'T‘ e, 17th Av\vxu,azp Imfmhbmdf Syumpdsium on COMPUTER ARCHITECTORE
(qae.

A New Approach to Fast Control of r? x r? 3-Stage
Benes Networks of r x r Crossbar Switches

Abdou Youssef

Department of Elect. Eng. & Comput. Sei.
The George Washington University
Washington, DC 20052

ABSTRACT

The routing control of Benes networks has proven to be costly.
This paper introduces a new approach to fast control of N x N
3-stage Benes networks of 7 X r crossbar switches as building
blocks, where N = r? and r > 2. The new approach consists of
setting the leftmost column of switches to an apropriately cho-
sen configuration so that the network becomes self-routed while
still able to realize a given family of permutations. This ap-
proach requires that, for any given family of permutations, a
configuration for the leftmost column be found. Such a family is
called compatible and the configuration of the leftmost column
is called the compatibility factor. In this paper, compabitibility
is characterized and a technique to determine compatibility and
the compatibility factar is developed. The technique is used to
show the compatibility and find the compatibilty factor of Q-
realizable permutations, the permutations needed to emulate &
hypercube, and the families of permutations required by FFT,
bitonic sorting, tree computations, multidimensional mesh and
torus computations, and multigrid computations. Az O(log? N)
time routing algorithm for the 3-stage Benes will also be devel-
oped. Finally, as only 3 compatibility factors are required by the
sbove families of permutations, it will be proposed to replace the
first column by 3 multiplexed connections yielding a seif-routing
network with strong communication capabilities.

§1. Introduction

Reconfigurable multistage interconnection networks
have been the focus of intensive research due to their cen-
tral role in the design and performance of large parallel
processing systems (5], [6], (9], (18], [24]. The effectiveness
of these networks depend on the efficiency of their rout-
ing control and the permutations they realise. Some of
these networks, called banyan multistage networks, have
efficient routing control but do not realize all permutations
[l], {10], (14}, [21], [23]. Benes networks, however, real-
ize all permutations but have inefficient routing control {5],
[16]. Controlling Benes networks involves either computing
the switch configurations of permutations in sdvance and
storing them, or computing thém at run time. The first
way is costly in space for iarge systems, while the second is
costly in time as setting the switches to realize a given per-
mutation takes O(N log N') sequential time {22] and O(N)
parallel tune[ll}, where N is the number of input terminals
of the netwogk., ~

Two different approaches have been introduced to by-
pase this control complexity. The first, due to Nassimi and

CH2887-8/80/0000/0050$01.00 © 1980 IEEE

Bruce Arden

College of Engineering and Applied Science
University of Rochester
Rochester, NY 14627

Sahni [15], consists of using destination addresses in a spec-
ified manner, and allows for the realization of a subset of
permutations in optimal time. The second, due to Lenfant
[13], identifies families of frequently used permutations, and
develope a specialized control algorithm for each family to
realize the permutations of the family efficiently. The first
approach produces optimal control but allows for the real-
ization of only a small fraction of permutations. The second .
approach is limited to a few families.

This paper introduces a new approach to controlling
3-stage Benes networks of r? input terminals, r? output
terminals and r x r crossbar switches, for arbitrary r > 2
(Fig. 1). These networks can have up to 1024 input/output
tamma.lsnthecurmttechnologcanpronde&xaz
crossbar switches. IBM’s GF11 [4] is an example of a 3-
stage benes-connected parallel system of 24 x 24 crossbar
switches and 576 processors.

The new approach of routing control consists of setting
the first stage of the network to a fixed configuration so that
the remaining network can be self-royted and can realize a
given family of permutations. This approach requires that,
for a given family of permutations, the family be examined
to determine if there exists a configuration to which the first
column of the network can be set so that the remaining
network realizes the family (such a family is said to be
compatible). This approach combines the advantages of the
aforementioned two approaches in having optimal control
for numerous large families of permutations.

In this paper compatibility is characterized and a tech-
nique to determine compatibility is developed. The tech-
nique is used to show the compatibility of the families of
permutations required by many interesting classes of prob-
lems such as FFT, bitonic sorting, tree computations, mul-
tidemensional mesh and torus computations, and multigrid

- computations. Additional useful families of permutations,

such as the permutations realizable by the omaga network,
are aiso shown to be compatible.

The rest of the paper is arganized as follows. The
next section gives some definitions and fundamental con-
cepts. Compatibility is characterized in Section 3. Section
4 shows the compatibility of several families of permuta-
tions. Sectism-#%dentifies the families of permutations re-
quired by sevesl interesting classes of problems and shows
their compatibiity. Finally, Section € gives an implementa-
t:onoithewvuduhememddnmwmeconclunom

ing the possibility of replacing the leftmost column of
the 3-5188¢ Benes network with some fixed interconncetions
which leads to self-routed networks of powerful communi-
cation capibilities.

o < — - 0
- ; £ 5
| ' -

2 - ;\\ /:‘1 -\ - 2
3 \ /1 3
4 4
: \/ Vg
1] ’r_ 6
7 = ;

-
s~ N
9 9
10 ~ [10
1 - LN
12 ‘ A b 12
13 — L 1
4 L 14
15 b 15
3-stage Benes B(4,2)
Figure 1

Definitions and Fundamental Concepts

A Benes network [5], denoted here B(r, k), of r* input
terminals, r¥ output terminals, and r x r crossbar permu-
tation switches as building blocks (where r > 2), is defined
recursively as shown in Fig. 2. For k = 1, the network is
simply the r x r crossbar switch. For k 2 2, the connectivity
between the leftmost column and the middle B(r, k—1) net-
works is & permutation that maps (i.e., links) the ¢-th out-
put port of the p-th switch to the p-th input terminal of the
g-th B(r,k—1)forg =0,1,..,r=1andp=0,1,...,r*=1 -1
The inverse of this permutation connects the output termi-
nals of the middle B(r, k — 1) networks to the input ports of
the rightmost column. Note that B(r, k) has 2k~ 1 columns
of r¥~1 crossbar switches each. An interesting special case
is when k = 2. The network B(r,2) has then 3 columns as
illustrated in Fig. 1.

The B(r,2) networks for arbitrary r are the focus of
this paper and referred to as 3-stage Benes networks. Let
N = r3 throughout this paper. The columns of B(r,2)
are numbered 0, 1, 2 from left to right, and will often be
referred to as left, middle and right column, respectively.
Each column has r switches numbered 0,1,...,r — 1 from
top to bottom. The ports of each column are numbered
0,1,...,N — 1, from top to bottom. The g-th port of the
p-th switch in any column is then labeled pr + g. The
connectivity between the left column and middle column is
a permutation f where f(pr+¢) = gr+p,forp=0,1,...,r—
land ¢ = 0,1,...,r = 1. The connectivity between the
middle column and the right column is f=! which happens
to be equal to f.

Let Ry = {0,1,..,N -1}, R, = {0,1,...,r — 1}, and
SN be the set of permutations of Ry. Every number z €

§2.

51

——

\ i, rxr =
N\ / switch

- .
B (ra) L 5
5 >< L0
X

}/ ,) S
0 Y ! N xr =
_/‘,(//— switch =~
. ; Lo
"/ .
B trk-N "t S
- | Mo -
2 ©oswiweh
i i nr.f
rB (rk-I)s
The recursive structure of the Benes network
Figure 2

Ry is uniquely expreseed as pr + ¢ for some p and g, where
0<p<r-1and0<q<r—1 Let H be the subset of
permutations that are realizable by any column of switches
of B(r,2). Observe that H is a subgroup of the symmetric
group Sy, and h € H if h(pr + q) = pr + ¢' for some ¢’
function of p and ¢. Let then ¢’ = ¢(p,q) = h(pr + ¢) mod
r. Denote by #(p,.) the mapping from R, to R, such that
t(p,.)(q9) = t(p,q). Clearly; i(p,.) is a permutation of R,.
If h € H, a column of B(r,2) is said to be set to h if
the switches are set 30 that input port pr + ¢ is connected
to output port h(pr + ¢). Equivalently, for0 <p<r-1,
the p-th switch of the column is set in such a way that its
g-th input port is connected to its ¢(p, ¢)-th output port.
A permutation ¢ in Sy is reslisable by B(r,2) if the
switches of B(r,2) can be set such that the input terminal i

- is connected to the output terminal ¢(i), fori =0,1, ..., N~

1. A permutation is said to be h-reslisable for some h in
H if it is realizable by B(r,2) with the left column set
to h. A family of m permutations in Sy is said to be
compatible if there is some permutation h € H such that
all the permutations in the family are h-realizable. The
permutation h is then called a compstibility factor of the
family.

Every path from an input terminal s to an output ter-
minal d in B(r,2), denoted s — d, goes through six ports
(21,23,73, 24, Ts, Ts), Where z; = 3, 77 is an output port
of the left column, z3 is an input port of the middle col-
umn, and s0 on. Note that zy = f(z2) and 25 = f(z4), and
therefore, the path is fully decided by z2 and z;. Two paths
(311:2’33v34138130) and (Vl;vz»llaalu,l!s,!lc) are said to
conflict if z; = y; for some i.

If the left column is set to some configuration A
in H, where h(pr + ¢) = pr + t(p,q), and if the path
(21,232, T3, 24, Ts, T6) between an input terminal s = z, =
pr + ¢ and an output terminal d = z¢ = Ir + n is real-
izable with the left column set to h, then z3 = A(z,) =
pr+t(p,q), 23 = f(z2) = tp,q)r +p, ¢ = P Q)r +7
for some p € R,, and 15 = f(z4) = p'r + t(p,q). As 25

and z¢ are linked to the same switch in the right column,
it follows that p’' = I. Thus we have:

1 =pr+gq, z;=pr +t(p,q),
z3 = t(p,Q)r +p, za =t(p,Q)r +1,
zs =Ir+i(p,g),andzg =d=Ir +n.

Therefore, if the left column is set to some configuration
h in H, there exists a unique path between every input
terminal and every output terminal. That path can be de-
termined using the output terminal address [12] as follows:
Each switch in the middle column, when receiving a re-
quest to connect to some output terminal Ir + n, links the
incoming request io its /-th output port, and each switch
in the right column links the incoming request to its n-th
output port. Therefore, B(r,2) becomes self-routed when
the left column is set to a configuration h in H. Conse-
quently, if a family of permutations is compatible, where
one compatibility factor is some & in H, the left column of
the 3-stage Benes network can be set to h and the resulting
network can realize all the permutations of the family in a
self-routed fashion. This is the primary motivation behind
our approach.
Themainiocuaofthiapapaiutodetumineifagiveu
family of permutations is compatible, and if so, to find one
compatibility factor. Compatibility is characterized and
various families of permutations that arise from many im-
portant classes of problems are identified and shown com-
patible, and their compatibility factors are found. These
compatibility factors (permutations) can then be stored.

When & 3-stage Benes-based computer system executes an
algorithm whose communication requirements can be ful-
filled by a compatible family of permutations, the left col-
umn is first set to the family's compatibility factor (if al-
ready found and stored) for the entire duration of the algo-
rithm, allowing then for fast, self-routed realization of the
permutations, and leading to speedy execution of the algo-
rithm. Note that the amount of memory required to store
the compatibilty factors is very small in comparison with
the amount of memory needed to store the setting of the
switches for all the N! permutations.

§3. Characterization of Compatibility

In this section, necessary and sufficient conditions for
a permutation to be h-realizabale will be given and then a
compatibility characterization theorem is concluded which
gives necessary and sufficient conditions for a given family
of permutations to be compatible. This characterization
will be used to show the compatibilty of several interesting
families of permutations.
3.1 Lemma. If the left column is set to some
tion h € H, where h(pr + q) = pr + t(p,q), and if s and s'
are two distinct input terminals and d and d' two distinct
output terminale, wheres = pr+¢, &' = p'r+¢', d = Ir+n,
and & = I'r 4+ n', then the paths s — d and &' —
d conflict if and only if t(p,q) = t(¢',¢') and I = I,
Proof. Let the path (s — d) = (z,, 2y, 23, 2, 25, T¢) and
(&' = d') = (11,13, ¥3, V0, Vs, ve)- Since z, # y;, it follows

52

that A(z1) # h(y1) and f(h(z1)) # f(h(y1)), and hence
T2 # y2 and 2y # y;. We have also 24 # ys. Therefore,
the two paths conflict if and only if z, = y, or z5 = ys. As
z5 = f(z4) and ys = f(y.), we have z, = y, if and only if
Ts = ys. So the two paths conflict if and only if r = y,.
It was shown in the preceding section that z4 = t(p,q)r +1,
and y¢ = t(p',¢')r + I'. Hence, z4 = y, if and only if
tpq) =tp',q)and I =1y

3.2 Theorem. Let h be in H where h(pr + ¢q) =
pr + t(p,q). Let also ¢ be a permutation in Sy, and
a(p,q) = [ﬂgﬂj ¢ is h-realizable if and only if for every
two distinct input terminals s = pr + ¢ and s’ = p'r + ¢/,
o(p,q) = a(p',¢') implies that t(p,q) # t(p',¢').

Proof. Lets=pr+gqands =p'r+¢ be two arbitrary
distinct input terminals, and let ¢(s) = d = Ir + n and .
#(s") =d =Vr+n', where !l = a(p,q) and I' = a{p’,q').
Clearly, d # d'. If ¢ is h-realizable, then the paths s — d
and s’ — d' do not conflict in B(r,2) with the left column
set to h. After the preceding lemma, we must have either
t(p.q) # t(p',¢') or 1 £ I'. Therefore, if a(p,q) = a(p’, q'),
then t(p, q) # t(p', ¢).

Conversely, if for every two distinet input terminals s =
pr+gqand o' = p'r+¢', a(p,q) = a(p/,q') implies that
t(p.q) # t(p',¢'), then by the preceding lemma, for every
two distinct input terminals s and o, the paths s — ¢(s)
and s' — ¢(s') do not conflict in B(r,2) with the left col-
umn set to h. Consequently, ¢ is h-realizable. §

3.3 The Compatibility Characterization Theorem.
Let {¢1,¢2,....,6m} be a family of permutations in Sw,
and ai(p,q) = |#H0 | for i = 1,2,..,m. The family
{61, 92, ..., #m} is campatible if and anly if there is a map-
ping t: R, x R, — R, such that:

(i) t(p,.) is & permutation of R, for every p in R,.

(ii) If for some p, p', q, ¢ € R, there exists i such that
a"(PyQ) = ai(pliql) and p 3# p', then t(qu) # t(p’,q’)
Proof. Assume first that ¢),¢3,..., 6m are compatible,
and that h is a compatibility factor. Let ¢ be such that
h(pr + q) = pr + t(p,q). Clearly, #(p,.) is a permutation
of R, for every p. To show (ii), assume that for some
P, Py ¢, ¢' in R, there exists i such that ai(p,q) = a(p', ¢')
and p# p'. Let s = pr +qand o = p'r +¢'. Clearly
s # &' because p # p'. Since ¢; is h-realizable, s # &' and
ai(p,q) = a;(p',¢'), it follows that t(PaQ) # t(P’,Q’), after
Theorem 3.2.

Conversely, assume that there is a mapping t : R, x R, —
R, that satisfles (i) and (ii). Let h be the mapping from
Ry to Ry such that h(pr+¢) = pr+t(p, q). Since #(p,.)is a
permutation of R, for every p, h must a permutation in H.
For every i, #; will be shown h-realizable using Theorem
32. Let s = pr + g and &' = p'r 4 ¢ such that s # &'
and ai(p,q) = ai(p',¢’'). Since s ¥ o', we have p % p’ or
g#¢. Hp#p,it follows from (ii) that t(p,q) # ¢(p/,¢).
If p=p', then ¢ # ¢’ and therefore ¢(p, q) # t(p, ¢') because
t(p,.) is a permutation. So in both cases t(p, q) # t(p',¢).
After Theorem 3.2, ¢; is h-realizable. §

It can be seen from the proof of the previous theorem

that when there is a mapping ¢ that satisfies the conditions
(i) and (ii) of the theorem, one compatibility factor of the
family is a permutation h € H where h(pr+q) = pr+t(p, q).

It is worthwhile to note that Theorem 3.3 can be
mapped into a graph-theoretic problem, namely, the node
coloring problem. Let ¢,,43,...,¢m be m permutations in
Sn. Let G = (V,E) be the following undirected graph: V=
R x R and E = {((p,q),(p',¢'))lp = p' or (Ji)(ai(p,q) =
ai(p',9')}. The theorem can now be stated as follows:
#1,92,-.., #m are compatible if and only if G can be r-
colored such that no two adjacent nodes have the same
color. To prove this, let t(p,g) be the color of node 9.
It is clear that ¢ satisfies condition (i) and (it) of Theorem
3.3 if and only if t r-colors G in such a way that no two
adjacent nodes have the same color.

The general coloring problem is N P-complete, but it
remains open whether these graphs have any peculiarities
that open the door to a fast (i.e., polynomial) algorithm to
r-color them. Such an algorithm would automate deciding
compatibility and finding a compatibility factor.

Using this graph formulation, it can be shown that
not every family of permutations is compatible. Take for
example r = 2, (and hence N = 4 and R, = {0,1}),
$1 = (01 2)(3) and ¢, = (0)(1 2 3). It can be shown
that a;(0,0) = a(1,0) = 0, &y(0,1) = ay(1,1) = 1,
az(o, 0) = 01(1, 1') = 0, and 03(0, 1) = az(l,O) = 1. The
corresponding graph G is depicted in Fig. 3. Since G has
8 3-clique, it cannot be 2-colored and, therefore, ¢, and ¢,
are not compatible.

(0,0) 0,1 (1,0} (L

X—~

Figure 3

§4. Compatible Families of Permutations

Various families of permutations will be shown com-
patible in this section. In particular, two large families of
permutations, namely, the family of psewdo bit translations
and the L-family, will be defined and shown to be compat-
ible. The permutations realizable by the omega network
1y will also be shown compatible. Ini the next section, the
families of permutations required by many application ar-
eas will be shown to be subfamilies of these three families
and hence compatible. In the remainder of the paper, r
is assumed to be a power of two (r = 2*), and therefore,
N = rd = 23,

Every number r = pr + ¢ in Ry can be expressed
in binary as z = T2k-~1¥24-2-.-Tp and conveniently also as
T = Pk-1Pi~1---Podk-14k-2.-Go, Where p = p4_1ps_s...po
and ¢ = qa_;gy—3...go. The bit positions 0,1,....k-1of
(i.e., the k least significant bits) are said to form the q-ving
of z, and the bit positions k, k + 1,...,2k — 1 (i, the k
most significant bits) the p-wingof z. Fori =0,1,....,k~1,
bits p; and ¢; are called siblings. Also, p; is the p-sibling of

53

“¢i and g; the g-sibling of p;.

If » is a permutation of {0,1,...,.2k — 1}, then f,
denotes a permutation in SN, called a bit permulation,
such that fre(Zae_1220m3...24) = Tu(2k~1)Tw(2k~2)---Tu(0)-
A bit permutation f, manipulates the bits of its parame-
ter z, moving the i-th bit of z to bit position x~1(i), for
i=0,1,..,2k— 1. A pseudo bit translation is s bit permu-
tation f, that satisfies the following condition: f, moves a

-bit from the g-wing to the p-wing if and only if f, moves

the p-sibling of that bit to the g-wing.

4.1 Theorem. All pseudo bit transiations are compatible
and their compatibility factor is h such that hipr + q) =
pr+(p®q), where p® q is the bitwise XOR of p and ¢q.
Proof. Let t(p,q) =po® ¢. It is enough to show that ¢
satisfies the conditions (i) and (it) of Theorem 3.3.

() t(p,.) is & permutation since t(p,.)(q) = t(p,.)(¢') =
Upg)=tp¢)=>pde=pB¢ > g=g¢.

(1%) Assume that for some p, p’, 4, ¢’ € R, there is a pseudo
bit translation ¢ such that a4(p,9) = ay(p',¢') and p # p'.
We need to show that tp,q) #Hp',q).
IctEbethenetofbitpositionnoftheq-wingthatlre
moved to the p-wing by 4. Since ¢ is a pseudo bit trans-
lation, E must also be the set of p-wing bit positions that
move to the ¢g-wing.

au(p.q) = au(p',¢') = [(Yi ¢ E)p; = p}) and (Vi €
E)(¢i = q})] = ¢ @ ¢’ has 0’s in all bit positions i € E.

P# P/ = (3io)(pi, # P},) = p@p has ‘1’ in bit position 1.
Clearly 1, EEbecauaeViiEwehavep.—zp{-. Therefore
(r®r')®(g®q¢') has ‘1" in bit position i9. Consequently,

tp.q)®Up,¢') = (pD9)B (P D7) = (r®r)®(g®¢") # 0.
Hence, t(p, q) # t(p', ¢'). §

Fig. 4-a shows the setting of the left column for pseudo
bit translations.

Next we define the L-family and show it to be com-
patible. For every permutation ¢ in Sy, let ay(p,q) =
(#2240 | = the lefimost k bits of #(pr + q). The L-femily
of permutations in Sy is the set
L = {¢ € Sn| if ag(p,q) = ay(p/,¢') and p # p', then P
and p’ agree in all but one bit position, and ¢ and ¢’ agree
in at least one bit position}

To show that the L-family is compatible, the set of switches
of the left column (i.e., the set R, of the switch labels)
is partitioned into two subsets E; and F}, which will be
defined recursively such that the binary representations
ofunytwonumbcmineachsubaetdiminatleut
two bit positions. Let F; = {0}, Fy = {1} and. re
cursively E; = 0E;_, U 1Fi; and F} = OF,_, u 1E;_,,
where aE;_; = {aziz...z0) 2i_g..79 € E;_ 1} for a=0 o
1, and aF;_; is defined similarly. For example, 0E, =
{00}, oFy = {01}, 1E, = {10}, 1F, = {11}, and con-
sequently, E; = {00,11} and F; = {01, 10}.

It can be easily shown by induction on { = 1L,2,..,k
that E; U F; = {0,1,...,2° — 1} (in decimal), E;N F, = @
and for ¢ > 1, anytwonumba-ainuchoftheaetsE.-
and F; disagree in at least two bit positions. In particular,
EgﬁFg:Ode‘,UFg = {0,1,...,1‘-—-1} =R,

{
¢

4.2 Theorem. The L-familiy is compatible and its
compatibility factor is h such that hipr +q) = pr + ¢ if
pE€ E; and h(pr + q) = pr + J if p € F,, where J is the
bitwise complement of g.

Proof. Lett(p,q)=qgifp€ E; and t(p,q)=Fifpe€ F.
It will be shown that ¢ satisfies the two conditions (i) and
(it) of Theorem 3.3.

(1) ¢(p,) is & permutation because t(p,q) = t(p,¢') = [¢ =
dorT=7]ag=g¢.

(#1) Assume that for some p, p', g, ¢’ € R, there is a per-
mutation ¢ € L such that ay(p,¢) = ay(p',¢') and p o p'.
By definition of L, it follows that p and p’ agree in all but
one bit position, and ¢ and ¢’ agree in at least one bit po-
sition. Consequently, p and p’ cannot both be in the same
Ey or Fi. Assume without loss of generality that p € E;
and p’ € Fy. Tbent(p,q):ql.ndt(p’,q’)z?. As ¢ and
¢’ agree in at least one bit position, ¢ and ¢ must disagree
in at least one bit position, and therefore, t(p, ¢) 3 (¢, ¢')-
i

Fig. 4-b shows the setting of the left column for the
L-family.

In addition to the above two families, two more families
will be shown compatible, namely, the set H and the set of
permutations realizable by the omega network §2y [10].
4.3 Theorem. Forevery h and g € H, g is h-realisable.
In particular, H is compatible and its compatibilty factor
can be any arbitrary permutation h € H.

Proof. Let h and g be two permutations in H, and let J

i 4 m—

—— ————

- o N =-
an——

W m
LB MRS
4144
LR A

LA 2L
4
L]
4

1l

for pseudo bit . for the omaga
tr:::l:tion; for the L-family network

(a) (b) (c)

Theeonﬁg\mmdtheleﬁedumn
- for various families

Fiznnl{

be the identity permutation which is alsoin H. As H is a
subgroup of Sy, h~'g € H. Set the left column of B(r,2)
to h, the middle column to J and the right column to A™1g.
This setting realizes the permutation hfIfh~'g which is
equal to g (recall that f = f~! and hence fIf = ff = I).
It follows that B(r,2) can realise g with its left column set

to h. g

4.4 Theorem. The permutations realizable by the omega
network {1y of N input terminals, N output terminals, and
2 % 2 crossbar switches as building hlocks, are compatible
and their compatibility factor is the identity permutation.
Proof. Let t(p,q) = ¢. It will be shown that t satisfies
conditions (¢) and (i¢) of Theorem 3.3.
(i) Since t(p,.)(q) = t(p,q) = ¢, (p,.) is the identity per-
mutation of R,.
(#5) Assume that for some p, p/, ¢, and ¢’ in H there is
a permutation ¢ realizable by Iy such that ay(p,q) =
ae(p',¢') and p # p'. It will be proved next that (p,q) ¥
Hp',¢'). It was shown in [10] that s permutation ¢ is
realizable by Qx if and only if (Vs = s24_1824-3...%0 €
Ry)(Ve' = 53,_,834_3--5 € RNVl < logN =2k - 1)
(if s # &' and dpy_ydaaos..diyy = dy,_\dy,_,...d},,, then
3181_1...30 # 8}3]_,...85), where ¥(s) = dys_1dq4_3...do and
¥(s') = &y, _ &, _s...dy. This will be used to show that
t(pq) # U, q')-
Let s = pr+4q, o =p’r+q’andlmk—1 Thus
P = s2ho1.thy g = acin. 40, P = 83, ;.5 and ¢' =
Syroth. Let also §(s) = daa-1dar-gdo and $(s') =
@a-1Bpg--dy. Then ay(p,q) = daua_1das_z...dr and
ag(p'q) = dyy_ By _y- b}
a‘(P’ q) = a‘(ﬁv 9,) =» dil-l‘hl—! dy = %5_;45-) 4
p¥ p x> s 3 5. As ¢ is realizable by {1y, it follows that
84-184-2---30 ¥ 8}_,8}_,...5p Which implies that ¢ # ¢,
that is ¢(p, ¢) # ¢(P',¢').

Therefore, by Theorem 3.3, all the permutations realis-
able by 1 are h-realizable, where h(pr+¢) = pre-t(p,q) =
Pr + ¢, that is, the identity permutation. §

Fig. 4-c shows the setting of the left column for the

~n-realizable permutations.

§5. Applications

In this section the families of permutations of several
problems are identified and shown to be subfamilies of the
families in the last section, and hence compatible.

5.1 The Fast Fourier Transform
'I‘oeomputeFF'Tmthemdambedm[lﬂ],tvo
permutations are needed: The shuffie (S) and the ex-
change (E), where S(z3a_1%28-3..-%0) = T34-3...-ZeTa4—1
and E(z34—12283...80) = Tax—1%24—3..-21%5. However, at
the end of the computation, the components of the re-.
sulting vector are in bit reversed order. To restore the
order, the bit reversal permutation (p) is needed, where
A(ZTIn-1328-2...%0) ™ 20Z)1...830-2%34-1. Thus, the overall
family of permutations needed by FFT is (S, E, p}.
5.1 Theorem. The permutations needed by FFT are
compatible.
Proof. As S(ps—1ps-2.-Pegi-1.-4) = Pr-z.-PoGhei--
QoPi-1, it follows that Smovuon!youebxtimmtheq-mg
to the p-wing, namely, bit ¢x_;, and only one bit from the
p-wing to the g-wing, namely, ps_;. As these two bits are
siblings, S is a peeudo bit translation. The bit reversal p
moves every bit of the ¢-wing to the p-wing and every bit of

the p-wing to the ¢-wing. Therefore, p is trivially a pseudo
bit translation. After Theorem 4.1, S and p are h-realizable
where h(pr + q) = pr + p® q. Since E € H, E must be
h-realizable for the same h, after Theorem 4.3.

5.2 Bitonic Sorting

Although parallel sorting algorithms of O(log N) time
have been found [2], they are not practical due to the
extremely large multiplicative constant factor of log N.
Bitonic Sorting, though of time complexity O(log? N), is
s practical parallel algorithm [19].

As shown in [19], N numbers can be sorted using a sort-
ing network of ‘282 Nogg N+1 stages of comparison switches
and based on Batcher’s bitonic sorter [3]. Simulating this
sorting network on 3-stage Benes networks involves realiz-
ing the interconnections (i.e., permutations) between the
columns of the sorting network, as well as the columns of
switches themselves.

Bitonic sorting and the sorting network based on the
bitonic sorter are briefly reviewed next, and the permuta-
tions required to simulate the sorting network on B(r,2)
are identified and shown to be compatible.

A sequence of real numbers aq,a;,...ay_ is bitonic if
(1) there exists i such that {ao,ay,...,a;} is increasing, and
{ai+1,.-.,an—1} is decreasing; or if
(2) the sequence can be shifted cyclically so that (1) is
satisfied.

An N x N bitonic sorter is a recursive network where,
for N =2, it is a 2 x 2 comparison switch that takes two
input numbers and puts the smaller in the upper output
port and the larger in the lower output port (as in Fig. 5-
a), or vice versa (as in Fig. 5-b), according to a control bit.
For larger N, it is as depicted in Fig. 6. It is shown in [3]
and [19] that if the input is a bitonic sequence, then this
network sorts the input in increasing order. If the switches
of the network of Fig. 6 are replaced by switches of the
type in Fig. 5-b, the network sorts the bitonic input in
decreasing order.

X - L ad X - H
H L
y e Y — -
(a) (b)
Bitonic switch, also a
2 x 2 bitonic sorter
Figure 5

A full sorting network that sorts any sequence of N =
il numbers can be built in m steps, where the i-th step is
a column of ff 2' x 2' bitonic sorters as shown in Fig. 7.
The network works as follows. The first step sorts pairs of
numbenintodtermhelyincreuinganddeamsingpdnno
that each sequence of 4 numbers is bitonic. The second step
sorts these bitonic sequences into alternately increasing and
decreuingsequencesaotha.teachsequeneed&nun_;beniﬂ
bitonic. And 80 on to the last step which receives a bitonic

55

sequence of length N. Since the last step is an N x N bitonic
sorter, it can sort the incoming sequence. Fig. 8 shows an
8 x 8 sorting network where the shaded switches place the
larger item on the top output, and the blank switches place
the smaller on top.

The operations of the sorting network can be viewed
as a sequence of data permutations. First the items are
permuted by the first column of comparison switches, sec-
ond they are permuted by the interconnection between the
first column and the second column, and then permuted
by the second column of switches, and so on. Therefore,
the simulation of the sorting network on B(r,2) is done by

executing the above sequence of permutations on B(r,2)

in order, assuming that the input and output terminals of
B(r,2) are N processing elements Peo, 1, ..., PEN 1.,
Note that when simulating a column of comparison
switches (column j, say), more than permuting is re-
quired. Assume the numbers coming to this column are
bo, by, ...by_; from top to bottom. Then, in our simulation,
these numbers are in Peo, pey, ...peN_}, respectively, when
column j is due to be simulated. At comparison switch
i of column j, the incoming numbers are b and by,
Hence, in simulation, these numbers are in pesi and pejiy,,
respectively. To be able to do comparison in the simula-
tion, each of pey; and pesiyy must have both by; and byiy g,
for i = 0,1,...,N — 1. This can be accomplished by first
executing the exchange permutation on the numbers, and
then if switch i of the sorting network is in state (a) (ns
in Fig. 5-a), pes; keeps min(by;,byi41), while peg;y; keeps

., L
H -
Ni2 x Ni2
L Bitonic Sorter
H
L
. N2 x Ni2
H Bitonic Sorter
L
H
.V.l -

The structure of the bitonic sorter
Figure 6

max(by;, b3i41). If the comparison switch is in state (b), the
opposite is done. Note that the states of the comparison
switches of the sorting network can be known « priori.

N22x1 Nidaxs N8x8 one Nx N
bitoaic bitoaic bitonic bitonic
soruers orters sorters . sortar
I = = R =
1 — -
oxs -
bitonic ~—
2 sorter | | L i
PR S e R
8x8
bitonic
H.H ™
L] — -
44
bitonie
7 sortar | | -
A I =l == S i ROV
e e . . . bitonic
- . . - . . * : * * sorter
N8 —
N.7 —
4X4
bitonic
RS =, F
N-8 S b
8x8
N4 ! sorter
N3 pammemrt
axs —
bitonie
N-2 wrar | o — e
N-1 S— -] -

The general structure of the N x N
sorting network based on bitonic sorters

Figure 7

An 8 x 8 sorting network

Figure 8

The interconnection permutations between the succes-
livecolummofthe-oﬂingnetmkueidenﬁﬁodinthe
following lemma. '

5.2 Lemma. The inter-column interconnections of the
sorting network form the set

(540 <i €m =2} U {UiSi1]0 S i <m -2}
where

Si(Zame1-T0) = Tmel - Em—iTmei=1--F0Tm—i-i

and
Ui(zme1---Z1Z0) = Zm—1--Tm—iT0Tm—i=1---F1.

Proof. Observe first that S, is the perfect shuffie on
{0,1, .. ., 2™ — 1}, S, is the perfect shuffle within two
segments which are {0,1,...,2™"! — 1} and {2™~!,2""1 4
1,..,2™ — 1}, and in general, S; is the perfect shuffle
within 2' contiguous segments of length 2™~ each. Sim-
ilarly, Up is the perfect unshuffle (i.e, the inverse of Sp)
on {0,1,...,2™ — 1}, and U; is the perfect unshuffle (i.e.,
U; = 5;~!) within the same 2' contiguous segments which
S; shuffies. A close inspection of the bitonic sorter in Fig. 6
shows that the leftmost interconnection is the perfect shuf-
fle So, and the interconnection between the first column and
the other 2 & x 4§ bitonic sortes is the unshuffie Uy. The
leftmost interconnection of these 2 %’1 x ? bitonic sorters
must then be §;. It follows then that the interconnection
between the first two columns is UpS). It can be easly
shown by induction that the remaining interconnections are
U1 S3,U38s,..Um~25m-1, due to the recursive structure of
the bitonic sorter.

As described earlier, the sorting network (Fig. 7) has
at the i-th block (from the left) { 2° x 2/ bitonic sorters,
whose interconnections are then
Sm—isUm—iSm—it1s Umeit1 Smeit2rory Um=25m—1,
for i = 2,3,...,m. Note that the first block is just the first
column of comparison switches and has no interconnections.
It follows that the interconnections of the sorting network
are
U?Sis-u {sm—iy Um-o'sm—H-l » Um—|'+l Sﬂ—i+2v ---Um—zsu—l}
which is equal to {S;|0 < i < m -2} U {UiSi41l0 €5 £
m-2}.¢

5.3 Theorem. The permutations required by bitonic
sorting are campatible.

Proof. Note that m = 2k and that for i > k, S;(z) does
not alter the k most significant bits of z, and therefore, S;
is in the set H. Note also that

(z,._,...zo)U.'S;“ = S,’+1(3m_‘...3~-‘303'-.‘_1...31)

= Tmel - TmaiToTm—i-2-T1Tm=i-1

and therefore U;S;41 does not alter the k most significant
bits if ¢ > k. Hence, for + > k, U;Si41 € H. The ex-
change permutation E needed to simulate the columns of
the sorting network is also in H. After Theorem 4.3, H is
compatible and its compatibility factor is arbitrary. Conse-
quently, it suffices to show that the remaining pertnutations
S0, 51, +es St—1,UsS1, U1 Sq, ..., U1 S are compatible. In
fact, they will be shown to be in the L-family.

For all i < k, Si(pr—1.--Poqk~1..-0) =
PheloDhemiPh~im2---Pogk—1---GoPk—i—1. Let ai(p,q) be the
leftmost bits of Si(pr-1.--Pogk—1---9o), that is, ai(p,q) =
Phelo-PhkeiPkeiw2---POqk~1-

[ai(p,q) = ai(p/,¢’) and p # p'] = [p and p/ agree in all
but bit position k ~¢ — 1, and ¢ and ¢’ agree in at least bit
position k — 1] = §; € L.

Similarly, for { < k, we have (px—j...poqk—1..-90)iSi41 =
Pk—1--Pk~igoPk—i~2---Poqh~1---Q1 Pk ~i~1-

Let a;i(p,¢) be the k leftmost bits of
(Pr—i-.-Poqe—1.--90)ViSis1,

that i8, (P,)=Pk-1--Pk~i§0Pk~i~2---Po-

[ei(p,9) = ai(p',¢') and p # p'] = [p and p’ agree in all
but bit position k£ —1 — 1, and ¢ and ¢ agree in at least bit
poeition 0] = U;Siyy € L.

Therefore, all the permutations required by bitonic sorting
are compatible and their compatibility factor is h of Theo-
rem 4.2. §

5.3 Tree Computations

Many parallel computations require full binary tree
structures. These include semigroup computations such as
addition and multiplication of N numbers, finding the max-
jmum or minimum of N numbers, logical and and logical or
operations on N boolean values, and any other associative
operators.

If these algorithms are to run on 3-stage Benes systems,
then the tree commmunication structure has to be emulated
by permutations as explained next. Assume a full binary
tree of N ~ 1 nodes, where N = 22, The nodes are la-
beled by level in a standard way where the root is labeied
1 and every internal node i has node 2i as its left child and
node 2i 4 1 as its right child. In the top-down tree commu-
nication, each node may send data to its chidren. In the
bottom-up communication, each node may send data to its
parent. The top-down communication can be accomplished
in two steps, where each step can be carried out on B(r,2)

by a permutation. In the first step the parents send data to
their left children, and in the second step the parents send
data to the right children. As the shuffie permutation S
maps § to 2i for all § < %—I,Scanthenmn'youttheﬁnt
step. Intheaecondnep,whereeverynodeisl}—lmay
send to node 2i 4+ 1 = E(2i), the permutation SE, which is
the composition of § and the exchange E, can carry out the
communication because (i)SE = E(S(i)) = E(2i) = 2i +1.

Similarly, the bottom-up communication can be ac-
complished by two steps, where in the first step the left
children send data to their parents, and in the second the
right children send data to the parents. The first step
can be carried out by the unshuffle permutation U, where
U(zu-;zu_g...zlzo) = T0Z3h-1T3h=2---T3 (m particular,
U(2i) = i for i < & —1). The second step where 2i + 1 has
to map to ¢ = U(2i) = U(E(2i +1) = (2i + 1)EU can be
done by the composition EU. '

Therefore, the permutations required are

{S,SE,U,EU},

which will be shown to be in the L-family and hence com-
patible.
5.4 Theorem. The permutations required by tree com-
putations are compatible.
Proof. From the definitions of S, SE, U and EU,
it can be easily seen that as(p,q) = ase(p,q) =
Pi-2Pk~3--Podk—1, aU(P, 9) = QoPa-1Ps-32.--P1, 8nd aru(p,
¢) = ToPr-1Pk-2-.P1, Where p = pi_1ps_3..po and ¢ =
qk-19k-2---90-

57

as(p,q) = as(p’,¢') clearly implies that

Pk—2Pk~3---Podk~1 = Py _aPh_3---Podk—1

and, therefore, p and p’ agree in the right k—1 bit positions,
and ¢ and ¢’ agree in bit position k—1. If in addition p # p/,
then p and p’ must agree in all but one position because
they can disagree in only bit position k — 1. Therefore, §
isin L. As as(p,q) = ase(p,q), it follows that SE isin L
too.

Similarly, ay(p,q) = ay(p’, ¢') clearly implies that
90Pk~1Pk—2---P1 = §oPy_1Ph3--Ph

and, therefore, p and p’ agree in the left k — 1 bit positions,
and ¢ and ¢’ agree in bit position 0. If in addition p # ¢/,
then p and p’ must agree in all but one position. Therefore,
Uisin L. ‘ .

A similar proof would show that EU is'in L. It follows
then that all the four permutations are compatible after
Theorem 4.2.

5.4 Multidimensional Torus and Mesh Computa-
tions

Toruses and meshes are very useful structures in image
processing and scientific computing. The permutations re-
quired to emulate these structures on B(r,2) will be shown
to be realizable by the omega network)y and therefore
compatible.

An n-dimensional [} x I3 x ... x I, mesh (resp. torus) is
a graph where the set of nodes is Ry, x Ry, x ... X Ry, (recall
that R, = {0,1,...,2~1}) and any two nodes (z,, 3, ..., Ta)
and (1}, 23, ..., z},) form an edge if and only if there exists
some j such that (Vi # j)(zi = z) and 2; = z; + 1 or
z; = zi — 1 (in the torus case, + and — are modulo [;).
Note that the only difference between meshes and toruses
is that toruses have “wrap around” edges.

The communication in toruses and meshes is usu-
ally done along one dimension at a time, and also in
the same direction. That is, in a communication step
there exist some j and @ = 1 or —1 such that ev-
ery node (21,%3,...,2j_1,%j,Tj41,---yTu) may send data
to node (z3,23,..,2j-1,2; + @,Zj41,...,Ta), Where in
the case of torus the addition in the j-th dimension
is modulo I;. Therefore, a communication step in a
mesh or torus can be carried out by a permutation
£* such that f}')(:;,zg,...,z.) = (21,23, 00y Tjo1, (25 +
a) mod lj,Zj41,...,Zn), Where j = 1,2,..,nanda=1or
-~1.

These permutations will be shown to be realizable by

{1y when each /; is a power of two for all j = 1,2,...,n, and
the number of nodes I} x I x ... x I, = N = 22* To do
so we need the following two lemmas which are presented
without proof because the first is straightforward and the
second follows from the first. They will be used in the
following subsection also.
5.5 Lemma. Let m be a positive integer and a = 2 or
~2', where 0 < i < m —1. Let also z and z' be two m-bit
binary numbers. If (z + a) mod 2™ and (z' + a) mod 2™
agree in the | most significant bits, then x and z' agree in
the | most significant bits.

A
K)
i t

e

5.8 Lemma. Let my,my,...,m, be n positive in-
tegers, ; an integer in {1,2,..,n} and @ = 2 or -2,
where 0 < i < m; — 1. Let also z = (2,23,...,Z8)
and ' = (z,25,...,2,) where (V¢ = 1,2,...,n)z. and
z, are m.-hit binary numbers). View the binary repre-
sentation of z (resp. z') as the concatenation of the bi-
nary representations of zi,23,...,Za (resp., z},24,...,2%).
I (21,23, 2j-1,(2; + @) mod 2™ z,44,..,z,) and
(21, %2y Ty, (25 + @) mod 2™i 2%y, ..., 2!, agree in the
most significant | bits, then z and z' agree in the most
significant | bits.

5.7 Theorem. The permutations of multidimensional
taruses and meshes of 2** nodes are compatible.

Proof. Assume the torus (or mesh) is an n-dimensional
2™ x 2™ x ... x 2™» torus (or mesh), where m; + m; +
My = 2k. It will be shown that (Vj = 1,2,...,n)(Va =
~1,1)(f{*) is realizable by Q1y). Using the characterization
in [10] of permutations realizable by 1y, it is enough to
show that for all j and a

(Vs,s' € Ry)(V1 = 1,2...,2k — 1)(if s # o' and
dypy.digy = dyy_y.dyyy, then sisig...50 # s}s|_,...85)
where

8= 334-1...80 = (21,23, .-, Ta),

s =80, .8 = (25,25, .y Th),

£9(8) = daaoydo

= (Z1,.00y z,-._,,(z,' + a) mod 2"’,2,'.“,...,2.)

f,(")("') =dpoyd

= (2] iy (25 + @) mod 2™, 2, L, 30)
After Lemma 5.6, d2x—)...d141 = @.-1..4’,_“ yields that
A3k].0 804y = ‘Iﬂl-l’"al'%-l' which in tum impliea that
3181_1...80 # 8181~1...80 because s # &' |

5.5 Hypercube Computations

Hypercubes are a special case of multidimesional
toruses. Specifically, a hypercube of dimension n is the
n-dimensional 2 x 2 x ... x 2 torus. In particular, the node
labels (z),%3,...,74)’s are binary and (3; + 1) mod 2 =
(z; — 1) mod 2 = F;. Consequently, f}')(zl,zz,...,z.) u
(z1,.2j—1, X5, 241, -.-Zn), Whether a = 1 or —1.
5.8 Theorem. The permutations of the hypercube of
dimension 2k are compatible.
Proof. Since the hypercube is a torus, the theorem fol-
lows from Theorem 5.7. §

5.6 Multigrid Computations

A grid is a two-dimensional mesh. Multigrid compu-
tations are common in image processing {20] and scientific
computing (7], [8]. The communications in these computa-
tions are between nodes that differ in only one dimension
by 2¢ for i = 0,1,2, ... In terms of permutations, the permu-
tations required by a 2* x 2* multigrid computations are:
f.'(,l])(zlvzl) = (:l + 2‘y33)’ fi(,;l)(:hxﬁ) = (31 - 2.122)’
£i3(21,22) = (21,2242, and £{3"(21,22) = (21,22~2"),
for i = 0,1,2,...,k — 1, where 4+ and — are modulo 2*.
5.9 Theorem. The permutations of 2* x 2* multigrid
computations are compatible.

Proof. The proof can be easily carried out using Lemma
5.6 and following the same line of reasoning as in Theorem
57. 3

§6. Conclusions

A new approach to controlling 3-stage Benes networks
has been developed. It consists of finding a configration to
which the leftmost column can be set 3o that a given fam-
ily of permutations can be realized in a self-routed fash-
ion, leading to fast communication and speedy execution
of algorithms. The speedup is high when the compatible
family of permutations is large. Compadtibility, that is, the
existence of an appropriate configuration for the leftmost
column, was characterized and a technique to show com-
patibility was derived from the characterization theorem.
Various interesting families of permutations were shown
compatible and an appropriate configuration of the leftmost
columnn was found for each family. The unsolved case is how
to proceed when the permutations cannot be functionally
defined (as in FFT and bitonic sorting) but are irregular
as in sparse linear systems. More generally, the problem of
deciding compatibility in polynomial time remains open.

The implementation of the new approach of routing
control is straightforward and can be integrated into the
instruction set of the system. A one-bit flag is needed.
For each known compatible family, its compatibilty factor
h is stored in memory. Before a certain algorithm starts
to run, if the family of permutations required by the algo-
rithm is compatible, the compatibility factor is loaded to
the leftmost column of the network and the flag is set to 1.
Otherwise, the fiag is set to 0. If the system has already
an instruction REALIZE-PERM that takes a permutation
(or a pointer to it) as operand and sets the network to it,
then when the flag is set to 0, the same execution takes
place; otherwise, the permutation is realised in the self-
routed mode using destination addresses. This implemen-
tation shows the utility of the new control scheme when the
algorithms require compatible permutations.

Among the families that were shown compatible was
the family of permutations required by bitonic sorting. One
consequence to this is a new O(log? N) routing coatrol al-
gorithm for 3-stage Benes networks: As sorting destination
addresses brings the sources to their destinations, a per-
mutation can be realised on the 3-stage Benes in as many
pauuuneededbybitmicming,thnhw
= O(log? N). Another consequence is that the lefimost
column of the 3-stage Benes netwock can be replaced by
the interconnection (ie., configuration) that is the compat-
ibility factor of the permutations of bitonic sorting. The
resulting network is cheaper and self-routed, and realizes
any permutation in O(log? N) passes. It also realizes the
permutations of bitonic sorting and tree computations in a
single pase.

Along the same lines, the lefimost column can be re-
placed by the three compatibility factors (i.e., interconnec-
tions) that have been identified as needed by many inter-
esting problem areas. Some multiplexers can be added to

choose one of the three interconnections as required. Then
every one of the computation areas discussed in this pa-
per and shown to need a compatible family of permuta-
tions can be run efficiently on the resulting self-routed net-
work.

§7. References

(1] D.P. Agrawal and J. -8. Leu, “Dynamic accessibility
testing and path length optimization of multistage in-
terconnection networks,” JEEE Trans. Comput., C-34,
pp. 255-266, Mar. 1985.

M. Ajtai, J. Kanlos and E. Szemeredi, “Sorting in clog
n parallel steps,” Combinatorics 3, pp. 1-19, 1983.

K. E. Batcher, “Sorting networks and their appli-
cations,” 1968 Spring Joint Comput. Conf, AFIPS
Conf. Vol. 32, Washington, D.C.: Thompeon, 1968,
pp. 307-314.

J. Beetem, M. Denneau, and D. Weingarten, “The
GF11 Supercomputer,” The 12th ann. Int’l Sump. on
Comp. Arch., 1985, pp. 108-113.

V. E. Benes, Mathematical theory on connecting net-
works and telephone iraffic, Academic Press, New
York, 1965.

L. N. Bhuyan and D. P. Agrawal, “Design and perfor-
mance of generalized interconnection networks,” IEEE
Trans. Comput., pp. 1081-1080, Dec. 1983.

A. Brandt, “Multigrid Solvers on parallel comput-
ers,” in Elliptic Problem Solvers (M. Schultz, ed.), New
York, pp. 39-83, 1981.

T. F. Chan and Y. Saad, “Multigrid algorithms on
the Hypercube multiprocessor,” IEEE Trans. Com-
put., vol. C-35, pp. 969-977, Nov. 1986.

(9] T. Feng, “A survey of interconnection networks,”
Computer, Vol. 14, pp. 12-27, Dec. 1981.

[10] D. K. Lawrie, “Access and alignment of data in an
arrary processor,” IEEE Trans. Comput., C-24, pp.
1145-1155, Dec. 1975.

[t1] K. Y. Lee, “On the rearrangeability of 2(logaN) — 1
stage permutation networks,” JEEE Trens. Comput.,
C-34, pp. 412-425, May 1985.

{12] K. Y. Lee, “A Nerw Benes Network Control Algo-
rithm,” JEEE Trens. Compsti., C-36, pp. 768-T72,
May 1987.

(13] J. Lenfant, “Parallel permutations of data: A Benes
network control algorithm for frequently used permu-
tations,” IEEE Trans. Comput., C-27, pp. 637-647,
July 1978.

[14] G. F. Lev, N. Pippenger and L. G. Valiant, “A

fast parallel algorithm for routing in permutation net-

works,” IEEE Trans. Comput., C-,30 pp. 93100, Feb.

1981.

D. Nassimi ans S. Sahni, “A self-routing Benes
network and parallel permutation algorithms” IEEE
Trens. Comput., C-30, pp. 332-340, May 1981,

{18] D. C. Opferman and N. T. Tsao-Wu, “On a class of
rearrangeable switching networks, Parts I and I1,” Bell
Syst. Tech. J., pp. 1579-1618, May-June 1971.

[17] M. C. Pease, “The indirect binary n-cube multiproces-

2
(3]

4]

(5]

(6l

(7

(8]

(18]

59

sor array,” JEEE Trans. Comput., C-26, pp. 458473,
May 1976.

{18] H. J. Siegel and S. Smith, “Study of multistage in-
terconnection networks,” Proc. Fifth Annual Symp.
Comp. Arch., pp. 223-229, Apr. 1978.

[19] H.S. Stone, “Parallel processing with the perfect shuf-
fle,” IEEE Trans. Comput., C-20, pp. 153-161, Feb.
1971.

-[20] Q. F. Stout, “Hypercubes and Pyramids,” in Pyrami-

dal Systems for Computer Vision, edited by V. Cantoni
and S. Levialdi, Springer-Verlag, Berlin, 1986.

[21] T. H. Szymanski and V. C. Hamacher, “On the per-
mutation Capibility of multistage interconnection net-
works,” JEEE Trans. Comput., C-36, pp. 810-822,
July 1987.

[22] A. Waksman, “A permutation network,” JACM, Vol.
15, No. 1 pp. 159-163, Jan 1968. '

{23] C. Wu and T. Feng, “On a class of multistage inter-
connection networks,” IEEE Trans. Comput., C-29,
pp. 694-702, Aug. 1980.

[24] A. Youssef, Propertics of multistage interconnection
networks, Ph.D. dissertation, Princeton University,
Feb. 1988.

