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Abstract
Due to their unique path property, banyan multistage in-
terconnection networks (MIN’s) can be self-routed using
control tags. This paper introduces a number of routing
control classes of MIN’s and studies their structure. These
include the D-controllable networks where the control tags
are the destination labels, the FD-controllable networks
where the control tags are function of the destination labels,
and the doubly D- or FD-controllable networks which are
D- or FD-controllable forward and backward. The paper
shows that all D- and FD-controllable networks have a re-
cursive structure, and that all doubly D-controlliable (resp.,
FD-controllable) networks are strictly (resp., widely) func-
tionally equivalent to the baseline network. The subclass
of MIN’s where the interconnections are digit permute is
also studied and shown to be doubly FD-controllable and
" hence equivalent to the baseline. Finally, the paper presents
un efficient, parallel algorithm that relabels the terminals

of any one network to simulate any other network in that
subclass.

§L. Introduction
Banyan multistage interconnection networks (MIN’s)
&re incremsingly important in parallel computing systems.
Sﬂerd networks of this type have been proposed and stud-
*ed, such as omega and its inverse (4], the indirect binary
:C‘ibr ][7], the baseline (10], and the generalized cube net-

ork [9)].
The efficiency of MIN’s s critical to overall system per-
ce, and depends on the speed of the routing control,
mong other things. As fbese networks have the unique
Path property, that is, esch source has a unique path to
destination, they can be self-routed via control tags.
control efficiency depends then on the speed of control
"¢ computation. If the control tags are stored, the result-
g memory cost is prohibitive for large systems. Therefore,
‘ndnetworks whose control tags are efficiently computable
ﬁde:eed not be stored are of special interest. The most ef-
tly controllable networks are clearly those whose con-
& !ags are the destination addresses. The second most
o Clent are those whose control tags are simple functions
destination tags.

Although multistage networks have received a lot of

WUtans:
*eation [If?],[s],[e], little work has been done on control
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categorization of MIN’s. Such categorization and the un-
derstanding of the relationship between control and struc-
ture of networks are important for the design of efficiently
controllable networks. Furthermore, as will be seen later,
further insight into functionality and network equivalence is
gained from the study of the control-structure relationship.
Particularly, one of the contributions is tying together and.
superseding the different approaches and results in [8], [9]
and [10] related to the existing multistage interconnection
networks, their underlying structure, their control and their
equivalence to one another. ’;

In this paper various control schemes or classes are in-
troduced and the structure of the networks in each class {3
studied. These control classes include D-controllable net-
works where the control tags are simply the destination
tags; FD-controllable networks where the control tags are
functions of the destination tags; doubly D-controllable net-
works which are D-controllable from input to cutput and
from output to input; and the doubly FD-controllable net-
works which are FD-controllable from input to output and
from output to input. The last two control classes include
all existing MIN’s and are useful for two-way communica-
tion needed in shared-memory systems.

The paper focuses also on the sub-class of banyan
maultistage networks where the interconnections between
columns are bit permutations (or digit permutations in gen-
eral), which are operations that permute bits in a specified
manner. These networks are called digit permutation net-
works. The reason for studying this subclass is twofold.
First, it includes all existing banyan mulitistage networks.
Second, it turns out that all digit permutation networks are
doubly D- or FD-controilable networks and therefore share
the same underlying structure as the latter networks.

The main contnibutions of this paper are the follow-
ing. First, the topological structure of the D-controllable
and FD-controllable networks is determined and shown
to be recursive. Second, it is shown that all doubly D-
controllable (resp., FD-controllable) networks are strictly
(resp., widely) functionally equivalent to the baseline net-
work. This allows the baseline network to simulate any
doubly FD-controllable network by relabeling the input and
output terminals of the baseline. Third, the paper estab-
lishes necessary and sufficient conditions for a sequence of
digit permutations to construct a digit permutation net-
work with the unique path property. An optimal algorithm
is developed to decide if a sequence of digit permutations
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neets the aforementioned conditions. Fourth, all digit per-
mutation networks are shown to be doubly FD-controllable
and hence widely functionally equivalent to the baseline
network. In addition, the control tags are shown to be
digit permutations of destination tags, thus allowing for
very fast routing control. Finally, an efficient, parallel al-
gorithm that relabels the input and output terminals of
one digit permutation network in order to simulate another
digit permutation network is given. Such simulation is pos-
sible when two networks are widely functionally equivalent.

The paper is organized as follows. The next section
gives some preliminary definitions and fundamental con-
cepts related to network control and equivalence. Section
3 explores the structure of D-controliable networks. FD-
controllable networks are treated in section 4. The func-
tional equivalence of doubly D-controllable and doubly FD-
controllable networks is established in section 5. Section 6
studies digit permutation networks. Conclusions and future
directions are given in section 7.

§2. Definitions and Fundamental Concepts

In this section banyan multistage interconnection net-
works are specified, functional and topological relations
among them are reviewed, their routing control is discussed
and various control classes are defined.

2.1 Banyan Multistage Networks
Banyan multistage interconnection networks have N
1put terminals, NV output terminals. and k interconnected
columns of % r X r crossbar switches, where N = r* and
r 2 2. Each r x r crossbar switch realizes all r! permu-
tations. The interconnection between every two successive
columns is a permutation of Sy = {0,1,...,N = 1}. The
interconnection from the input terminals to the leftmost
column is called the left-end interconnection, and that from
the rightmost column to the output is called the right-end
interconnection. The connectivity of these networks is such
that between every input terminal i and every output ter-
minal j there is one and only one path, denoted i — ;.
The class of these networks is denoted MIN(r, k). Omega
and its inverse [4], the indirect binary n-cube [7], and the
baseline network [10] are examples of such networks where
r = 2. Fig. 1 shows a baseline network in MIN(2,3).

For ease of reference, she input (i.e., left) and output
(i.e., right) terminals of networks in MIN(r, k) are labeled
0, 1, ..., N -1 from top tg bottom. The input and output
ports of each column are similarly labeled 0, 1, ..., N —1.
The ports are also labeled locally relative to each switch:
The ports (input or output) of each switch are labeled
0, 1, ..., r—1, from top to bottom. The distinction be-
tween the two labels will be clear from the context. The
columns are numbered 0, 1, ..., k — 1 from left to right,
and the switches of each column are labeled 0, 1, ..., &£ -1
from top to bottom. The labels of terminals and column
ports are often represented in r-ary, each label having & r-

v digits. In this context, the local label of a switch port

. represented by a single r-ary digit.

If W is a network of MIN(r,k) and f a permutation
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A network in MIN(2,3)
Figure 1

of Sy, f can be viewed as an interconnection and can bé
appended to the right end of W, forming a network denoted
W f. Another way of viewing W f is as W except that the
output terminals of W are relabeled by f, that is, output
terminal j is relabeled by f(j), for every j = 0,1,..,.N - 1.
Similarly, f can be appended to the left of W, forming fW.
Viewed differently, fW is the same as W except that the

input terminals of W are relabeled by f~1.

It should be noted that the composition of functions
is taken from left to right, that is, (z)fg = g(f(z)). If
P(W) denotes the set of permutations realizable by W,
then P(gWf) = {ghf | h € P(W)}, which clearly follows
from the definition of gW f and the left-to-right view of
composition.

Finally, a network W in MIN(r, k) is said to be left
bare-ended if its left-end interconnection is the identity per-

mutation. It is said to be right bare-ended if the right-end -

interconnection is the identity permutation. A network is
bare-ended if it is both left and right bare-ended.

2.2 Network Equivalence Relations

Two networks W and W’ in MIN(r, k) are strictly func-
tionally equivalent (denoted W ="W') if they realize the
same permutations. The two networks are widely function-
ally equivalent if they can be made to realize the same per-
mutations by relabelling the input and/or output terminals
of one of the networks, tha: is, if there exist two permuta-
tions g and f of Sy such that W = gW'f.

Topological relations are defined next. To this effect,
two simple operations on networks are specified. The first.
called permute-links-within-switch (PL), consists of discon-
necting the links connected to one side (input or output)
of an r x r switch of the network and reconnecting them
to different ports of the same side of the same switch. The
second, called permute-switches-within-column (PS), con-
sists of permuting the switches within a column in such 8




way that the links wired to a repositioned switch remain
wired to it. Two networks in MIN(r, k) are strctly topo-
lagrcslly equivalent if one network can be derived from the
other by & sequence of PL and PS operations, and widely
tepologically equivalent if one can be derived from the other
by a sequence of PL and PS operations and by relabeling
the input and output terminals.

It has been shown in [12] that two networks in
MIN(r, k) are strictly topologically equivalent if and only
if they are strictly functionally equivalent. Similarly, they
ure widely topologically equivalent if and only if they are
widely functionally equivalent. For that reason, we will of-
ten drop the terms topological and functional and speak
merely of equivalence, strict or wide.

2.3 Control of Banyan Multistage Interconnection
Networks

Due to the unique path property, the networks of
MIN(r, &) can be self-routed using control tags (CT).
Specifically, since there is a unique path between any in-
put terminal i and any output terminal j in & network W
n MIN(r, k), there exists a unique r-ary tag Ce—1Cx-2...Co
which can be used to establish the path i — j. To show this,
let s, 81, ... ,95-1 be the comsecutive switches through
which the path i — j goes. The unique link between
switch &; and switch s;4; that lies on the path i —
laves switch s; through some output port of local label
b(0<b <r—1). Let ¢y = by foralli=0,1,.. ., k-1
Now that cy_yCk_3...Co is defined, it can be used as a con-
trol tag as follows. Input terminal i sends ci—1Ck—3...Co
through the control lines of W, and column ! uses the r-ary
digit ¢;,_; to link the input port of switch s;, to which
the control signal comes, to output port cg_1.i- Clearly
then, switch so uses digit ci~), s uses digit ci.; and so
on, establishing the path to output terminal j.

The uniqueness of the path between i and j implies
the uniqueness of the tag ck—icx—2...co. This tag is called
the control tag, denoted CT(W,i,j), or just CT(i,j) when
o confusion arises.
~ Itis clear that the control tag CT(W,#, ;) for the path
! — j depends on the structure of W. Storing the con-
“’01 tags CT(W, 1, j)’s requires N2klogr bits which is pro-
hibitive for large N. Therefore, it is preferable to have
tetworks for which the CT(i,j)’s are simple to compute
2d need not be stored, fike for instance when CT(i,j) =
J,or when CT(i, ) = f(j) for some easy-to-compute f.

A network W in MIN(r, k) is D-controllable (also called
delta network) if CT(W,i,j) = j (in r-ary) for all i and ;.

¢ baseline and omega networks are D-controllable net-
works. A network W in MIN(r, k) is FD-controllable (also
called bidelta network) if there exists a permutation f of
SN such that CT(W,i,7) = f(j) for all i and j. In this case,
f is called the control function of W. Omega inverse is FD-
controllable with control function p where o{zs—1Zk~2...Z0)
= Z0..Zp_3Zk-; [4]. Note that in general, the control tags
may be a function of both the input terminals and the out-

Put terminals.
In shared memory systems, where the input termi-
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nals represent processors and the output terminals mem-
ory modules, efficient communication is needed from left
to right and from right to left. A network W in MIN(r, k)
is doubly D-controllable if it is D-controllable from left to
right (i.e., processor to memory) and from right to left (i.e.,
memory to processor). In particular, to go from output
terminal j to input terminal i, the control tag needed is 1.
Similarly, a network is doubly FD-controllable if it is FD-
controllable from left to right and from right to left. Dou-
ble controllability can be better understood with the help
of inverse networks. The inverse of network W, denoted
W-1, is the mirror image of W, where the input termi-
nals of W are the output terminals of W~! and vice versa.
A network W is doubly D-controllable (resp., doubly FD-
controllable) if both W and W~ are D-controllable (resp.,
FD-controllable).

§3. Structure of D-Controllable Networks

In this section a subclass of MIN’s, called General-
ized Recursive Networks (GRN), will be defined recursively.
Then, it will be shown that every network in GRN is D-
controllable and conversely. That is, the structure of D-
controllable networks is the same as GRN structure.

3.1. Definition. The class of generalized recursive net-
works GRN(r, k) is a subclass of MIN(r, k), defined recur-
sively as follows. The networks of GRN(r,1) are mere
r x r switches with left interconnections. For k > 1,
GRN(r,k) is the class of networks of the form W =
fT(W,,Wy,...,W,_1) (as shown in Figure 2 for r = 2)
where each W,'s is a network in GRN(r,k — 1) such that
the input terminals as well as the output terminals of W;
are labeled ir*=? irf¥=1 41 .. (i+1)r*¥~! -1, T is a con-
nection (i.e permutation) that links the i-th output port of
every switch in column 0 of W to an arbitrary input ter-
minal of W;, for i = 0,1,...,r — 1, and f is the left-end
interconnection.

If W is as above, and if the switches are permuted within
columns, the resulting network is considered to be in
GRN(r, k) but is said to be in a non-canonical form. The
form of networks as in Figure 2 is called canonical.

Note that the controlof a GRN network is the same
whether the network is in canonical form or not.

The baseline network [10] is an example of a network in
GRN(2, k). Particularly, if we denote by B(2, k) the 2 x 28
baseline network with 2 x 2 switches as building blocks,
then B(2,k) = R(B(2,k — 1),B(2,k — 1)), where R is the
unshuffle. The baseline can be generalized to B(r, k) such
that B(r,1) is a mere bare-ended r x r switch, and B(r, k)
= R(B(r.k = 1),....B(r,k — 1)), where R is the unshuffle of
S.: in the system of base r, that is, R(Tie1Th—2.--T0) =
ZoTk—...T; for every k-digit r-ary label 4o 1Zi-2...%0.

The following two theorems will show that GRN is the
same as the class of D-controllable networks.

3.2 Theorem. Every network in GRN(r. k) is D-
controllable.
Proof. Let W be a network in GRN(r, k). We need to
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show that the control tag jz—;...jo establishes the path i —

~j in W, where j = ji_j...jo in base r. The proof is by

induction on k& > 1.

Basis: k = 1. In this case W has only one r x r switch.
The control tag jo links any input ¢ to the output jo, which
1s J.

Induction: Assume the statement is true for all networks
in GRN(r,k — 1). It will be proved for the network W in
GRN(r, k). Let W = fT(W,, W,,..., W,_,) be a network in
GRN(r, k), and assume without loss of generality that it is
in canonical form. The digit ji.,, used to control column
0, will cause the input terminal i to link to the j,.,-th
output port of a switch in column 0. By definition of GRN,
port;., 1 1shnkedbyTtosomemputzofW,__ Asj =
FTURT Ll ISy S e .;., it follows that j is the j4_3...J¢-th
output terminal of W, .. Since W), _, is in GRN(r, k ~1),
it follows from the ind;;;ctive hypothesis that the control
tag ji—3...jo establishes the path z — ji_z...jo in W,._
Consequently, the path ¢ — j, whichis 1 — z — j, is
established in W. g

To establish the converse of Theorem 3.2, the following
lemmas are needed.
3.3 Lemma. Let W be a D-controllable network. Then
the following statements are true:
(a) For every l < @ — 1, the output terminals r x I, r x [+
1, ... ,r xl+r—1 are all linked to a single switch s; in the
rightmost column. Furthermore, output terminal r x | +t
18 linked to the output port t of s; fort =0,1,...,r — 1.

(b) The switches of the rightmost column of W cag b,
permuted (within column) so that W becomes ngbt bare.
ended.

Proof. (a)Fix = li_..,. Thenrx i+t =1, I
and hence all the paths from an arbitrary source to the
destinations r x I+ ¢, ¢t = 0,1,2,.. r—la.rexdentncdup
to the rightmost column because the k — 1 leftmost digs
of the (r x | + t)’s are identical. Therefore, the terminajs
rxl, rxl+4+1, ..., rxl+r—1 are all linked to the
same switch (say switch s;) in the rightmost column. Iy
addition, as the rightmost digit t of r x [ + ¢t controls the

. rightthost column connecting the incoming input port of 5

to the output port t of sy, it follows that output terminal
r x |+t is linked to the output port t of s;.

(b) Follows immediately from (a): Move switch s; to posi-
tion [ for every L. g

In the next lemma, the switches of the rightmost k-1
columns in a D-controllable network W in MIN(r, k) will
be partitioned into r groups, such that each group formsa
D-controliable network in MIN(r,k — 1). To this effect, let
Up = {dsw1dk-2...do | d4—y = n}, forn = 0,1,2,..,r -1
be a partition of the output terminals. Let also U} be the
set of switches of column : (1 > 1) that are reachable from
some output terminal in U,.

3.4 Lemma. Let W be a D-controllabie network. Then
the following statements are true:

(a) For every n # m and for every i, UL N U} = 0.

(b) For every i and n, the switches in U}, are linked forward
only to switches in Ui+,

(c) For every i and n, |U}| = -2

Proof. (a) The proof is by contradiction. Let s bes
switch in USNU?, for some n 3 m. Hence, s can reach some
output tertmna.l ndi—3...dg in U, and another md,_,...ds io
Um. There exists some input terminal p of W that can reach
through s the output terminals ndy_;...dy and md,_,.-®%
via the control tags ndy—;...dp and md}_,...d, respectively.
because W is D-controllable. Hence, the two tags must
agree in the i leftmost digits, yielding m = n, and leading
to a contradiction. i
(b) If & switch s in U} were linked to a switch in Un
for some m # n, then s could reach an output t

in Up and another in U,,. This would lead to the ss®
contradiction as above.

(c) The proof is by backward induction on .

Basis: i = k — 1. Follows immediately from Lemms 3.3-
Inductsan Assume the statement is true for all valuesof i ©
k—1,...01+1. It will be proved for i = I. By the inducti®
hypothcsls. we have |UlY| = r¥-2 Using (b), it ca® L
concluded that all the outgoing links from the switches i
UL go to switches in U+, and all the incoming links ¥
the switches of U*! come from switches in U!. Therefo™
the number of the links between the switches of U} and tH¢
switches of U!*! is equal to r{U| on the one hand, ““‘: w
r|U'*1) on the other hand. Hence, Ul| = [Ui+1] = r*~!

3.5 Theorem. Every D-controllable petwork »
MIN(r,k} is in GRN(r k).
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{ Let W be a D-controllable network in MIN(r, k).
will be shown by induction on & that W is in GRN(r, k).
Basis: k= 1. It is obvious that W is a single switch that

« right bare-ended (after Lemma 3.3-(b)), and hence in

GRN(r, 1).

Jduction: Assume the theorem is true for all values of
p < I. Jt will be proved for k = I. By Lemma 3.4-(c),
ach U. has r'~? switches. Permute the switches of the
nghtmost column so that W becomes right bare-ended. For
everyi = 1,2,..., 1 — 2 permute the switches of column i so
that the labels of the switches of U} are nri=2 npi-2 4
Lo (n+1)r!=2 — 1. Since UL N UL = @ for every n #

m (Lemma 3.4-(a)), and since the outgoing links from the
~ switches of U} go only to switches in U}*! (Lemma 3.4-(b)),
# follows that the subnetworks W, = (U}, U2,...,Ul~), for

2=0,1,2,..,r—1, are disjoint. Hence, W can be put in the
frm W = fT(W,, W,,..,W,_y) for some f and T. It can
be seen that each W, is D-controllable. By the inductive
bypothesis, each W, is in GRN(r,! - 1). Consequently, W
#m GRN(r,1). g i

Therefore, the topologically defined class GRN is iden-

tical to the control-characterized class of D-controllable net-
works. This topological characterization will be used to
show that all doubly D-controllable networks are topolog-
ially and functionally equivalent. It can also be used to
develop an optimal O(N log, N) algorithm to decide if a
MIN is D-controllable [11].

. Structure of FD-Controllable Networks

The class GRN is extended in this section and shown to

be identical to the class of FD-controllable networks. Recall
that if W is an FD-controllable network in MIN(r, k), there
B a permutation f, called the control function, such that
the control tag CT(i, ) to establish the path i — j is (j).
41 Definition. The extended GRN is the class of net-
works of the form W f where W is in GRN(r,k) and fis a
Permutation of S,s.

The foliowing lemma relates the networks of the ex-

tended GRN to the FD-controllable networks and their con-

tions.

42 Lemma. (a) f W is.in GRN(r,k) and f a permu-
Wtion of S,., then W f i#FD-controllable and the control

8¢ CT(W {1, j) for the Pl
) FW is FD-con bl wi
Wy is D.controllable. THF

i 5 is f71()).
ith contral function g, then

(¢) YW is FD-controllable, then there exist a network W
2 GRN(r, k) and a permutation f such that W' = W .

(

(b)

foof. (a) Going from i to j in W f is the same as go-
t to f~1(;) in W. Therefore, CT(W/,i,j) =

CT((;WJ.I-'(J‘)) which is equal to f-1(j) because W is

and hence D-controllable. It follows that W f is
~controllable and its control function is f~1.
CT(Wy,i,j) = CT(W,i,g~'(3)) = g¢(¢'() = j.
ore, W is D-controllable.
©) L" W' be an FD-controllable network, and g its control
ion. Let also W = W'g and f = g-1. After (b), W is

b

D-controllable and hence in GRN. Clearly, Wf = (W'g)g ™~}
=W'(gg™') = W'y

4.3 Theorem. A network in MIN(r, k) is FD-controllable
if and only if it is in the extended GRN(r k).

Proof. It follows from Lemma 4.2-(a,c). §

§5. Doubly Controllable Networks
As pointed out earlier, it is of theoretical as well as

practical interest to study the networks that are efficiently

controllable not just from left terminals to right terminals,
but also from right terminals to left terminals

Recall that by right-to-left D-controllabilsty it is meant
that if right terminal ; needs to communicate to left termi-
nal ¢ = ip.3ix_2...30 in a network W, then the control tag
1k~11k-3...lg 18 used to establish the path as follows. The
digit i;-, controls the switches of column k — 1 (i.e., the
rightmost column), iy, controls the switches of column
k — 2, and so on. Right-to-left FD.conirollability is defined
similarly, where the control tag (denoted CTgr—.r(i,])) to
establish the path from right terminal j to left terminal ¢
is f(i). The permutation f is then called the righi-to-le
control function. i

So for doubly controllable networks, we make a distiné-
tion between the left-to-right control tags CT ;g (the old
sense of CT) and the right-to-left control tags CTr.;. We
also make a distinction between left-to-right control func-
tions and right-to-left control functions, which do not have
to be identical.

Note that most existing networks have been shown to
be doubly D-controllable or doubly FD-controllable. In this
section, -this will be generalized. It will be shown that
all doubly D-controllable networks are strictly function-
ally equivalent and all doubly FD-controllable networks are
widely functionally equivalent to the baseline.

The proof of the equivalence of the doubly D-
controllable networks with B(r,k) involves the following
steps. First, it will be established that if W is a doubly
D-controllable network, then the switches of its leftmost
and rightmost columns can be repositioned so that W be-
comes bare-ended of the form W = T(W, W,,...,. W,_,;).
Afterwards, it will be shown that the switches in column
1 can be repositioned so that T' becomes identical to the
corresponding interconnection R in B(r, k) and all the W,’s
become doubly D-controllable. Finally, the proof will pro-
ceed by induction on k. These steps will be made precise
next.

5.1 Lemma. Let W be a doubly D-controllable network
in MIN(r, k). Then the following statements are true:

(a) The switches of column 0 and column k-1 of W can be
repositioned so that W becomes bare-ended.

(b) Assume that W is bare-ended, and in canonical form
W = T(Wy,W;,...,W._;). Then the switches of the left-
most column of each W, can be repositioned so that T be-
comes identical to the corresponding interconnection R in
the baseline B(r, k). '

(c) Assume W is as in (b) and T = R. Then W; is doubly
D-controllable for every 1 = 0,1,...,r = 1.
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w-1,
{(b) Consider W; for some arbitrary !, and let i;_,...i,
be a (k ~ 2)-digit r-ary label. Using the doubie D-
controllabilty of W, it can be shown that the right ports
(tk—y-.22tl)ocecr—1 Of column O of W are linked to a sin-
gle switch (say s,,_, ,,) in column 1 of W, such that
the right port iz_;...istl is linked to the t-th left port
of switch s,,_, ;. Now if switch s,,_,..i, is moved to
position lig_;...57 of column 1 of W for every i;_,...ia,
its left ports get the global labels (li.-,...igt)os,sr_,
which are respectively equal to the unshuffie of the labels
(1k-1...12thogecr—1- In all, the interconnection from col-
umn 0 to column 1 of W becomes identical with the un-
shuffle R.

(c) As each W, is D-controllable, it suffices to show that
each W) is D-controllable from right to left. Let i =
tk-11k~2-.-1; and j be an input terminal and an output ter-
minal of W, respectively, for some arbitrary {. The equiv-
alent label of i in W is i/ = liy_jigmy...iy. As T = R,
i’ is linked to the right port R™!(i’) of column 0 of W,
The path R~!(i') «~ ; from output terminal j to input
terminal R™1(i") in W has to go through i'. As W is D-
controllable from right to left, the control tag for this path
is R™}(1') = t4_yir=y...iy]. Hence, the sub-tag ix_;...i; es-
tablishes the sub-path from j to i'. Since i’ is the same
port as i and ¢ = i4.,...i;, it follows that the control tag

(a) This follows by applying Lemma 3.3-(b) to W

~ for the path from j to i in W, is i. Consequently, W, is

)-controllable from right to left. g

5.2 Theorem. All doubly D-controllable networks in
MIN(r,k) are strictly equivalent to the baseline network
B(r, k). .

Proof. Let W be a doubly D-controllable network.
Due to the previous lemma, we can assume that W =
R(Wy,..,W,_,) where each W, is doubly D-controllable.
As B(r,k) = R(B(r,k - 1),....B(r, k — 1)), a simple induc-
tion on k establishes the theorem. §

The next lemma will relate doubly FD-controllable
networks, the baseline network and the control functions.
The proof is straightforward and hence omitted.

5.3 Lemma. (a) fW =gB(r,k)f, then CTy_.z(W,i, ;)
= f~1(j) and CTg—..(W,i,j) = g(i). '
(b) If W is doubly FD-comtrollable, and if CTp p(W,1,5)
= f(j) and CTRr—1(W,i, s} = g(i), then W is strictly topo-
logically equivalent to gBfr,)f~1.

5.4 Theorem. All déubly FD-contrallable networks
in MIN(r, k) are widely equivalent to the baseline network
B(r., k). .

Proof. Follows from the previous lemma. ]

Lemma 5.3 has other implications, some of which have
been proved elsewhere through other methods {10] about
the relations among some of the existing networks. The
following theorem rediscovers these relations and general-
izes them for arbitrary switch sizes r > 2. ~
S.5 Theorem. B-Y(r,k) = B(r,k), Qr.k) = p
Hr, k) and Q= (r, k) =B(r, k)p where p is the digit reversal
(p(:.,_.,...z,zg) = IoZj...Tgoy).

Proof. Since B(r, k) is doubly D-controllable, it follows
that its inverse is doubly D-controllable. Consequently,
B-!(r,k) = B(r,k), after Theorem 5.2. Q(r,k) is dou-
bly FD-controllable, its left-to-right control function is the
identity permutation and its right-to-left control function
is p [4]. After Lemma 5.3-(b), we have Q(r, k) = pB(r, k).
Furthermore, Q= (r,k) = (pB(r,k))~! = B~(r,k)p~! =
B(r, k)p because p~! = p.

The equivalence among existing MIN's is therefore no
coincidence since they are doubly D- or FD-controllable.
In the remaining part of the paper, the double controlla-
bility of these networks will be shown to be a result of
their inter-column interconnections, namely bit manipula-
tion permutations, which are operations that permute the
bits of binary labels in a specified manner.

§6. Digit Permutation Networks

As was just pointed out, one common feature in the
definitions of the existing multistage interconnection net-
works is that the interconnections between columns are bit
permutations. The well-known shuffle interconnection is
an example. Some of the reasons for using these permutar
tions as interconnections are their regularity, rich structure
and ease of analysis. In this section, the whole class of
digit permutation networks will be studied using the con:

cepts of D-control, FD-control and double FD-control, and -

taking advantage of the equivalence among all doubly FD-
controllable networks.

The approach is aigebraic. A relation will be derived
relating CT(i, j) with ¢ and j. This relation will be used
to find necessary and sufficient conditions for k + 1 digit
permutations to construct a MIN that has the unique path
property. Later the control tags in digit permutation net-
works are shown to be functions of the destination tags only.
This makes them FD-controllable. Making use of the fact
that the inverse of a digit permutation network is a digit
permutation network, it will be concluded that digit per-
mutation networks are doubly FD-controllable and bence
widely equivalent to the baseline network.

6.1. Definition. A permutation f of Sy = {0,1,...N -
1}, where N =r* isa digit permutation in the system of
base r if there exists a permutation r of S = {0,1,....k =
1} such that f(Zeey..myzg) = Za(k-1)--Tu(1)Tx(0) where
Tg_}...T1ZTo is an arbitrary k-digit r-ary label. In this case:
f is denoted f, and = is called the kernel of f,.

6.2. Definition. A digit permutation network, denoted
DPN(fy, fi1,...ft), is a network in MIN(r, k) where the kff’
most interconnection is fy, the rightmost interconnection !
fi, the interconnection from column i — 1 to column i i8 fv
for i = 1,....k — 1, and all the f,'s are digit permutatios
of S,: in the system of base r.

Denote by E;, where a is an r-ary digit and # ©
0,1,....,k — 1, the following mapping from Sy to Sw:

1
E,(zk—l ....to) = Thk-1-Ti410T}...T9

that is, E; replaces the i-th digit by a.
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Next, the relation between an arbitrary input termi-

pal s, an arbitrary output terminal d and the control tag
¢ = Ch-1Ck—2---Co for the path s — d in a digit permutation
petwork DPN(fag, fays-ees fuu) will be drived. Recall that
the digit Ck-1—i controls column i fort = 0,1,...,k—1. Note
that if the path s — d enters column + through input port
2p-1.--T1T0, it exits that column through the output port
Zi1.-T1Ck-1—1 Which is equal to E? . (ZTk-1--21Z0)
Note also that if the path exits column 1+ — 1 through some
output port y, it then enters the next column, that is, col-
umn i, through input port fx,(y) because the interconnec-
tion between column ¢ — 1 and column i is fy,. We have
thus proved the following lemma:
6.3 Lemma. In a digit permutation network
DPN(fxo» fas+--s fx,) an arbitrary output terminal d is re-
lated to an arbitrary input terminal s and the control tag
¢ = Cg—1Ch2...Cp for the path s — d by the following rela-
tion: d = (s)f*oEg._lfﬂ Eg._'fg,E?._’-..Egnf,..

The E’s will be “filtered” out to the right of the f’sin
the relation above. To that effect, the following lemma is
needed. The proof is straightforward and hence omitted.

. -1y
6.4 Lemma. fofs = fsa a0d Eife = fxEe .
6.5 Lemma. Under the mnmptx'on.‘s of Lemma 6.3
-l -l -

we have d = (8)fs, ECL VES. O E® where 8; =
pXpoy... Wy
Proof. Letg= f!oEg,_,fn Eg._,f:,Eg._,-uEg,fn

By making repeated use of Lemma 6.4 on the expres-
sion of ¢ (from right to left) we have

871(0) A7 (0 S(0)
9= fo, EN_VEL Y EC}

As d = g(s) (from Lemma 6.3), the lemma follows.

The necessary and sufficient conditions as well as the
relation between the control tag and the output terminal
can now be easily derived as follows.

6.6 Theorem. Let fey, frys - » and fx, be k+1 digit
permutations, and B = XxXk~1...%i.
(a) The digit permutation network DPN(fey, fuys s fr)is
in MIN(r, k), that is, it has the unique path property, if and
caly if B71(0), B5'(0), ... , By '(0) are pairwise distinct .
(b) The control tag ¢ = cx—1€a—2.-.Co for a path s — d in
3 digit permutation network DPN(fuy, fay:--» fx.) which
g“l the unique path property is ¢ = f,(d), where (i) =

24,0) =
Proof. (a)Lets b&hpuf terminal, d an output termi-
al and ¢ = coclcg%}thl_ control tag that establishes the
Path s — d. Let s' = fg (s). Using the previous lemma,
we have

d=(sES OB EE®

It can be easily seen that the effect of each Ef,f_‘fo) is to
Teplace the digit in position 8!(0) of s’ by ca—i.

Assume first that the network has the unique path
Property. If £;1(0), 85'(0), ..., B:1(0) are not pairwise
distinct, then {8;3(0), B7(0), ... , By (0)} is a proper
'“bﬁet of {0,1,....,k — 1}, and therefore, there exists some
Jin {0,1,...,k — 1} such that j # B;'(0) for all i. Con-
%quently, the digits in the j-th digit position of s' and d

st always agree. It follows that for a fixed s, and thus
fixed s', no matter what control tag we use, we can never
reach any output terminal d whose j-th digit differs from
that of s'. This contradicts the unique path property.

Conversely, if 37(0), B:10), ..., B;1(0) are pairwise
distinct, then

(871(0), B571(0), ..., Bi'(0)} ={0,1,...k —1},

and therefore the mapping v where ¥(i) = Bl.(0) is a
permutation of {0,1,...,k — 1}. Furthermore,

d=(NEXVELLD . ECY

implying that the digit in position (i) of d is ci, that is,
d.,(g-l)do,(i-g...d.,(o) = Ch1Chku?2--Co- Therefore, c= f.,(d)
and d = f,-1(c). As f,-1 is & permutation (a digit permu-
tation) of Sy, it follows that for a fixed input terminal s
there corresponds to every control tag c one and only one
output terminal. Therefore, the network has the unique
path property. _

(b) The relation ¢ = f,(d) has just been proved in (b). §

Part (a)oftheprevioustheoretnleadstoasimpkal—
gorithm to determine if a sequence of k + 1 digit permu-
tations construct a digit permutation network that has the
unique path property. The algorithm takes as input a se-
quence of k +1 kernels 7, xy, ..., & , computes the Bl
(noting that §; = Bi417; and hence 57" = ="' 1) then
computes the mapping v such that 7(i) = 8;,(0) as de-
fined in the previous theorem. Finally it checks if v is a
permutation of {0,1,...,k — 1} by doing a bucket sort on
¥0), (1), ..., 7(k ~ 1) and checking if any of the “buck-
ets" 0, 1, , ..., k—1is empty. If no bucket is empty, then v
Js a permutation, that is, the network has the unique path
property; otherwise, the network does not have the unique
path property. The time complexity can be easily seen to

be O(k?) = O(log? N). .

6.1 Control of Digit Permutation Networks

Part (b) of the last theorem shows that digit permu-
tation networks are FD-controllable and that their control
functions are digit permutations (f,) which can be easily
derived from the constituent digit permutations.

One consequence of the fact that the control function
is a digit permutation f, is the increased control efficiency.
One way of controlling a DPN with control function f, is
to design the switch so that the destination labels can be
used to set the switches as follows: the switches in column
i use digit 7(k — i + 1) of the destination label as control
digit, for i = 0,1,...,k — 1. Another way is to provide some
additional hardware in the input terminals to permute the
digits of the output terminals according to v and produce
the control tag. . As k is relatively small in practice, the
additiqnal amount of hardware is small. A third way is to
compute f.(d) in software every time a path s — d is to
be established. This requires a small amount of memory
to store v (not f.) at every input terminal. This software
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control, though a little alower, is cheaper than the previous
two ways and is more flexible in that it allows one network
to simulate an equivalent network as will be seen shortly.

6.3 Equivalence of Digit Permutation Networks
As (fx)~' = fe-1, it follows that the inverse of a DPN
is a DPN. Thus all DPN’s in MIN(r, k) are doubly FD-
controllable and hence widely equivalent to the baseline
B(r,k), by Theorem 5.2. This result is a generalization
of the equivalence among the existing networks (in [10]).

6.4 Simulation Among DPN’s

If two networks in MIN(r, k) are widely equivalent,
then the terminals of one can be relabeled so that it re-
alizes the permutations of the other. The problem is how
to relabel the terminals.

We have shown in Lemma 5.3 that if a network W in
MIN(r, k) is doubly FD-controllable with left-to-right con-
trol function f and right-to-left control function g, then W
is strictly equivalent to gB(r,k)f~!. Hence, the baseline
network can simulate W by relabeling the input terminals
of B(r,k) by ¢~! and the output terminals by f~!. Gen-
erally, if W' is another doubly FD-controllable network in
MIN(r, k) with left-to-right control function f' and right-
to-left-control function g, then W is strictly equivalent to
¢'B(r,k)f'=!, and consequently, W' is strictly equivalent
to g'g W ff'=!. Therefore, W can simulate W’ by rela-
beling the input terminals of W by gg’'~! and the output
terminals of W by ff'~!. Therefore, the problem of re-
labeling the terminals of one network to simulate another
network reduces to finding the left-to-right and right-to-left
control functions of both networks. As the control function
of digit permutation networks are digit permutations f. s,
it is enough to find the 4’s of the control functions.

The following algorithm takes as input two digit per-
mutation networks W and W' represented by the sequences
of their defining kernals 7 _; and x5 Tespectively, and re-
labels the terminals of W to simulate W’. It computes
v and 7 such that f, and f, are the left-to-right and
right-to-left control function of W, respectively. It also
computes the corresponding 4’ and 7’ of W'. As the in-
put terminals of W have to be relabeled with f,f,-1,
which is equal to to fp-1,., the algorithm computes 7'~17r.
Similarly, as the output terminals of W have to be rela-
beled with f, f.,-1, whih is equal to f,.-1., the algorithm
computes v'~'v. Finally;"the algorithm does the relabel-
ing. Note that f, is they left-to-right control function of
W' = DPN(fycs, furt s fozt). Therefore, 7 is com-
puted in the same way as 7. The same applies to 7'

Procedure Simulate (W, W)

(1) Compute v, 7, 7’, 7’ and then 4'~'v and 7'~!7;

(2) Broadcast 4'~! to all outputs and r'~!r to all inputs;
(3) fori =0to N — 1 do in parallel

(4) relabel input terminal i of W by (i)f,-1,;

(5) relabel output terminal i of W by () fyp-1s

Time Complezity: Step 1 takes O(k?). Steps 2, 4 and 5
take O(k) each. Thus, the procedure takes O(log? N).

§7. Conclusions

This paper examined several control classes of banyan
MIN’s, namely, D-control, FD-control, double D-control
and double FD-control, and showed that the first two
classes have a recursive structure and the last two are equiv-
alent to the baseline. The digit permutation networks,
where the interconnections are bit (digit) -permutes, were
also studied and shown to be doubly FD-controllable and
hence equivalent to the baseline, thus generalizing the re-
sults about the equivalence among existing networks. An
optimal algorithm to simulate any DPN by any other DPN
was also presented. Future work will examine the structure
and functionality of MIN’s whoee control tags are easy-to-
compute functions of both source and destination tags.
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