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Abstract

This paper discusses the topological properties of a re-
cently introduced family of networks, called the banyan-
hypercubes (BH), and defines a family of generalized banyan
hypercubes. A banyan-hypercube, denoted BH(h, k, s),
is constructed by taking the bottom h levels, from the
base, of a rectangular banyan of spread s and s* nodes per
level for s a power of 2, and interconnecting the nodes at
each level in a hypercube. The banyan-hypercubes can be
viewed as a scheme for interconnecting hypercubes while
keeping most of the advantages of the latter. In this paper,
the definition of BH’s will be extended and generalized to
(1) allow the interconnection of an unlimited number (h)
of hypercubes and (2) allow any h successive levels of the
banyan to interconnect hypercubes. This leads to better
extendability and flexibility in partitioning the BH. The
diameter and average distance of the generalized BH will
be derived and shown to provide an improvement over the
hypercube for a wide range of values for h, k and s. Self-
routing point to point and broadcasting algorithms will be
presented and efficient embeddings of various networks, on
the BH, will be shown.

§1. Introduction

Amongst the various interconnection networks that
have been studied and built, hypercube networks have
received much attention over the past few vears. Hyper-
cubes have a rich interconnection structure with logarith-
mic diameter, average distance and degree. Furthermore,
it has a simple and elegant routing strategy and many
toplogical structures such as rings. meshes, and trees can
be efficiently embedded in the hypercube [2)[7] [14]. The
main disadvantage of the hypercube lies in its extendabil-
ity; extendability allows for the gradual growth of sys-
tems. Extending the hypercube (i.e., adding more nodes)
requires doubling its size and incrementing the node de-
gree, thus causing cost and hardware problems. Due to
the same reasons, the hypercube results in large internal
fragmentation when it is partitioned. Therefore, a desir-
able network structure is one that retains the advantages
of the hypercube while providing better. i.e., cheaper, ex-
tendability and more flexible partitioning.

A new family of hierarchical, partitionable networks
that are a synthesis of rectangular banyans [6] [4] and
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hypercubes has been proposed and shown to greatly re-
duce the aforementioned disadvantages [15]. These net-
works, called the banyan-hypercubes (BH), are constructed
by taking the first & successive levels (from the base) of
a (k + 1)-level rectangular banyan of spread {outdegree)
and fan-out (indegree) equal to s, where s is a power of
2 and h < k+ 1. Each level has s* nodes representing
processing elements, labelled from 0 to s* — 1 in binary,
and interconnected as a hypercube. Such a network is de-
noted BH(h, k,s). A hypercube is a BH(1, k, s) network
and hence a special case.

BH networks are shown in [15] to combine the ad-
vantageous features of banyans and hypercubes and thus
have better communication capabilities. In particular.
many hypercube features in routing, embedding and parti-
tioning are incorporated into banyan-hypercubes and new
gains are achieved in diameter, average distance, embed-
ding efficiency, partitioning flexibility and lower cost ex-
tendability. It should be noted that many multistage net-
works have been shown to be topologically equivalent and
thus their synthesis with the hypercube results in proper-
ties identical to those of the banyan-hypercube.

The limitations of the banyan-hypercube networks.
as defined in (15}, are that the maximum number of levels
are restricted (to k + 1) and the inter-level connections
must start from the base of the banyan. In this paper
we will extend the definition of the banyan—hypefC‘{bes
in two ways and thereby define the family of generalize
banyan-hypercube networks. The first extension is to allo¥
any h successive levels of BH(k + 1, k. s) to be a banyad’
hypercube. This leads to more flexible and efficient par
titioning, and will be justified by showing that any h s8¢
cessive levels of BH(k+1, k, s) are isomorphic to the first
levels of BH(k+1,k,s). The second extension is to lift‘ t.h‘;
limitation h < k+1. This leads to unlimited extendabl‘ht-‘
and enhances the flexibility and efficiency of partitif)n‘ngt'
It will be shown that even after the second extension-'
still holds that any h successive levels are isormorphi¢ 1
the first h levels.

This paper makes a number of contributions .
study of banyan-hypercubes. The first is to allow ! _
network to start from any level of the banyan thuS‘ e}?e
hancing its partitioning flexibility. Secondly. we allo¥ ! v
number of levels to grow arbitrarily and show that an‘
h levels are isomorphic to any other h levels. THI%"
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we derive the diameter and average distance of the gen-
eralized banyan-hypercube, and show that for reasonably
large numbers of levels the performance of the BH net-
works provides an improvement over the hypercube. Next,
optimal algorithms for point-to-point routing and one-to-
all routing (i.e., broadcasting) will be presented. Finally,
we note that by using the isomorphic property, the em-
beddings of rings, meshes, trees, pyramids and multiple
pyramids, provided in [15] can be extended to the gener-
alized BH networks. Partitioning the Banyan-Hypercube
is discussed in [16).

§2. Structure of the Banyan-Hypercube

We first briefly review the definition of Banyan- hy-
percube networks as given in [15). A banyan graph [4] [6]
(10} is a Hasse diagram of a partial ordering where there
is a unique path from every base to every apex. A base
is any vertex having no arcs incident into it, and an apex
is any node having no arcs incident out from it. An L-
level banyan is a banyan whose nodes can be arranged
into L levels so that the arcs are only between adjacent
levels. A regular banyan is an L-level banyan where all the
nodes except the bases have the same indegree F called
the fanout and all the nodes except the apexes have the
same outdegree S called the spread. A rectangular banyan
is a regular banyan where S = F. In this case, all the lev-
¢ls have the same number of nodes, which is SL=!. F igure
1 shows a rectangular banyan of spread 2 and another of
spread 4.
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Two banyan networks
Figure 1

_%N‘)rmally the base nodes represent system resources
8 memory modules and processors, while the other

nodes are switching elements. In this paper all the nodes
of a banyan will represent processing elements, and the
arcs will be treated as undirected edges representing bidi-
rectional links. The spread will be assumed to be a power
of two so that each level has a power of two number of
nodes and can be interconnected in a hypercube struc-
ture.

A hypercube of dimension k, or a k-cube, is a graph
of 2* nodes labelled in k-bit binary labels such that there
is an edge between every two nodes that differ by exactly
one bit. .

In what follows, we first give a restricted definition
of a banyan-hypercube (as stated in [15]) and then give
& more general definition in the next section. A banyan-
hypercube BH(h,k,s), where h < k+ 1 and s is & power
of two (s = 2 for some r), is a graph of h levels of nodes
where each level has s* nodes interconnected in a hyper-
cube structure and the inter-level edges form the first A
levels (from the base) of & (k +1)-level rectangular banyan
of spread s. The nodes in each level are labelled in binary
from 0 to s* — 1 and the levels are numbered from 0 to
h—1 from the base to the top. Every node is then uniquely
identified by a pair (L, X) of its level number L and its
cube label X. The label X can be viewed as Tk—3...T1T0
in the number system of base s where each z; is an s-ary
digit, or as a binary label of klogs bits tgr-;...ty such
that z; = t(,41)r ). tirpr tir. Clearly the total number of
nodes is N = hs*. Figure 2 shows two banyan-hypercube
networks.

BH(h, k,s) can be specified more formally in graph
theoretical terms as follows. Let €7 (X) = e} (zk=-1...2) 20)
= Tk-)...TL410T) .. T Ty, Where 0 < e < s—1and X =
Tk—1...Z1Zg in base system s. In other terms, ¢, when
applied to X, replaces the s-ary digit of X in position L by
the s-ary digit a. Let also e; be the i-th exchange which,
when applied to a binary number, complements the i-th
bit (from the right). That is, ei(X) = ei(ter—y..tp) =
tkr_l...t,‘;‘.;{,'t,'-l...to.

2.1. Definition. BH(k, &, s) is an undirected graph G =
(V, E) such that

V={L.X)|0<L<h-1,0<X<sk-1)
and £ = Ey U E. where

Ey = {{(L,X),(L + Lef(X))) |0 L < h-2,
0<SX<s*-1,0<a<s—1)
and Ec = {((L.X),(L,ei(X))) [0SL<h-1,0<X <
s*—1,0<i < klogs — 1).

Note that Ej is the set of the banyan edges and E, is
the set of cube edges in all the levels. Note also that
the connections between level L and level L + 1 include
two subsets, one being the set of “vertical” edges corre-
sponding to (L, X), (L +1,e3:(X)))’s, and the other the
set of the exchange connections e; for (L+1yr—-1¢
i < Lr corresponding to (L, X),(L + 1,e7(X))) where
Q= T(Lp1yr=i-Tit1TiTic ... Ty,

§3. The Generalized Banyan-Hypercube
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The dashed line show the hypercube connections
The solid lines show the Banyan connections

Banyan-Hypercubes
Figure 2

In this section we define the generalized BH networks

by allowing any number of levels and any successive banyan

connections between levels. We first define the two exten-
sions and then provide the proofs to justify these defini-
tions.

Level Extension of Banyan-hypercubes: This exten-
sion allows h to be greater than k + 1. It is carried out
simply by repeating after level k the banyan connections
from the base. That is, the connection between level & and
level k + 1 is the same as the conrection between level 0
and level 1, the connection between level k& + 1 and level
k + 2 is the same as the connection between level 1 and
level 2, and so on. In general, the connection between
level i and level 1+1 is the same as the connection between
level i%k (i.e., 1 modulo k) and level (i + 1)%k. Figure 3
shows a level-extended BH.

Formally, BH(h,k,s), where h > 1 and unbounded
from above, is the same undirected graph G = (V, E) as in
Definition 2.1 with one modification to €4 so that e (X) =
ei(Ik;l I .”L‘()) = Tkelo-T(L%k)+18T(L%k)~1---T1T0 that
is, €7 is defined to be € ok
Extension to Inner Level Banyan-hypercubes: This

extension allows any h successive levels of the level-extended

banyan-hypercubes to be banyan-hypercubes. The nota-
tion of BH's has to be modified somewhat to indicate the
bottom and top levels of the h successive levels. We de-
note by BH(j,j + h — 1,k, s) the subgraph consisting of
the levels .1+ 1,74+ 2,...5 + h — 1 (along with their edges)
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of the level-extended BH(h', k, s), where ' > j+h. Using
this notation, the. BH in Figure 3 is BH(0,4,3,2), and the
top three levels of that network form BH(2,4,3,2).

In graph theoretical terms, the banyan-hypercube BH({j,
j+h—1,k,s), where j > 0 and h > 1, is an undirected
graph G = (V, E) such that

V={(LX)|j<SL<j+h-1,0<X<st -1}
and E = Ey U E, where

Ey={((L,X),(L+L,ef(X)) | jSL<j+h-2
0<X<s¥~-1,0<ags~1}
and

E. = {{(L,X),(Lyei(X)) | j S L <j+h-1
0<X <skF~1,0<i<klogs—1).

Note that here too e is the same as e, .

Observe that BH(0, h—1, k, s) is identical with BH(h, .
s). We will continue using the notation BH(h, k,s) W*}‘“
the bottom level is level 0, and use the other notation
when the bottom level is not level 0. It will be shown in tbe
later sections that the extended, i.e., generalized, banya®
hypercubes have the same optimality of routing and th¢
same embedding capabilities as the original ba-l‘lyﬂ-“.’.hy ’
percube. Also, they can be shown to have more partitio?”
ing flexibility and efficiency. .

In the remainder of this section we will show the 1scr
morphism between BH(j,; + h — 1,k,s) and BH(0,h R
1,k,s). To this effect, let U be the unshuffle permu“‘“o_
of {0,1,...,s¥ — 1} defined on the k-digit s-ary repres®
tations of integers. That is,

U(zg—1...21%0) = ToTk—1Tk-2--Z1
ystdﬂ 3

he pro®
htfor

where z_;...zg is a k-digit number in the base s
The following two lemmas will prove useful in th
of the ismorphism theorems. Their proofs are str3!g
ward and hence omitted. J evel?
3.1 Lemma. Ue = e _ U forevery L2127
a,0<a<s~1. 'andx’
3.2 Lemma. If the binary representations of X & .
differ in only one bit, then the binary representdt?®
U(X) and U(X') also differ in only one bit.

f= - A A - I T
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3.3 Theorem. BH(j,j + h — 1,k,s) is isomorphic to
BH(j —1,j+h—~2k,s) forevery h > 1 andj > 1.
Proof. Let BH(j,j+h-1,k,8)=(V,E = E,UE,) and
BH(j —1,j+ h—1,k s) = (V',E' = E|UE!) where

V={(LX)|jSLLj+h-1,0< X <sk -1}

Ey={((L,X),(L+1,ef (X)) [jSL<Sj+h=2,
0<X<sk-1,0<ca<cs-1})

E. = {{(LX)(LeX)) |j S L<j+h—1,
0<X<sk-1,0<i<klogs—1})

Vi={(L,X)|j-1<L<j+h-2,0< X <sk-1})
Ey= {(((L,X),(L+1,e8(X) |j-1<L<j+h-3,
0sX<sk~1,0<a<s-1}

E. = {{(L,X),(Le(X))) |j-1<L<j+h-2
0<X<sk—1,0<i<klogs—1}.

Clearly, [V| = |V'| and |E| = |E'|. Let f be the
following mapping from V to V':

FUL, X)) = (L - 1,U(X)).

It can be seen that f is one-to-one and onto. It remains to
be shown that if {u,v) is an edge in E, then (f(u), f(v))
is an edge in E’.

Let (u,v) = ((L,X),(L + 1,e2(X))) be an edge in
Ey. Then (f(u), f(v)) = (L-1,U(X)),(L,U(e3(X)))) =
(L-1,U(X)),(L,e3_,(U(X)))) (making use of Lemma
31).

Thus, (f(u), f(v)) is an edge in Ej since j — 1 <
L-1<j+h=1. Similarly, let (u,v) = (L, X),(L, (X))
be an edge in Ec. (f(u), f(v)) = (L - 1,U(X)),(L ~
LU(ei(X)))). As the binary representations of X and
&{X) differ only in one bit, it follows from Lemma 3.2
that U(X) and U(ei(X)) differ in only one bit. Conse-
Quently, (L — 1,U(X)),(L — 1,U(e;(X)))) is an edge in
E!. Hence, f is an isomorphism from BH(j,j + h—1, k, s)
WBH(; — 1,5 + h - 2,k,3). §

3.4 Theorem. BH(j,5 + h — 1,k,s) is isomorphic to

BH(0,h - 1,k,s) forevery h>1andj > 1.

Proof. This theorem follows from a repeated use of the

Previous theorem. That is, After Theorem 3.3, we have
BH(j,j+ h~1,k,s) >~ BH(j —1,j + h —2,k,8) ~

SH(j~2,j4+h—3,k,s) = ...  BH(0,h~1,k, s) where =

1 the sign for isomorphism. Moreover, the isomorphism

om BH(j,; + h — 1,k,s) is f7 where

f)((L,Ik,l...zo)) = (L - j,I,_l:tj_g...Io;rk_l:ck_g_,.:tj).
1

) The above theorem proves that any two subgraphs of
: levels (of a full banyan-hypercube of k + 1 levels) are
*morphic to BH(h, k, s) and thus to each other. This iso-
°rphism justifies the inner-level extension of the banyan-
YPercube definition. As the isomorphism holds even af-
the leve] extension, the above theorem shows then

3 our leve] extension “preserves” the topological prop-
183 of the original banyan-hypercubes. In particular,
the embeddings with the minimum dilation costs of
S, rings, trees, pyramids and multiple pyramids on

BH(h,k,s) for h < k+ 1 [15] can be inherited by any
BH(j,j + h — 1,k,s) using the ismorphism of Theorem
3.4. The generalized BH is seen to have more partitioning
flexibility [16] since any h levels form a BH. A detailed dis-
cussion of the partitioning of the BH network is discussed
in [16].

Although most of the study carried out in this paper
applies to BH's for any values of s, in practice s is pre-
ferred to be 2 or 4 because the resulting banyan-hypercube
meets all the requirements of partitioning and embedding
without incurring a high degree cost. .

§4. Properties of Banyan-Hypercubes

In this section we shall evaluate the degree, diame-
ter and average distance of BH networks. The degree of
BH(i,i + h — 1,k, s) can be easily seen to be 25 + klogs,
the sum of the degree 2s of the banyan of spread s and
the degree klog s of the hypercube of s* nodes. The de-
gree is independent of the number of levels. The degree
of the hypercube of hs* nodes (when h is a power of two)
is log hs* which is equal to log h + klogs. The difference
between the degree of BH(j,j +h —1,k, 3) and the degree
of the hypercube is 2s — log h. Therefore, the degree of
the hypercube is asymtotically larger (e.g., h > 4*) than
that of the banyan-hypercube of the same size, assuming
fixed s. However, for practical values of s (2 or 4), the
degree of the BH is slightly larger. The corresponding ex-
tra hardware cost is nevertheless justified by the smaller
diameter and average distance of the banyan-hypercube,
as well as its added embedding capabilities and its flexible
extendability.

To facilitate the analysis of banyan-hypercubes and
the evaluation of the diameter and average distance, a
class of networks, called product networks, is first intro-
duced and state some results that we use in the following
sections. A full treatment of product networks is given in
[17].
4.1 Product Networks

Let Gy = (Vl,El) and G, = (%,Eg) be two undi-
rected graphs. The product network of G, and G, de-
noted GGy, is a graph G = (V, E) such that

V=V1V2={$Illfel/iy J'IEVZ}

and

E={(zz",zy') |z € W, (2',y') € E2}U {(z2',y2')
l z' € V2» (I,y) € El}'

That is, (zz',yy') is an edge in the product network
if and only if either z = y and (2',y') is an edge in Gy, or
z' = y' and (z,y) is an edge in G,.

Intuitively, Gy G is constructed by taking |V;] ‘copies’
of G, and interconnecting in Gq-structure the sibling
nodes in the copies of G, where two nodes zz' and yy'
are siblings if 2’ = y'.

Several existing networks are product networks. For
instance, a mesh is the product network of two lines of
nodes, a torus is the product network of two rings, and a
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hypercube is the product network of two subcubes. Also,
as was pointed out in section 2, if h < k+1. BH(h.k.s) can
be constructed from s copies of BH(h,k — 1,s) by inter-
connecting the sibling nodes in a hypercube of s nodes. It
follows that BH(h, k,s)= BH(h,k — 1,s)CUBE(s). where
CUBE(s) is a hypercube of s nodes. Hence the relevance
of product networks to banyan-hypercubes.

Wrhile a full treatment of product networks is outside
the scope of this paper, several of their salient features
that are relevent to the analysis of banyan-hypercubes will
be stated and the proofs are included in [17)].

4.1 Lemma. Let d¢(z,y) denote the distance between
the nodes r and y in a graph G. Then, dg,g,(z1',yy') =
dg,(z,y) + dg,(2',y').

Proof. In[17). §

4.2 Theorem. Let D(G) denote the diameter of the
graph G. Then, D(G,G,) = D(G1)+ D(G,).
Proof. In [17]}

4.3 Theorem. Let dg denote the average distance
of the graph G. and S(G) the sum of distances between
all the pairs of nodes. Then, S(G1Gz) = |Va|*S(Gy) +
Vif?S(G2). and dg, g, = dg, + dg,.

Proof. In [17]}

4.2 Diameter of BH’s

Due to the ismorphism theorem, the diameter and
average distance of BH(j,j + h — 1, k,s) are respectively
identical to those of BH(h. k.s). Hence, the discussion in
this and the next subsection is limited to BH(h, k. s).

To evaluate the diameter of BH(A. k, s), we will make
use of the product networks and the results in [15]. The
following theorem from [15] gives the diameter of BH(k +
1.k s).

4.4 Theorem. The diameter of BH(k + 1. k.s) is k for
s = 2, and 2k for s > 4,

The next theorem gives the diameter of BH(h. k.s)
in its full generality.

4.5 Theorem. Ifh < k+1, the diameter of BH(h.k,s) =
k for s = 2. and it is equal to klogs — (h — 1)log § for
824 Ifh > k+ 1. the diameter of BH(h.k.s) is h — 1
for s = 2. and it is max(h — 1,2k) for s > 4.

Proof. If h =k + 1. the theorem follows from Theorem
4.4

I/ < k+1.BH(h.k.s) can be easily seen to be the prod-
uct network BH(h.h — 1.s)CUBE(s*~"*1)  Therefore.
D(BH(h.k.s)) = D(BH(h.h—1,s)) + D(CUBE(s*~h+1)),
Since D(CUBE(s*~"+1)) = logs¥=*+1 = (b~ h + 1)log s,
and D(BH(h.h — 1.s))is (h = 1) for s = 2, and 2(k — 1)
for s > 4 (after Theorem 4.4). it follows that for &« = 2.
DI(BH(h k.s)) = h =14 (k= h + 1)log2 = k. and for
s 2 4. D(BH(h,k.s)) = 2(h = 1)+ (k= h + 1logs =
klogs — (h—1)log .

If I > k+1, it can-be seen that D(BH(A. k.s)) = max(h -
1.D(BH{k+1.k.s)) since the distance between two nodes
that are at most k + 1 levels apart is < D(BH(k + 1. k. S
while if the two nodes are more than & + 1 levels apart,
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their distance is the difference between their level numbers
because there is a “pure” banyan path between the two
nodes. Using now the previous theorem for the value of
D(BH(k + 1,k,s)), the theorem follows for the case h >
k+1. 3

As the diameter reflects only the worst case commu.

nication time, the average distance conveys better in prac-

tice the actual performance of the network.

4.3 Average Distance of BH's . :
The sum S of the distances between all the pairs of

nodes in BH(k + 1,k, s) was derived in [15] and shown to

be

k(k +1)(2k + 1) k(k+1)

log s ]
6 2

2

Ts
S=s*(%+L 1
where o, is the sum of all distances of CUBE(s). It is well-
known that the average distance of a hypercube is half

2
the logarithm of its number of nodes. Hence, o, = ’—-%’-‘-'—
This simplifies the value of S to

k(k +1)(2k + 1) +bk(k+ 1)

_ 2k
S = s**[log(2s) 5 5

).

Dividing S by (s**(k + 1), which is the square of the
number of nodes of BH(k + 1,k,s), we get the average
distance of BH(k + 1,k,s). This is summarized in the
following theorem

4.6 Theorem. The average distance of BH(k + 1,k,s)
k(2k+1)

is ST log(2s) + #«F]—T ‘
This theorem will be used to derive the average dis-
tance of BH(A, k, s) for all values of h, k, and s.
4.7 Theorem. For h < k + 1, the average distance of
BH(h, k.s) is B5z1{1 — 182} | plogs '
Proof. It was pointed out earlier that BH(h, k,s) 15
equal to the product network BH(h, h—1, s)CUBE(sk'H] )
Using Theorem 4.3 for the average distance of product
networks, and Theorem 4.6 for the average distance of
BH(h,h — 1,5), and the fact that the average distance C?f
CUBE(s*~"*1) is (k — h + 1)!%82  the theorem immedi-
ately follows. §

4.8 Theorem.
BH(h,k,s) is

For h > k + 1, the average distance of

h? -1 + k(k+1)(5k + 1)logs k%logs
3h 6h? 2h

Proof. Let S; be the sum of all distances in BH(%, kos)
Sn will be shown to satisfy the following recurrence rela-
tion: |

Sh = Shoy + [h(h ~ 1) + k2 2E2) 2 ()

The recurrence relation can then be solved using staﬂdaf'd
linear recurrence relations techniques and the average dis
tance will follow. .
To derive relation (1), let L be the set of nodes 1
level h — 1 (i.e., top level) of BH(k, k,s), T the set®




nodes of BH(h — 1,k,s), and D the set of nodes of the
whole network BH(h, k, s). Let also z and y represent two
arbitrary nodes in BH(h,k,s), and d(z,y) the distance
between z and y. As D x D = (T x T)U(L x D)U|(D x
L) - (L x L)}, it follows that

Sy = Z(:,y)erD d(z,y) = Z(:.y)GTde(Iv v+

2 erxp 4@V~ Tip perxr 4z,v) (2).

The first term of the right hand side of (2) is Si-;
because T =BH(h — 1, k, s), and the third term is the sum
of all distances in a hypercube of s* nodes, and hence is
equal to s“klg,}i.

To compute ¥, d(z,y), let D, be the set of nodes
of the top k + 1 levels of BH(h,k,s), and D, the set of
nodes in the remaining h — k — 1 levels.

)} >

(z9)€LxD (z,y)ELxD,

d(z,y) = d(z,y) +

>

(z,9}ELxD;

d(z,y)

Note that E(x.r)eLxD: d(z,y) = |L[? EOSJ'S""“J(h“l—
J) because the distance between any node in the top level
L and any node in level jin Dy is h — 1 — 7. It follows
that

2k
>, dy) = S [h(h= 1)~ k(k +1)]
(z,y)€LxD;

Let q; = 2(,,,)51.,(0, d(z,y).
%= e yeLxp, Az, V)
= Lieperxe d(z,y)+ Ziemerxp; dz.y)
= gttploney Lz merxp, dz,v)
¥here D| is D, — L. Recall that D, is isomorphic to
BH(k 4 1,k,5) and D} isomorphic to BH(k, ,s) which
fonsists of s copies of BH(k,k — 1,3). Call these copies
E\E,, . .E, In the computation of our terms here, we
‘an safely assume that D, is identical to BH(k + 1,k,s)
&d D to BH(k, k,s). Let L' be the top level of E;. As
: hahas the same relationship to each of the E;, it follows
t:
Licperxpy d2,9) = s s yrerns, day)
St L, (1 +d(zY)
TRt Z(z’,y)GL'xE, d(z',y)
, In the second equality, we made use of d(z,y) = 1 +
?1(12 V), where z' is the neighbor of z in L'. We also used
¢ fact that z' has s neighbors in L.

ude""mg that a;_; = 2(,,',)€L,x51 d(z',y), we con-

log s
53 &2
e Letting ¢, = + transforms (3) to ¢k = cpy + k(1 +
. ) This recurrence relation is linear and its solution

L E .
=0+ 1_05_-)5(1211_), making use of the initial value
% = 0. Therefore,

ap = ks¥*(1 + )+ s%ak-.

ap = s2*(1 4+

logs k(k+1)
EREE
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Now that the 3 sums of the right hand side of (2)
are known, substituting them will result in equation (1).
This equation is a simple linear recurrence relation, valid
for h—1 2k +1, and can thus be easily solved, yielding
Sh = Sias +[Iu(h;-1) _ k(b+13)(k+2) +(h—k= l)kgl_qg_.]sgk_

To derive the average distance d(BH(h,k,s)), di-
vide Si by (hs*)?, make use of the fact that d(BH(k +
1,k,3)) = rpiadtbor, and replace d(BH(k + 1,,5)) by its
value given in Theorem 4.6. This results in the desired
expression of the average distance of BH(h, k, s). g

4.4 Behavior of the Diameter and Average Dis-
tance

As the BH family is parametrized, it is of interest to
study the behavior of the diameter and average distance
with respect to the three parameters A, k and s. From the
practical standpoint, the BH's can be viewed as a scheme
of interconnecting a number (h) of hypercubes. There-
fore, it is important to know the range of values for the
parameters, particularly the number of levels A, for which
the BH's yield an optimal or nearly optimal communica-
tion performance. It is also udeful to determine the ad-
vantages and disadvantages of the banyan-interconnected
hypercubes vis-a-vis mere hypercubes. ‘

Figure 4 and Figure 5 plot the diameter and aver-
age distance of BH(h, k, s) and the hypercube of the same
number of nodes hs*. The plots are presented as if h were
a continous variable in order to better illustrate the be-
havior. For example, the diameter, log h + klog s, of the
hypercube of hs* nodes is ploted as a continuous function
in h even for values of h that do not correspond to a proper
hypercube size. Note that some of the values shown in the
plots were derived through mathematical analysis of the
formulas of the diameter and average distance given in the
previous two subsections. This analysis is omitted due to
space limitation.

It can be seen from the plots that the banyan- hyper-
cubes provide an improvement over the hypercubes. for a
wide range of values of h and k, particularly when s > 4.
It can also be seen that extending the number of levels be-
yond the previously imposed limit of k + 1 decreases the
performance of BH’s, but still offers an improvement over
the hypercubes for a fairly wide range of h when s > 4. In
particular, for s = 4, the diameter of BH(k, k,4) remains
equal to k for A < 2k+1, and remains smaller than that of
the hypercube for h < 2k + 1 + log(2k + 1). The diameter
of the BH when s = 8 initially decreases when we start
increasing h and stays constant before increasing again.
This is due to the banyan connections, i.e., by using the
banyan edges to go between levels the distance between
two nodes at the same level (in a 8% hypercube) decreases
(i-e., it is no longer log(8*)).

The average distance of BH(h, k, 4) is equal to k for
h £ k + 1, and then decreases slightly before increasing
steadily at a small rate, remaining smaller than the av-
erage distance of the hypercube for A < (1 + VB)(k + 1).
This is due to the fact that we are adding 4* nodes when
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we add a level but since the diameter does not increase the
average distance drops. A similar situation occurs when
s = 8 as shown in Figure 5 .A detailed analysis is omitted
due to the space but it can be seen, from the equations
for the average distance, that there is a minimum in the
curve. Finally, it should be noted that the performance
of the BH improves as s increases. However, as pointed
out earlier, the higher s, the larger the node degree and
hence the higher hardware cost. Therefore, s = 4 seems
to be a happy compromise, especially since the embedding
requirements of various topological structures will be met
on BH(h, k,4) as will be seen in section 6.

§5. Routing

Due to the highly recursive structure of the banyan-
hypercubes and the exchange inteconnections between the
levels, the routing turns out to be simple and doable in
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optimal time and space. The main idea is to view routing
a message from a source node to a destination node as 2
sequence of communication steps equivalent to a sequence
of changes made to the source address label to become the -
destination address label.
Point-to-Point Routing(One-to-One Communication)
We first outline the routing policy and the algorithm
is given later. Let (L,X) be the address label of a node
holding a message to be routed to the destination (L', D)
where X = z4_)..2y20 and D = ds_,...d;dy. Since the
interconnections at all the levels are parallel, the message
can be sent first to the level of the destination node us"
ing banyan edges and then to the destination itself using
hypercube edges in the same level, without incurring any
unnecessary communication steps. In label terms. thif
corresponds to increasing L (if L' > L) or decreasing it (
L' < L) by one every time the message is sent to a n.ew
level, and then X is transformed to D bit by bit using
hypercube routing. On the way from level L to )eve.l L
in BH(7,j + h ~ 1,k,s) the s-ary digits of X that differ
from the corresponding digits of D can be changed (usin
e} connections) to agree with those of D if their position®




hie between L%k and (L'%k) — 1 if L' > L or between
['%k and (L%k) — 1 if L' < L. This routing policy can
be shown to route along shortest paths. The time spent
st every node is constant and the information needed is
just the destination address, and hence this algorithm is
optimal.

Consequently, the following routing algorithm which
implements the above routing policy routes messages from
sources to destinations along shortest paths when exe-
cuted by every node. The time spent at every node is
constant and the information needed is just the destina-
tion address. Hence, this algorithm is optimal.

Routing Algorithm for the Banyan-Hypercube

Route from Current node X with address (L,zx—1 ... z17¢)
to Destination Node D with address (L', dx—; ...dydp)

Algorithm Route(X,D);
begin
Case:
L'>L: /xgoup=x/
Send to (L + 1,z5-1...2143dLT L~y ..T0)
L' < L: /* go down »/
Send to (L - 1,Ik-]...ILdL-].‘EL..z...Io)
L' = L: /» horizontally * /
Route in Hypercube
End Case
end

Broadcasting (One-to-all Communication)

The policy for broadcasting, from a source node with
address (L, X) to all nodes, combines the hypercube broad-
tasting algorithms and broadcasting using banyan edges.
We discuss the idea of the routing policy in this paper
td the complete algorithm is omitted. Let (L, X ) be at
level j in a BH(i,i + h — 1,k,s), i.e., L = j. Note that
tending a message to all nodes at the same level is the
tase of broadcasting in a s* node hypercube and this can

done in log s* steps. Using the s banyan edges it can
*nd the message to s nodes at level j + 1 and to s nodes
M level j — 1. The s nodes at level J+1(j—1) belong to
8 distinct hypercubes of dimension log s*~? and the mes-
13ge can be simulataneously broadcast in each subcube in
st=1 steps. By using the banyan edges and going up
or down) k' levels the message can be sent to s* nodes at
¢l j+ k' which in turn can be broadcast in a hypercube
dimension log s*~*. When z has sent the message k
eVels up (or down) to level j + k then all nodes at level
7+ k have recieved the message and they can forward the
Nessage to all nodes at the level above (or below) using
© Vertical edges (among the banyan edges). Thus broad-
ting from a node at level j tolevel j + h when h > k
es h steps. The worst case is clearly when we need to
bmd & message from level 0 to level h ~ 1 in a h level
G Yan hypercube. This takes steps, and in general the
€ Tequired is the maximum of h and the time to broad-
t In the hypercube at level j; i.e., max{h,log s¥}. This
onthm s optimal since it takes time in the order of the
"lest distance from the source to the farthest node.
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§6. Embedding on the Banyan-Hypercubes

An embedding is a one-to-one mapping of the guest
graph (corresponding to the algorithm) on the host graph
(corresponding to the network graph). The efficiency of
an embedding is defined in terms of the dilation cost. The
dilation cost of an embedding of a guest graph on a host
graph is the largest distance between nodes in the host
graph which correspond to neighboring nodes in the guest
graph. We have shown efficient embeddings'[14] of various
structures on the restricted banyan-hypercube (i.e., when
we restrict the number of levels to be at most k + 1 and
only the banyan connections from the base of banyan are
used). Rings and Meshes (whose sizes are powers of 2) can
be embedded with unit dilation cost. Full binary trees can
be embedded with dilation cost % using tree embeddings
on twisted cubes {5]. This dilation cost is smaller than the
dilation cost 2 of the tree embedding on the hypercube for
h < 4 and is equal to it for h = 8, which is a practical value
of h for s = 4. By showing that any BH(j,j+h—1,k,, $1)
can be embedded in a BH(j,j+h -1, ks, s7) with dilation
cost log(2[s;/sz]), the embeddings can be extended for
any value of s.

From Theorem 3.4, any h level BH(i,i+h—1,k, s) is
isomorphic to any other h level BH(j,j+h—1,k, s), these
embeddings can be extended to the generalized banyan-
hypercube networks. The following theorems, whose proofs
are omitted since they follow from Theorem 3.4 and a sim-
ple extension of the embeddings provided in [14], summa-
rize the embedding results.

We first present the following theorem which gives
the dilation cost of the embedding between two banyan-
hypercubes with the same number of levels h and same
number of nodes at each level but with different node de-
grees, i.e., s. Recall from the definition of BH networks
that s is always assumed to be a power of 2.

6.1 Theorem. A BH{(j,j +h—1,k,s,) can be em-
bedded on a BH(j,j+h—~1,k,, 82), where s|' = s:’ with
dilation cost log(2[(s,/s2)]).

Proof. The proof is fairly straightforward and follows
from the definition of BH networks and hypercubes, and
is omitted in this paper.}

From the result of the above theorem it follows that
any BH(j,5 + h — 1,k;,5,) can be embedded with unit
dilation cost (i.e., it is a subgraph) in a BH(j,; + h -
1,k7,82) when s; < 37 (and number of nodes in a level
are equal, i.e., s}' = 'sé". Also when s; = 4 and s = 2 it
is seen that the dilation cost is log(2 - 4/2) = 2.

6.2 Theorem. A BH(j,j + h — 1,k,s) embeds a ring
of all the nodes with dilation cost 1.

6.3 Theorem. Any m dimensional mesh h x n, x
<. X Nm, where eachn; = 27, 2 < i < m,j > 0, can be
embedded in BH(j,7 + h — 1, k,s) with unit dilation cost.
6.4 Theorem. For any power of two h > 4, BH(j,j +
h—1,k,s) embeds a full binary tree of hs* — 1 nodes with
dilation cost %’-

Pyramids are very useful data structures in image
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orocessing and scientific multigrid computations [2] [13].
Therefore, it is desirable to have an efficient embedding of
pyramids on the underlying network of a given architec-
ture. A pyramid with an n x n base, where n is a power
of two, has logn + 1 levels of nodes, where the base level
(called level 0) is a n x n mesh, and each level i is a 7 X3
mesh such that each node is the parent of four nodes in
the level below. The top level has only one node called
the apex. The embedding of pyramids in hypercubes have
been shown to have dilation cost 2 and cannot be done in
dilation 1 [2] [13]. We showed [14] that BH(0, k, k,4) net-
works have pyramids as subgraphs and can thus embed
them with dilation 1. Application of Theorems 6.1 and
3.4 lead to the following conclusion.

6.5 Theorem. A pyramid with a 2% x 2% base is a
subgraph of BH(j,j + k,k,s) where s > 4, that Is, it can
be embedded in it with dilation 1.

Note that in BH(7,j + h — 1,k,4), where h < k + 1,
several smaller pyramids can be embedded, one in each of
the 44=(*=1) BH(j, j+ h—1, h—1,4)’s which are subgraphs
of BH(h, k,4).

As a direct consequence of Theorem 6.5 and Theorem
6.1, we have the following corollary.

6.6 Corollary. A pyramid with a 2% x 2% base can be
embedded in a BH(j,j + k,2k,2) with dilation cost 2.

A multiple pyramid of degree d is a graph made of
d pyramids that have the same base but otherwise are
disjoint. Such topological structures are useful in image
processing where an image, stored at the base, has mul-
tiple objects of interests that can be processed simultane-
ously (by different pyramids), or.different image process-
ing tasks are to be done on the same image [9]. The above
embedding of pyramids can be extended to embed mutiple
pyramids of degree 4 on BH(k + 1, k, 4) with dilation 1. In
general. a multiple pyramid of degree s can be embedded
with dilation 1 in BH(j, j + k, k, s). However, no multiple
pyramid with degree d > s can be embedded with dila-
tion 1 because in such a multiple pyramid each node at
the base has d parents while in BH(j, j + &, k,s) each base
node has only s adjacent nodes in the level above.

§7. Conclusion

This paper extended a new family of networks, called
the banyan-hypercubes. These extended networks were
shown to incorporate many hypercube features in rout-
ing, partitioning, and embedding of rings, meshes and
trees. They were also shown to offer an Improvement over
hypercubes in diameter, average distance, embedding of
hierarchical structures, extendability cost, and flexibility
in partitioning. A detailed study on partitioning the BH
networks is discussed in [15].

A useful way of viewing banyan-hypercubes is as a
method of connecting various hypercubes with rich inter-
level interconnections of the banyan without limitation on
the number of levels, and with a small increase in degree.
The extension to allow an unlimited number of levels of-
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fers better extendability, and hence more affordability ang

flexibility in system growth.
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