitch in column 0. By definition of GRN, portji _ 4
is linked by Tto some inputxof W;, . Asj=j, _,r7 7 +
fk = 2jk -3 - - jo. it follows that jis the j, _, ... joth output
terminal of W; _ .SinceW; isinGRN(rk — 1), itfollows
from the inductive hypothesis that the control tag
jk—2-..jo establishes the path x —j, _,...jy in w, .
Consequently, the path i—j, which is j—x—»j is
established in W.

To establish the converse of Theorem 1, the following
lemmas are needed. )
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Lemma 1

Let W be a D-controllable network. Then the following
statements are true:

(@) For every I <(N/r) =1, the output terminals r X I,
rX1+1,...,rXI+r—1 are all linked to a single
switch s; in the rightmost column. Furthermore,
output terminal r X  + tis linked to the output port t
ofsfort=01,...,r—1.

(b) The switches of the rightmost column of W can be
permuted (within column) so that W becomes right
bare-ended.

Proof

@ Fix I=l_,...l;. Then rXl+t=1 _,... 4t and
hence all the paths from an arbitrary source to the
destinations rX/+t t=0,1,2,... ,r—1, are
identical up to the rightmost column because the
k — 1 leftmost digits of the (r X | + t)s are identical.
Therefore, the terminals rx |/ rx/+1,...,
rX1+7r—1 are all linked to the same switch (say
switch s)) in the rightmost column. In addition, as the
rightmost digit t of r X/ + t controls the rightmost
column connecting the incoming input port of s to
the output port t of s, it follows that output terminal
r X 1+ tis linked to the output port t of S.

(b) Foliows immediately from (a): move switch s to
position [ for every /.

In the next lemma, the switches of the rightmost k — 1
columns in a D-controllable network W in MIN(r.k) will be
partitioned into r groups, such that each group forms a D-
controllable network in MIN(rk — 1). To this effect, let
Up=tdio1di—5...doldc_y = n). (Undocncr-1 is a
partition of the output terminals. Let also U,, be the set of
switches of column i (i > 1) that are reachable from some
output termina in U,,.

Lemma 2

Let W be a D-controllable network. Then the following
statements are true:

(@ For every n # m and for every i, U}, N U, =8.

(b) Foreveryiandn,the switches in U are linked forward

only to switches in U/,
(c) Foreveryjandn, jU| =k~2

Proof

(@ The proof is by contradiction. Let s be a switch in
U, N UL, for some n # m. Hence, s can reach some
output terminal ndy_,...dy in U, and another
mdj _ ... dpin Uy, There exists some input terminal
p of W that can reach through s the output terminals
ndy _,...dgand mdj _,...dj via the control tags
ndy - ;...dgandmdj _, . ..dg, respectively, because
W is D-controllable. Hence, the two tags must agree
in the i leftmost digits, yieldingm = n, and leading to
a contradiction. X

(b) If aswitch s in U/, were linked to a switch in Uit 1 for
some m # n, then s could reach an output terminal in
U, and another in U,,,. This would lead to the same
contradiction as above.

(c) The proof is by backward induction on /.
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Basis.i = k — 1. Follows immediately from Lemma 1 (a,b).

Induction. Assume the statement is true for all values of
i=k=1,...,1+ 1 It will be proved for i = |. By the
inductive hypothesis, we have |U,* [ = r* = 2. Using (b),
it can be concluded that all the outgoing links from the
switches in U/, go to switches in U/*" and all the
incoming links to the switches of U.*' come from
switches in U!. Therefore, the number of the links
between the switches of U/, and the switches of ULt s
equal to r{U!,| on the one hand, and to rlUL* 7 on the
other hand. Hence, [U!| = [U/*7] =k~ 2,

Theorem 2
Every D-controllable network in MIN(r.k) is in GRN(r.k).

Proof

Let W be a D-controllable network in MIN(r.k). It will be
shown by induction on k that W is in GRN(r.k).

Basis. k = 1. It is obvieus that W is a single switch that is
right bare-ended (after Lemma1 (b)), and hence in
GRN(r,1).

Induction. Assume the theorem is true for all values of
k <L It will be proved fork = I. By Lemma 2 (c), each Uy,
has r' = 2 switches. Permute the switches of the rightmost
column so that W becomes right bare-ended. For every

i=12...,1-2 permute the switches of column i so
that the labels of the switches of U are nr'~2
ntlTre, 0+ AT Since-U, N U!, = @ for

every n # m (Lemma 2 (a)), and since the outgoing links
from the switches of Ui go only to switches in Uit
(Lemma 2 (b)), it follows that the subnetworks W, = (U],
Ui ..., U D forn=012,...,r— 1, are disjoint. Hence,
W can be putin the form W = fT(Wo,W;, ..., W, _,) for
some f and T. It can be seen that each W, is D-
controllable. By the inductive hypothesis, each W,, is in
GRN(r] = 1). Consequently, W is in GRN(r/}.

Therefore, the topologically defined class GRN is
identical to the control-characterized class of D-controll-
able networks. This topological characterization will be
used to show that all doubly D-controliable networks are
topologically and functionally equivalent. It can also be
used to develop an optimal O(N log,N) algorithm to
decide if a MIN is D-controliable3.

STRUCTURE OF FD-CONTROLLABLE NETWORKS

The class GRN is extended in this section and shown to be
identical to the class of FD-controllable networks. Recall
thatif W is an FD-controllable network in MIN(r.k), thereis
a permutation £, called the control function, such that the
control tag CT(ij) to establish the path i — j is f(j).

Definition

The extended GRN, denoted EGRN(r.k) is the class of
networks of the form Wf where W is in GRN(rk)andfis a
permutation of S.

The following lemma relates the networks of the
extended GRN to the FD-controllable networks and their
control functions. :
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Lemma 3

(@ MWisin GRN(rk)and fa permutation of S, then W
is FD-controllable and the control tag CT(WLij) for
the path i — j is 177(j).

(b) 1f W is FD-controllable with control function g then
Wg is D-controllable.

(&) IfW'is FD-controllable, then there exist a network W
in GRN{r.k) and a permutation f such that W’ = wt.

Proof

@ Going fromito jin Wfis the same as going from i to
f7) in W. Therefore, CTWLij) = CT(W,if ~(j)
which is equal to f~'(j) because W is in GRN and
hence D-controllable. 1t follows that Wf is FD-
controllable and its control function is f~7.

b) CTWgij) = CTW,ig™'(j)) = g(g~1(j) = j. Therefore,
W is D-controllable. :

(c) Let W’ be an FD-controllable network, and g its
control function. Let also W = W'gand f = g . After
(b), W is D-controllable and hence in GRN. Clearly,
Wi=(Wgg™ =w'(gg™ ) =w'.

Theorem 3

A network in MIN(r,k) is FD-controllable if and only if it is
in EGRN(r,k).

Proof
it follows from Lemma 3 (a,c).

DOUBLY CONTROLLABLE NETWORKS

As pointed out eardier, it is of theoretical as well as
practical interest to study the networks that are efficiently
controllable not just from left terminals to right terminals,
but also from right terminals to left terminals (R-to-L).

Recall that by right-to-left D-controllability it is meant
that if right terminal j needs to communicate to left
terminal i =, i _,. .. fg in a network W, then the
control tag ix _ iy —; ... iy is used to establish the path as
follows. The digit i, _ 1 controls the switches of column
k=1 (ie., the rightmost column), i, _, controls the
switches of column k ~- 2, and so on, Right-to-left FD-
controllability is defined similarly, where the control tag
(denoted CTg.o..(i))) to establish the path from right
terminal j to left terminal i is f(j). The permutation f is then
called the right-to-left control function.

So for doubly controllable networks, we make a
distinction between the left-to-right control tags CT_or
(the old sense of CT) and the right-to-left control tags
CTr.to-. We also make a distinction between left-to-right
control functions and right-to-left control functions,
which do not have to be identical.

Note that most of the existing networks have been
shown to be doubly D-controllable or doubly FD-
controllable. In particular, the baseline network, which is
D-controllable, has been shown to be equal to its
inverse?, and hence it is doubly D-controllable. Omega
inverse has been shown to be FD-controllable’. Therefore,
the omega network is doubly FD-controllable. Other
networks, such as the indirect binary n-cube? and the
generalized cube network? have been or can be shown

to be doubly FD-controllable. It has been established that
omega, omegainverse, the baseline, the indirect binary n-
cube and the augmented cube network are topologically
and functionally equivalent®. In this section, this will be
generalized. It will be shown that all doubly D-controllable
networks are strictly functionally equivalent and all
doubly FD-controllable networks are widely functionally
equivalent to the baseline B(rk).

The proof of the equivalence of the doubly
D-controllable networks with the baseline B(r,k) involves
the following steps. First, it will be established that if Wis a
doubly D-controllabie network, then the switches of its
leftmost and rightmost columns can be repositioned so
that W becomes bare-ended of the form W = T(W,
Wi, ..., W,_ ). Afterwards, it will be shown that the
switches in column 1 can be repositioned so ‘that T
becomes identical to the corresponding interconnection
R in B(rk) and all the W:s become doubly D-controllable.
Finally, the proof will proceed by induction on k. These
steps will be made precise next.

Lemma 4

Let W be a doubly D-controllable network in MIN(rk).
Then the following statements are true:

(@ The switches of column 0 and column k — TofWecan
be repositioned so that W becomes bare-ended.

(b) Assume that W is bare-ended, and in canonical form
W=T(W,,W,,...,W,_,). Then the switches of the
leftmost column of each W, can be repositioned so
that T becomes identical to the corresponding
interconnection R in the baseline B(r.k).

(c) Assume Wis as in (b) and T = R. Then W; is doubly
D-controllable for every j = 0,1, ... =1,

Proof

(@ Applying Lemma 1 (b) to W, we conclude that
column k ~ 1 can be permuted so that W becomes
right bare-ended. Since column 0 of W is column
k=1 of W and W™ is D-controllable, we can
apply the same lemma on W™" to make W~ right
bare-ended, which amounts to making W left bare-
ended.

(b) Consider W, forsome arbitrary /, and let i _ ;.. . i, be
a (k — 2)-digit r-ary label. Using the double D-
controllability of W, it can be shown that the right
ports (i1 ...ixthg< <, -1 of column 0 of W are
linked to a single switch (says;, | i, in column 1 of
W, such that the right port iy, _ 1...ixtlislinked to the
tth left port of switch Sik _y...ip- Nowif switch Si—y.oiiy
is moved to position li _ ;.. ., of column 1 of W for
every iy _q...i,, its left ports get the global labels
(i - 5. .. iatdo <<, -1 which are respectively equal
to the unshuffle of the labels (i, _ teedatDocicr— .
In all, the interconnection from column Oto column 1
of W becomes identical with the unshuffle R.

(0 Aseachw,is D-controllable, it suffices to show that
each W, is D-controllable from right to left. Let
i=ix_qix—o...i; and j be an input terminal and an
output terminal of W/, respectively, for some arbitrary
I. The equivalent label of jin Wis i’ = lig — i —q .. 04,
As T=R, i’ is linked to the right part R-1(i") of
column 0 of W. The path R™(j") « j from output
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terminal | to input terminal R™'(i") in W has to go
through i’. As W is D-controllable from right to left, the
control tag for this path is R™'(") = iy _qig_ 4 ... i/,
Hence, the subtagiy _ ;... i; establishes the subpath
from j to i'. Since i’ is the same port as i and
f=ix—q...iy, it follows that the control tag for the
path from j to i in W, is i. Consequently, W, is
D-controllable from right to left.

Theorem 4

All doubly D-controllable networks in MIN(r,k) are strictly
equivalent to the baseline network B(r.k).

Proof

Due to part (a) of the previous lemma, we can limit the
proof to bare-ended doubly D-controllable networks.
The proof is by induction on k.

Basis. k = 1. Clearly, each bare-ended doubly D-controll-
able network is a bare-ended single r X r crossbar switch,
which is B(r,1).

Induction. Assume the theorem holds for all doubly
D-controliable networks in MIN(r.k — 1). Let W be a
doubly D-controllable network in MIN(rk). By the
previous lemma (a,b), W can be assumed to be in a
canonical form W = T(W,, W,, ..., W, _,), where T = R,
the comresponding interconnection in the baseline B(r.k).
Using part (c) of the previous lemma, each W is doubly D-
controllable. By the inductive hypothesis, each W, is
strictly topologically equivalent to B(r.k — 1). It follows
that W is strictly topologically equivalent to B(r.k).

The following lemma will relate doubly FD-controllable
networks, the baseline network and the control functions.

Lemma b

@ If W=gB(rk), then CT_iog(W,ij)=f"() and
CTro (W,if) = g(i).

(b) If Wis doubly FD-controllable, and if CTLor{W,ij) =
f() and CTp o (W,ij) = g(i), then W is strictly
topologically equivalent to gB(rk)f .

Proof

(@ Since B(rk) is in GRN(rk), it follows that gB(rk) is
also in GRN(rk). Consequently, CT o (W,ij) = f~1(j),
after  Lemma3. As WTl=fT87(rkg =
f"'B(rk)g™", we conclude in the same way that
CTraot(W,ij) = CTor(W T ji) = gli).

{b) Since W is FD-controllable and CTor(W,if) = £(j), it
follows that Wfis D-controllable (after Lemma 3 (b)),
and consequently g~ 'Wfis D-controllable. As W™ is
also FD-controllable, it can be similarly shown that
f7'W™g is D-controllable. Hence, g 'Wf and
(g™'W1)™" are both D-controllable. Using Theorem 4,
we have g '"Wf=B(rk), and consequently,
W=gB(rk) .

Theorem 5

All doubly FD-controllable networks in MIN(rk) are
widely equivalent to the baseline network B(r k).
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Proof

Follows from the previous lemma.

Lemma 5 has other implications, some of which have
been proved eisewhere through other methods? about
the relations among some of the existing networks. The
following theorem rediscovers these relations and
generalizes them for arbitrary switch sizes r > 2.

Theorem 6

B7(rk) = B(rk), Q(rk) = pB(rk) and Q1 (rk) = B(rk)p
where p is the digit reversal (p(x; _ ;... x7%g) = XoX; . ..
X 1)

Proof

Since B(r,k) is doubly D-controllable, it follows that its
inverse is doubly D-controllable. Consequently,
B~'(r,k) = B(rk), after Theorem 4. Q(rk) is doubly FD-
controllable, its left-to-right control function is the
identity permutation and its right-to-left controf function
is p'. After Lemma5(b), we have Q(rk)= pB(rk).
Furthermore,  Q7Yrk) = (pB(rk) ' =B W (rk)p ' =
B(rk)p because p™' = p.

The equivalence among existing MINs is therefore no
coincidence since they are doubly D- or FD-controllable.
In the remaining part of the paper, the double controllability
of these networks will be shown to be a result of their
inter-column interconnections, namely bit manipulation
permutations, which are operations that permute the bits
of binary labels in a specified manner. The class of digit
permutation networks, where the inter-column inter-
connections are digit permutations (or bit permutations
when r = 2), will be defined and shown to be doubly FD-
controllable and hence equivalent to the baseline
network. In addition, an aigorithm will be given to
determine the relabelling of the terminals of one digit
permutation network when it is to simulate another digit
permutation network.

DIGIT PERMUTATION NETWORKS

As was just pointed out, one common feature in the
definitions of the existing multistage interconnection
networks is that the interconnections between columns
are bit permutations. The well-known shuffle inter-
connection is an example. Some of the reasons for using
these permutations as interconnections are their regularity,
rich structure and ease of analysis.

These same reasons may tempt one to propose and
study new MINs that have as intercolumn interconnections
bit permutations or, in the general case where the
switches are r X r, digit permutations that permute digits
of r-ary labels. In this section, the whole class of digit
permutation networks will be studied using the concepts
of D-control, FD-control and double FD-control, and
taking advantage of the equivaience among all doubly
FD-controllable networks.

The approach is algebraic. A relation will be derived
relating the input terminal, the output terminat and the
control tag that establishes the path in between. This
relation will be used to find necessary and sufficient
conditions for k + 1 digit permutations to construct a
MIN that has the unique path property. Later the control



tags in digit permutation networks are shown to be
functions of the destination tags only. This makes them
FD-controllable. Making use of the fact that the inverse of
a digit permutation network is a digit permutation
network, it will be concluded that digit permutation
networks are doubly FD-controllable and hence widely
equivalent to the baseline network.

Definition

ApermutationfofSy = {0,1,...,N — 1},where N = rX is
a digit permutation in the base system r if there exists a
permutation 7 of S =1{0,1,...,k—1} such that
fXk =1+ - X9X0) = Xp(k = 1) - - - Xp(1)X i), Where X _ ;...
X1Xg is an arbitrary k-digit r-ary label. In this case, f is
denoted f, and 7 is called the kernel of f,.

Definition

A digit permutation network, denoted DPN(fg,f4, . .. f,),
is a network in MIN(rk) where the leftmost inter-
connection is fy, the rightmost interconnection is f,, the
interconnection from column i — 1 to column i is f;, for
i=1,...,k—1,andall the f;s are digit permutations of 5,
in the base system r.

Denote by E,, where a is an r-ary digit and
i=01,...,k—1, the following mapping from Sy to
SNI

i =
Ea(xk_1...xo)—xk_1...x,»+1ax,~_.1...x0

that is, £} replaces the ith digit by a.

Next, the relation between an arbitrary input terminal s,
an arbitrary output terminal d and the control tag
€= Ck-1Ck -2 ... Coforthe path s — din a digit permuta-
tion network DPN (f,, , f,., .. ., f,) will be derived. Recall
that the digit ¢,.,_; controls column i for
i=071,...,k—"1. Note that if the path s—d enters
column i through input port x, _ 1 ... XX, it exits that
column through the output port xg . q...X;Ck—1-;
whichisequal to E2 | (x, _;...x;Xo). Note also that if
the path exits columni — 1 through some output porty, it
then enters the next column, that is, column i, through
input port f, (y) because the interconnection between
columni — 1and columniis f,- We have thus proved the
following lemma.

Lemma 6

In a digit permutation network DPN(f,,O,f,H, oo B ) an
arbitrary output terminal d is related to an arbitrary input

terminal s and the control tagc = ¢, _1¢p 5. .. coforthe -

0
Ck-1

path s—d by the following relation: d = (s), E
fu B fn B . EQf

Chk-2"M25Ck -3 Co' M
The Es will be ‘filtered’ out to the right of the fs in
the relation above. To that effect, the following lemma is
needed. The proofis straightforward and hence omitted.

Lemma 7
fofg = fge and ELf, = f 770,

The following lemma will simplify the relation in
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Lemma 6 and enable us to derive the necessary and
sufficient conditions that the f,s have to satisfy in order

for the network to have the unique path property.

Lemma 8

Under the assumptions of Lemma 6 we have d =
(s)fg, EET O B0 g0 where B, = memy ... ..

Proof
Letg="f, ES  f, EQ f. EQ

0 6
Ch-1 Ch—2'M2 Ck~}"’ECIf”kA1ECOf"k
By making repeated use of Lemma 7 on the expression

of g (from. right to left) we have

—_ 0 0 0 0 (V]
E= f”oECk—1f"1ECk—zfﬂzECk» 30 fﬂk-zEC1fﬂk—1fﬂkEg§ .
. =1

8= fﬂoEgk-{fm ng—zfﬁzfgk— 3T f"k~zfg1 ka~ 1Ee(§ o

because 8, = n, and foeofm = fa |
g =fnoEQ, _ fn EQ _F EQ ...

Ck-2'712

=1 -1
f”k - Ifﬂk -1 Elzﬁ - Eeg ©

8= fngEQ _ fn EQ B0 ...

Ck-2'm2
=1 —1
: fﬁk—xﬂk—zEeﬁ - Ef,‘; @

-1 -1
£= f”oE?k—'.meCOk—zf”zEgk-a v ‘fﬁkquf —1(0)51315 ©

-1 -1 =~ -
8= fg B8 VeSO pfO
As d = g(s) (from Lemma 6), the lemma follows.
The necessary and sufficient conditions as well as the

relation between the control tag and the output terminal
can now be easily derived as follows.

Theorem 7

Letf,  f,,..., and fn be k + 1 digit permutations, and

Bi=ﬂk”k—1 e T

(@ The digit permutation network DPN(f g, frys oo fp,)
is in MIN(r,k), that is, it has the unique path property,
if and only if 877(0), B77(0), ..., B (0) are pairwise
distinct.

(b) The control tag ¢ = ¢ .1¢x_,...Co fora paths —d
in a digit permutation network DPN(f, , f, ,...,f,)
which has the unique path property is ¢ = f,(d‘S,
where y(i) = A1 (0).

Proof

(@ Lets be an input terminal, d an output terminal and
€ = CoCy ... Cx — 1 the control tag that establishes the
paths — d. Lets’ = fg (s). Using the previous lemma,
we have

, -1 -1 =1
d=(s"EE O f O O

It can be easily seen that the effect of each Ef[_](i‘” is to
replace the digit in position 871 (0) of s’ by ¢, _ ;.
Assume first that the network has the unique path
property. If 877(0), 877(0), . . ., B 1 (0) are not pairwise
distinct, then {877(0), 877(0), . .., B (0)} is a proper
subsetof {0,1, ..., k — 1}, and therefore, there exists
somejin{0,1,...,k — 1}suchthatj # 87 (0) forall i.
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Consequently, the digits in the jth digit position of s’
and d must always agree. It follows that for a fixed s,
and thus fixed s’, no matter what control tag we use,
we can never reach any output terminal d whose jth
digit differs from that of s’. This contradicts the
unique path property.

Conversely, if 877(0), 8570}, ..., B7 1 (0) are pair-
wise distinct, then

1B7HO0), B3HO), ... BT =01, ... k~1),

and therefore the mapping y where y(i) = 871 ;(0) is
a permutation of {0,1,..., k — 1}. Furthermore,

d=(NEXTVER D O

implying that the digit in position y (i) of d is ¢;, that is,
Ay~ 1Ay~ 2) -+ - Aye) = Ck = 1€k~ 3 . . . Co. Therefore,
c=fd)and d =f, (c). As f,, is a permutation (a
digit permutation) of Sy, it foliows that for a fixed
input terminal s there corresponds to every control
tag ¢ one and only one output terminal. Therefore,
the network has the unique path property.
(b) The relation ¢ = f,(d) has just been proved in (b).

Part (a) of the previous theorem leads to a simple
algorithm to detemmine if a sequence of k+ 1 digit
permutations construct a digit permutation network that
has the unique path property. The following procedure,
called Compute-Control, takes as input a sequence of
k+ 1 kemels nq, nq, ..., 7 (simply represented by the
array g ) and computes the mapping y such that
y(i) =Bl ,(0) as defined in the previous theorem.
Another function, called Is-MIN, checks to see if y is a
permutation of {0,1, ..., k ~ 1} by doing a bucket sort on
), y(),...,y(k =1} and checking if any of the
‘buckets’ 0,1,...,k ~ 1 is empty. If v is a permutation,
Is-MIN  returns  true, indicating that network
DPN(f,,.f,,, . .., f;,) has the unique path property; other-
wise, it retumns false. Note that Compute-Contro! was
separated from Is-MIN because it will be used later in the
terminal relabelling algorithm for network simulation.

Procedure

Compute-Control (mg__: input; y: output)

begin

W B li=ncl;

(2) y(0): =B O);

(3) fori =k—1to1step —1do

(4) Fli=a B
(Comment: 8; = mmy _q...71; = B; 4 1m; and hence
Bi—13 =”F1Bi‘-:1)

5y ylk=i):=pg7"0)

end

Function

Is-MIN {7y ,: input)

begin

(1) Compute-Control (7y ,.7);

(2) fori=0tok—1do

3)  b():= —1; (Comment: Initialize the buckets to
empty)

(4) fori=0tok~-1do

(5) by : =y
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(6) fori=0tok—1do
) if b(i) = —1 then
8) retum(false);
(9) retumn(true);

end

Listing 1. An algorithm to decide if DPN(f, ,f. ... f,)
has the unique path property

Time complexity

As the inversion of a permutation and the composition of
two permutations can be done in linear time, Compute-
Control clearly takes O(k?) time, which is O(log?N).
Similarly, Is-MIN takes O(logZN) time. Consequently, the
time to check if k + 1 digit permutations form a DPN that
has the unique path property is O(log?N), which is
optimal because the size of the input 7y , to be
examined is O(k?).

Control of digit permutation networks

Part (b) of the last theorem shows that digit permutation
networks are FD-controlable and that their control
functions are digit permutations (f,} which can be easily
derived from the constituent digit permutations.

One consequence of the fact that the control function
is a digit permutation f,, is the increased control efficiency.
One way of controlling a DPN with control functionf . is to
design the switch so that the destination labels can be
used to set the switches as follows: the switches in
column i use digit y(k — i + 1) of the destination label as
control digit, for i =0, 1,...,k ~ 1. Another way is to
provide some additional hardware in the input terminals
to permute the digits of the output terminais according to
y and produce the control tag. As k is relatively small in
practice, the additional amount of hardware is small. A
third way is to compute 7, (d) in software every time a path
s — d is to be estasblished. This requires a small amount
of memory to store y (not £, ) at every input terminal. This
software control is cheaper than the previous two ways
but is a little stower

As will be shown later, all DPNs are widely equivalent.
Therefore, any DPN can simulate any other DPN. In the
simulation, the terminals of the simulating network are
relabetled and the control function has to change to that
of the simulated network. This is not feasible if the control
is implemented in hardware as explained above. However,
if the control is implemented in software, the simulation
can be carried out easily by importing the procedure of
the control function from the network to be simulated.
This makes software control preferable.

Equivalence of digit permutation networks

Since (f,)7" is f,.., it follows that the inverse of
DPN(f, .1, ..., f,) is the digit permutation network
DPN(fapr, fapay, ..o o, fas0). Since also every digit
permutation network is FD-controllable, we conclude
that every digit permutation network is doubly FD-
controllable. Consequently, every digit permutation
network in MIN(r.k) is widely equivalent to the baseline
network B(r,k), after Theorem 4. This result is a generaliza-
tion of the functional equivalence of the existing
networks>,

11
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_ This equivalence reveals the structure of digit permuta-
tion networks and shows that the baseline network can
simulate (i.e., become strictly functionally equivalent to)
any digit permutation network by relabelling the terminals
of the baseline network.

Simulation among digit permutation networks

If two networks in MIN(r.k) are widely equivalent, then
the terminals of one network can be relabelled so that it
can realize the permutations realizable by the other
network. The problem is to find the new labels of
terminals.

We have shown in Lemma 5 that if a network W in
MIN(r.k) is doubly fD-controllable with left-to-right
control function f and right-to-left control function g then
W is strictly equivalent to gB(r.k}f~'. Consequently, the
baseline network can simulate W by relabelling the input
terminals of B(rk) by g™ (i.e., each input terminal ;i is
relabelled g 7'(/)) and relabelling the output terminals by
f~1. Generally, if W' is another doubly FD-controllable
network in MIN(r,k) with left-to-right control function f’
and right-to-left-control function g’, then W’ is strictly
equivalent to g'B(r,k)f' ™7, and consequently, W' is strictly
equivalent to g'g " Wif' ™. Therefore, W can simulate W’
by relabeling the input terminals of W by gg'~" and the
output terminals of W by ff' 1. Therefore, the problem of
finding the new labels of terminals of one network to
simulate another network reduces to finding the left-to-
right and right-to-left control functions of both networks.
As the control functions of digit permutation networks are
digit permutations f,s, it is enough to find the ys of the
control functions.

The following algorithm takes as input two digit
permutation networks W and W' represented by the
sequences of their defining kernals 7y, and ny |,
respectively, and relabels the terminals of W to simulate
W', It calls the Compute-Control procedure to compute y
and t such that f, and f, are the left-to-right and right-to-
left control function of W, respectively. It also computes
the comesponding y' and t’ of W’. As the input terminals
of W have to be relabelled with f.f_.-1, which is equal to
fo-1z, the algorithm computes '~ 'z. Similardy, as the
output terminals of W have to be relabelled with oy,
which is equal to f,.-,, the algorithm computes y''y.
Finally, the algorithm does the relabelling. Note that f, is
the left-to-right control function of W™ = DPN(f,.1,fn1
-+, fn1). Therefore, t is computed by the procedure
Compute-Control with input ;' . The same appliesto .

Procedure

Simulate (W,W')

begin

(1) Compute-Control (7, ¥); (Comment: In case
W = B(rk), y and t = are the identity permutation
and need not be computed)

(2) Compute-Control (n;} o,t);

(3) Compute-Control (7 ,,y");

4) Compute-Control (7} ,t');

(5) Compute y' 'y and r' " 'r;

(6) fori=0toN -1 do

) relabel input terminal i of W by f,- -1, (i);

(8  relabel input terminal i of W by f, -1, (i);
end

Listing 2. A terminal relabelling algorithm for network
simulation

Time complexity

Steps 1-4 take O(k?) each, as we saw before. Step 5 takes
O(k) as permutation inversion and composition take
linear time. Steps 7 and 8 take O(k) each as the relabelling
of a node consists of permutating its k digits. Therefore,
step 6 takes O(Nk), which is the dominant term. It follows
that the time the algorithm takes is O(Nk), which is O(N

log,N).

Parallel relabelling

Step 6 can be done in parallel by making each terminal i
compute its own label. This can be done by broadcasting
y' 'y and t' "t to all the terminals after step 5, and then
requiring each terminal i to permute the digits of its label
according to t’"'r if the terminal is an input, and
according to y’ 'y if the terminal is an output. This makes
step 6 take the same time O(k?) as steps 7 and 8 which are
computed at the individual terminals. Thus, the overali
parallel time for the algorithm is O(k?), that is, OflogZN). it
should be noted that in a shared memory system the
input terminals are processors and the output terminals
are memory modules with no processing power. in this
case, the label of the output terminal i is computed by the
inputterminal i and then sent to the output terminal i, The
parallel complexity remains O(log?N).

CONCLUSIONS

This paper has introduced and examined several control
classes of the Banyan multistage networks, namely, D-
control, FD-control, double D-control and double FD-

“control. The first two classes are efficiently controllable

since the control tags needed to establish source-
destination paths are destination addresses or a function
thereof. The last two classes are useful for two-way
communication in processor-memory networks. The
structure of D- and FD-controllable networks was shown
to be recursive, and that of doubly D- or FD-controllable
networks was shown to be strictly or widely equivalent to
the baseline network. Also the class of MINs whose
interconnections are digit permutations, which includes
all existing MINs, was found to be doubly FD-controtlable
and hence widely equivalent to the baseline. An immediate
consequence of this equivalence is that the doubly
controllable networks, including the digit permutation
networks, have fundamentally the same functionality as
the baseline, for even in the case of wide equivalence, the
baseline can simulate any of these networks by appro-
priately relabelling the terminals of the baseline. An
efficient algorithm for such relabelling was given, and the
control of the relabelled baseline was shown to remain
efficient, especially when the simulated network is a digit
permutation network.

Future work includes the examination of the structure
and functionality of MINs whose control tags are easy-to-
compute functions of both source and destination tags.
The purpose is to find efficiently controllable MINs that
may be fundamentally different from the existing ones

Microprocessors and Microsystems



while capable of realizing a larger set of useful
permutations.
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