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Abstract

An approach for integrating task and parallel architecture char-
acteristics is presented, with the objective of easing the burden
of parallel programming on the user and to increase the system
efficiency through more informed embedding, partitioning and
scheduling. The approach discussed in the paper uses the con-
cepts of parallel primitives and a primitives table that serves
as the knowledge base for the system. Parallel primitives are
paralle] SIMD computations and can be used to write paral-
lel programs. The primitives table stores the specifications of
each primitive such as the number of processors required, the
communication structure, the execution time, and the code.
In addition, for each primitive several alternative implementa-
tions corresponding to alternative network structures are pro-
vided and stored in the table. This paper will discuss these
concepts and give a layered implementation of a parallel pro-
cessing system with parallel primitives. The paper will also
examine the positive implications of the primitives table on
scheduling as well as determining the optimal machine config-
urations for tasks using precedence graphs. The latter problem
will be shown to be NP-complete. However, a linear algorithm
is found for the case when the precedence graph is a tree.

41. Introduction

Large scale Parallel processing systems provide significant
speed-ups for many applications, particularly for many im-
age processing and scientific applications which are typically
computation intensive. While parallel processing reduces the
execution time of many algorithms, it introduces many new
problems that do not arise in sequential programming. These
include parallelization of algorithms, matching algorithms to
the underlying parallel architecture, proper reconfiguration of
the architecture for each task, and partitioning the system for
multipie tasks. Parallelization of algorithms is a heavy pro-
gramming burden, and if left to the system, a great potential
for parallelism and speedup may be lost. Proper matching of
algorithms with the architecture is also a very difficult problem
that affects the performance of the system. and is governed by
both the task characteristics and the architecture characteris-
tics.

Task characteristics include the number of processors re-
quired. the complexity of the basic operations, communi-
cation pattern, data structure, and type of parallelism [8].
Architecture characteristics include the number and type of
processors in the system, the topology of the interconnec-
tion networks, memory organization, and synchronous {SIMD)
or asynchronous (MIMD) mode of operation. As noted by
Jamieson [8], there is a need to match the task and archi-
tecture characteristics in order to improve the performance
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of the system. For example, if the algorithm exhibits paral-
lelism at the data level (i.e., a large amount of data requiring
similar and simple computation) then an SIMD architecture
with a large number of simple processing elements would be
an efficient architecture for the problem. Furthermore, if the
algorithm uses a two-dimensional array as its data structure
and the communication is between adjacent array points, then
a two-dimensional Mesh would be an efficient interconnection
network for such an algorithm. Examples of algorithms with
these characteristics are image smoothing and two-dimensional
convolution of an image {13]. As illustrated by the example,
an integration of task and architecture characteristics would
improve the performance of a parallel processing system. Such
an integration is feasible because a close examination of spe-
cific application domains, such as image processing and scien-
tific computing, would show that many tasks share common
characteristics. Although past research has discussed the use
of task characteristics, at the present time very little research
has addressed the problem of obtaining task characteristics.
One of the primary objectives of this research is to find tech-
niques to identify task characteristics and use them to improve
system performance.

Some high level tasks may be decomposed into several
parallel sub-tasks, where each sub-task may have a different
processing requirement and can be executed in parallel. Many
image understanding tasks exhibit this property. Tasks with
such a property can be efficiently implemented on partitionable
architectures, A partitionable parallel processing system con-
sists of a pool of processors, controllers and common system
resources, and can be configured into a number of simultane-
ous partitions (subsets of the system resources) each of which
executes a sub-task. Examples of such systems include PASM
(11]. NETRA {12}, the Cosmic Cube [10] and the Butterfty [5].
Partitioning can be viewed as a method of reconfiguring the
system to match the resources to the requirements of the al-
gorithm used to execute the task. Partitioning, however, also
introduces the problem of (a) deciding the partition size, and
{b) scheduling the partitions.

Knowledge of the task characteristics. such as the number
of processors required, the communication structure, and the
execution time, simplifies the problems of selecting an efficient
architecture configuration (i.e.. network topology and number
of processors), deciding the partition sizes. mapping tasks onto
the partitions, and scheduling these partitions. Having the user
specify the parallel subtasks, the interconnection network, the
partition sizes, and the mapping onto the partitions. would
place a tremendous burden on the user and therefore one needs
a methodology for acquiring this information.




1.1 Outline

To acquire the knowledge pertaining to task characteris-
tics, we are using the concept of parallel primitives and a prim-
itives table [9]. The set of primitives and their characteristics
are stored in the primitives table, which serves as a database
of task characteristics. The primitives are frequently used ba-
sic paralle] computations that are implemented as parallel al-
gorithms. Examples of primitives are vector addition, vector
inner product, computing the sum, and basic image processing
operations. The user would define his task as a composition of
primitives. For example, multiplication of two matrices can be
expressed as a sequence of vector inner products. The primi-
tives table has an entry for each primitive storing the specifica-
tion of the primitive and information needed by the system for
efficient execution of the primitives. This includes the num-
ber and type of processors required, expected execution time,
alternative network topologies, and the algorithm for each al-
ternative. Thus we have a set of algorithms corresponding to
each primitive and we store the executable code for each algo-
rithm. The primitives table (of the system) consists of three
components: (1) the primitives definition, (2) information on
the run-time characteristics and (3) the executable codes of
the algorithms for the primitive.

Our proposed system, illustrated in Figure 1, is organized
as three lavers. The first la.er (Layer 1) serves as the user
interface and receives programs written using the primitives.
Layer 1 accesses the first ~o.— ponent of the primitives table to
check if the pimit.. s are weil defined (i.e., there is a matching
of formal and actual parameters). It then generates a list of
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PiiMitives and the precedence graph (dependency graph) for
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cution time for the task. Once the configurations, for each
primitive, are determined the high level operating system al-
locates and schedules partitions of processors to execute these
primitives. In our system the selection of the network (and
algorithm), partitioning, mapping and scheduling are initiated
by the high level operating system and are driven by the prim-
itives table. The high level operating system supplies the low
level operating system, which is layer 3, with the set of routines
to be run, the schedule, and the configuration (i.e., partition).
The low level operating system places the processors in the re- -
quired configuration and downloads the executable code stored
in the primitives table to the parallel processors. The low level
operating system controls and monitors the parallel machine,
and performs all other functions of a traditional operating sys-
tem. It supplies the high level operating system with the run
time information such as the number of processors available
and the status of a task. The layered structure of our system
allows us to employ scheduling, partitioning and reconfigura-
tion methods used by other systems added on top of our own.
The components at layer 1 and layer 2, can be implemented on
any partitionable parallel architecture and thus form a portable
parallel processing system. We assume that the parallel pro-
cessor is reconfigurable, partitionable and can efficiently em-
bed common interconnection topologies such as rings, meshes,
trees, and pyramids. A hypercube based architecture would
be a suitable candidate for our system.

This paper develops this new approach and its concepts,
and discusses some aspects of the three-layer implementation
of the approach. The positive implications of the approach on
scheduling and partitioning will be examined, and the effect
on easing parallel programming is illustrated by examples from
the domains of image processing and vector computations.

The next section presents the concept of parallel prim-
itives and the organization of the primitives table. Section
3 describes the process of determining the efficient configura-
tions for the tasks using the precedence graph for the task.
We show that the problem (of determining efficient configura-
tions) is NP-hard, and we provide a linear time algorithm to
solve the problem when the precedence graph is a tree. Sec-
tion 4 describes some of the functions of the Layer 2 operating
system and demonstrates how it interacts with the primitives
table to perform the scheduling functions.

§2. Parallel Primitives

A computational task may be decomposed into many sub-
tasks each of which computes a specific function. Formally, one
can view a task as computing a set of outputs {¥7,...Y,,} from
the set of inputs {Xi,... X}, where {¥},... ¥} = f(X...
X.}). The function f may be a composition of many simpler
functions. For example. multiplication of two matrices A4 and
B can be expressed as a sequence of vector inner products.
This can be written as C[z, 7} = A(i)e B(j), where C[t, 5] is the
entry in row ¢ and column j of the final matrix, and A(i)e B(j)
is the inner product of the i-th row of matrix A and the j-th
column of matrix B (e is the vector inner product function).
If the inner product was considered as a basic operation, then
the user could write the task of matrix multiplication as a
composition of basic operations. Furthermore, if the parallel
code for the inner product algorithm was stored in the system
then the user does not have 1o specify the entire parallel code
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for the multiplication nor the system configuration on which
to run the algorithm.

In image understanding systems the set of tasks that must
be computed are known in advance and, in addition they em-
ploy a set of frequently used low level image processing op-
erations [13] [3]. These low level tasks include image smooth-
ing, thresholding, convolution, connected component labelling,
Fourier transforms, etc.. For example, in the domain of stereo
computer vision, the task of obtaining 2-D surface information
from 2-D images consists of sub-tasks such as edge detection,
feature matching, hough transform, surface fitting, and surface
interpolation [3]. The edge detection task may involve image
smoothing, gradient magnitude computation (using a sobe} op-
erator). and thresholding [13]. The task also consists of high-
level vision (image understanding) algorithms such as surface
interpolation and parameter computation which are MIMD al-
gorithms. Similarly, many scientific computations involve fre-
quently used operations such as matrix multiplication, vector
inner product, sum of vectors, vector cross product, eigenvalue
computation, and Monte Carlo simulations, to name a few.

The existence of frequently used parallel operations and
the need for easing the user’s burden of parallel programming
provide the underlying motivation behind the concept of paral-
lel primitives. Primitives are frequently wsed basic operations
{in the application domain). Operations such as sum. average,
and maximum of n numbers are frequently used operations
In many application domains, and thus are primitives in our
svstem.

2.1 Specification of Primitives
In what follows we discuss the specification of the low-leve]

SIMD operations. which we refer to as Jow-level primitives, and
in the future we plan toinclude high-level primitives for MIMD
operations. Iu Table 1 we give a sample of primitives for our
system,

The primitive definition consists of the name of the prim-
itive and the input and output parameters. For example the
inner producs is listed as Inner-Product(inputinput.output) to
specify that the primitive requires two inputs (two vectors) and
produces one output (in this case a scalar quantity). The prim-
itive definition is identical 1o procedure definitions. The user
programs are input to Layer 1, the user interface. which then
perforins a “syntax check” by accessesing the knowledge base
to determine if the user program is well defined (i.e.. the prim-
itives are defined and the formal and actual parameters match
correctly). Upon successful completion of the svntax checking
phase. Laver 1 then generates the precedence graph for the
task «where each node in the precedence graph corresponds to
a primitives and send this graph to Laver 2. In addition to the
precedence graphi. layer 1 also sends the list of primitives to be
exceuted. for the task at hand. to the high level operating svs-
temat Laver 2. The justification behind this is discussed in the
fullowing sections. The user has no knowledge of the particular
algorithms that will be selected for execution. their schedule or
the configuration of the architecture. All these functions will
be performed by high-level operating svstem at Laver 2. This
approach clearlv decreases the burden of paralle] programming
on the user. To extend the set of primijtives. we allow the user
to define new primitives {along with their definitions and tabie
specifications discussed in the next subsectionj. This allows
for & more flexible svstem in which the application domain can
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be extended according to the capability and demands of the
user.

Table 1
Image-Smooth(Input,Output)
Threshhold(Input.dnput,Output)
Convolution(Input.Output)
Summing {Input,Ouput)
Inner-Product (Inputnput.Output)
Fourier-Transform(Input.Output)
Connected-Components(Input.Output:
Gradient-Computation(Input.Output)
Image-K-Curvature(Input.Output)
Hough- Transform{Input.Output}
Matrix-Transpose{Input.Output)
Get-Window(Input.window size:
Broadcast(data)

The primitives can be basic computations or may be pure
communicaiion instructions such as broadcasting or matrix
transpose. The system requires the communication primitives
to move data around or align the data from the output of one
primitive to the input of the next primitive. This is illustrated
in the following example. Primitives themselves may be ex-
pressed as a composition of other primitives thus leading to a
hierarchy of primitives. At the current time we are interested
in first obtaining a set of primitives that are frequently used.
Under this framework. the smoothing algorithm would itself
be a primitive written without using the window primitive. Iu
the future we plan to provide a hierarchy of primitives. As an
example of a high-level primitive using a set of low level prim-
iives. consider the 2-dimensional Fourier transform of an im-
age. FE'T-2D, expressed as a sequence of 1-dimensional fourier
transforms. FFT-1D.

2.1. Example. The 2-D Fourier transform (FFT-2D) is co
from the 1-dimensional transform of rows and columns. If the
I-dimensional transform (FFT-1D) was a primitive then the
FFT-2D algorithm can be written as:
FFT-2D(1, B(r))

I: N x N input image:

begin
for 1 = 1 to N do in parallel
FFT-1D(N);
endfor
Matrix-Transpose(/. [ }:
for i = 1 to N do in parallel
FFT-1D(N )
endfor
end

2.2. Example. As an example of a complete task provided
by a user. we consider au example of & berchmark image un-
derstanding task defined by Weems et.al. in [13]). In this rask.
there are two inputs. the intensity image X; and the depth im-
age X, and the task involves recognizing an object composed
of rectangles. The task requires both bottom-up and top-down
processing. It performs low level operations. steps 1 through
& and step &, to extract rectangles from the two input image
data. The rectangles extracted fron: the lmage are matched
with thie model rectangles. for the object. that are stored in its
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memory (i.e., an image database). After finding a rectangle in
the intensity data (i.e., after step 7) it performs a top-down
probe (of the intensity and depth images) for confirmation or
veto of the initial match found at step 7. The entire task it-
self is specified as a composition of low level primitives and
steps 6,7,9,10 are high level tasks which require data from the
low level steps. The task, before the top-down probe, may be
written as:

i Connected-Component-Label{ X, ¥1);
lmagevK«Curvamre(Yl,Yg);
Image-Smooth(Xp, Y3 };
Gradient-Computation(Xp, Y¢);
Threshold( Yy, threshold level Ys);
Rectangle-Generation using Yz - Output Ye:
Graph-Matching using Ye and Y3 - Output ¥z,
Hough-Transform{Ys, Yz );
Rectangle-Search using Ys;

B T TR L B - O I S 1
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Steps 1 through 5, and step 8 call primitives from our
knowledge base. The high-level tasks, at steps 6,79, and 10,
may themselves be decomposed into simpler functions and ex-
pressed as a composition of higher level primitives. The user’s
task. composed of primitives, is input to Layer 1 which pro-
ceeds 10 check the ‘syntax’ of the ‘program’ (i.e., verifies that
the primitives are defined and there is a match of formal and
actual parameters) and then generates the precedence graph
for the task and send this information to Layer 2. The prece-
dence graph for Example 2.2 above is shown in Figure 2, the
numbers 7 at each node correspond to the primitive at step 1 in
the program. {Layer 1 also generates the list of primitives to
be executed and sends this list to Layer 2.) The concept of par-
aliel primitives provides a paradigm for parallel programming,
and would serve as an ob ject oriented programming language.

)

0 \\\ O
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Precedence Graph for Example 2.2
Figure 2
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2.2 T‘he Primitives Table

The concept of using a database of task characteristicsin a
pvarallel processing system was studied by Chu, Delp. Jamieson,
‘{jr‘ld:S:I Purdue in [4] an.d [6]. They investigated an Image
~nde élldlng System, which stores the code and heuristics of
?:H'Plr(f’(})’rﬂh\: alg?rithms‘. that has an inyelligem operating sys-
rsten, d§%xeduung and sglectmg an.orJLhmsA However.. thelr
Sﬁeciaj iffers from ours in three main areas. First Lhexr}s is a
undpr“?u(ripose system that can on?y call and execute image
Ihei; otﬁ: tmg ta5k§ stored in l{he image database. Secgnd‘
Hve, ugej(;c s are entire tasks which are not meant to be primi-

> Used to define new programs. Third. they do not address
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the communication structure required as a task characteris-
tics while our table includes this important parameter. Their
objective does not include reducing the burden of parallel pro-
gramming.

The set of primitives (with just their definition) would
clearly reduce the burden on the user but in themselves do not
provide any information that can be used by the system for
mapping and scheduling the task onto the machine. Towards
this goal, we store the run-time information in the primitives
table. This information allows intelligent and efficient use of
the parallel machine resources by the layer 2 operating syvstem.
For each primitive we store alternative algorithms (and their
performance characteristics) that correspond to an implemen-
tation on different interconnection topologies. For each alter-
native network topology we store information such as the op-
timal number of processors required as a function of the input
size, the expected execution time as a function of the number
of processors and input size. For example, the Image-Smooth
primitive can be implemented on a Mesh or a Ring. Each
implementation is a different algorithm. The run-time char-
acteristics of each implementation dictates the priority of the
algorithm that should be selected based on the available config-
uration and number of the processors. The executable code for
each alternative algorithm is stored as one of the parameters of
the table. Once a selection of an particular algorithm is made,
the low level operating system at laver 3 downloads the code
into the parallel machine. The high-level operating system at
Layer 2 would attempt to allocate the optimal number of pro-
cessors required connected in the optimal configuration (i.e.,
the best network topology and the algorithm for this topol-
ogy). but when this number is not available it allocates the
best possible number and hence we store the execution time as
a function of the number of processors and input size. The de-
tails of this process are discussed in the next section. In what
follows we discuss the organization of the primitives table and
sample entries. The details of the process of contructing the
table and selecting the primitives are discussed in {9, and in
this paper we attempt to give a comprehensive outline of only
the table organization.

The entry to the table is made using the primitive. When
the primitive is Image-Smooth the system can access the en-
tries corresponding to that primitive. The table has upto three
(this number can be changed in the future) alternatives, i.e.,
choices, of implementations for the primitive. Each alterna-
tive is stored in a priority order and corresponds to a partic-
ular interconnection topology {note that each implementation
is an algorithm whose code is also stored as the third compo-
nent of the knowledge base). The priority order is based on
the execution time on the three network topologies (note that
this implies we pick the network with the least communica-
tion overhead since the computation time is the same when an
identical number of processors are used in each network). For
each choice the table stores the four parameters of expected ex-
ecution time {as the sum of computation and communication
time). optimal number of processors required as a function of
the input size. the Input data structure, and the Output data
structure. The organization of the table is shown in Figure 3.
The prioritized choices are listed as Net-1, Net-2, and Net-3
to mean the network topologies of the first.isecond and third
priority. The first choice for the Image-Smooth primitive is the
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Mesh topology, the second choice is the cube (i.e., hypercube)
and the third choice is a ring. The Mesh is the first choice
since for a given number, P, of processors the execution time
(i.e., the sum of computation and communication time) is the
least among the three networks. The input and output data
structure is a 2 dimensional array (i.e., the image data), and
the execution time and number of processors is specified as a
function of the input image size.

The primitives table can be treated as a 3 dimensional
array, where the dimensions are the primitive, the run-time in-
formation parameters and the three choices. In the future we
plan to add more parameters such as the type of processors re-
quired, the mode of operation (SIMD or MIMD), and the data
allocation (i.e., how is the data mapped to the local memo-
ries). and alternative algorithms on the same network for each
choice. We are investigating the process of generation of a list
of primitives for the user’s task. This will involve the use of
code parallelization techniques employed in parallel compilers.

The function of the high level operating system (layer 2)
is to select a set of algorithms (and the network configurations)
to be used, for computing the users task, to get a good exe-
cution time. The goal is to find a mapping of the necessary
algorithms onto the machine’s resources in order to achieve a
good performance and make an efficient use of these resources.
Once the algorithms (i.e.. configurations) are determined the
scheduler is called to allocate and schedule partitions of pro-
cessors. The system accesses the primitives table to determine
efficient algorithms for each primitive. The following sections
discuss some features of the layer 2 operating system. We first
discuss the process of selecting a set of algorithms (for the set of
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primitives to be executed for the task), using the precedence
graph. with the objective of minimizing the total execution
tme. Siuce selection of an algorithm for a primitive impiie:
selection of an efficient network topoiogy for the aigorithm. we

would in effect be determining efficient configurations for the
task where a configuration is the network topology and the
algorithm to run on the topology.

§3. Determining Optimal Configurations

The precedence graph describes the primitives to be exe-
cuted and the order in which to execute the primitives. The
goal now is to determine what alternatives to choose (from
the primitives table) so as to minimize the completion time
for the task. There are two components of time that we must
consider; (1) the execution time for each primitive and (2) the
time to reconfigure from one network configuration to another.
The execution time includes the computation and communica-
tion time for the algorithm that computes the primitive and
this time is stored in the primitives table. Since we allow for
the selection of different network configurations for executing
each primitive, the time to permute (or movej data from one
network topology to another (when using the output of one
primitive as input to another) must be taken into account. For
example, let the first primitive require a Mesh network and let
the second primitive (whose input is the output generated by
the first primitive) require a tree. For the second primitive to
execute, we must move the data in the mesh so that the pro-
cessors are now configured as a tree. The time to perform this
movement of data contributes to the overall execution time.
The time for such reconfigurations depends on the complexity
of the embedding function that embeds meshes into trees (if we
use the same partition of processors for both primitives) or the
/O time (if we assign a different partition for each primitive).
The algorithms we discuss will allow for both cases, and one
of the contributions in this work is the inclusion of such over-
heads during selection of optimal configurations for the user’s
tasks. We also refer to this reconfiguration time as the time for
data movernents. We assume that the data movement times
are also stored in the system.

The problem of determining optimal configurations can
now be stated as follows:

Given a precedence graph as input, where each node repre-

sents a primitive, find for each primitive the algorithm and

network (from the primitives table) to be executed such

that the completion time. which is the sum of the execu-

tion time and the data movement time, is minimized.

Once the optimal selections for each primitive are made,
this list of algorithms is sent to the scheduler which then pro-
ceeds to allocate and schedule processors to compute the task.
In what follows we show that the problem of determining op-
tima!l configurations is NP-hard and then present a linear tine
sulution for the special case when the precedence graph is a
trec. When the precedence graph is not a tree then we use
a general scheduling strategy. for lists of primitives, which it
discussed in the next section.

3.1 Complexity of Determining Optimal Configura-
tions

The problem, of determining optimal configurations. will
be formulated in graplh thecretic terms in order to derive the
complexity and efficient algorithms. Let G(V.E) be a graph
with vertex set V' and edge set L. A graph is called a directed
grapli if there is a direction associated with every edge. A
graph (V. Eiis called a subgraplh of GOVUE V) CViG
and FHy 2 E(Gy A subgraph H1V E ) of G V. Ej is called
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an induced subgraphof G if V(H) C V(G) and F(H)is the set
of those edges that have both ends in V(H). For any two sets
of vertices V; and Vj, let E(V,.V;) be the set of edges which
have one end in V; and the other end in V,. For any subgraph
Hof G let wE(H)) =3 cpimwie) wie)isa pre-assigned
value to e € E(G).

The precedence graph, which is the input to layer 2, is a
directed graph where each node represents a primitive to be
executed. The edges denote the dependencies between primi-
tives. Since each primitive has k choices (in our table k = 3)
of algorithms that can be selected, each node V; in the prece-
dence graph can be denoted by k nodes V1, VZ... V¥ where
the node V! represents the I-th choice from the table for primi-
tive V.1 <[ < k. An edge edge between nodes V; and V; in the
precedence graph indicates that primitive V; must be computed
before primitive V,, and therefore the time for primitive 1 to
complete is the sum of the time for V, and V;. If we select the
I-th choice from the table for primitive Vi, i.e., V{, and the p-th
choice for V), then the earliest time for start of V; is the sum
of the execution time for V,I, which can be determined from
the primitives table, and the time to reconfigure from network
required by V! to the network required by V7. For example, if
Vi the I-th choice required a Mesh and Vf required a Tree then
the shortest time before we can start V; is sum of the times
for the I-th choice for primitive V; and the time to reconfigure
a Mesh to a Tree. This information can be incorporated into
the graph by defining a weight to the edges between primitives,
where wiej the weight of an edge between V, and Vj” is the sum
of the computation time for V“ and the reconfiguration time
110 reconfigure from network required by V“ to the network re-

auirec by V¥, We note that a single edge between V, and V)
'L the precedence graph will be denoted by k? edges between
the k choices for the two primitives. In other words. an edge
V..V..in the precedence graph will be replaced by a com-
iete bipartite graph between {1V}, V*} and {V],... Vf}.
"ansiorming the precedence graph into the graph represent-
t-2 the various choices for each primitive, and their associated
taes.as described above results in a weighted graph. We re-

H v

Y6t graph as the weighted graph G corresponding to the
precedence graph Go. Figure 4 gives an example of a prece-
,de““ graph and its corresponding weighted graph (when we
fiave oniv two choices for each primitive). The problem of find-
.2 an optimal choice of algorithms for each primtive. such that
Hie total time is minimized, is now equivalent to finding a sub-
graph‘ﬁ of G (the weighted graph) that is isomorphic to the
P’Teceq‘enw graph Gg such that the total weight of the edges
'* Minimized. i.e.. minimize w{E{H}). We refer to this prob-
:e as the Minimum Weighted Subgraph probiem and in what
wHows we formally define it and determine its complexity.

i\'{‘mmum Weighted Subgraph Problem
[1\1{% © A directed acyclic graph G(V.E) and a positive
N :“““Qr P such that (i) the vertices of G are partitioned into
;'LfJO]m sets Vi V3. .. Vi (ii) the edge set of G is defined
d, ‘auc'h a way that E(V,.V,) = 0 for all 1, 1 < 1 < [ and for
0;‘3&){{”‘@ sets 1, and V,. 1 < 2. j <[ either EV V) =9
o a2 = it )ifor all v, € Vand v; € V). and (i)
e edge ¢ = (v, v.) € E(G). there is associated a positive
wuImber €.
%‘);;\\“\0(]1 Is there an induced subgraph H(V.E) of GIV. E)
Ay =Tlsuchthat forall . 1 </ <L VinV(HE =1
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®) ighted Graph Corresponding to Preced Graph

Weighted Graphs of Precedence Graphs
Figure 4

and w(E(H)) £ p?

Note that the induced subgraph with minimum weight
corresponds to a set of choices {of algorithms for each primi-
tive) that will minimize the total time.

In this section, we will show that finding a minimum
weighted subgraph, as defined earlier, is NP-hard by show-
ing that a restricted case is NP-complete. As usual, our
NP-completeness proof will be based on a transformation
from a known NP-complete problem, namelv the Maximum
2-Satisfiability problem, which is described below.

Maximum 2-Satisfiability Problem

Instance : Set L' of variables, collection C of clauses over U
such that each clause ¢ € C has has two literals, and positive
integer k < |C|.

Question : Is there a truth assignment for U that simultane-
ously satisfies at least k of the clauses in C?

3.1 Theorem. Let G(V,E)andp be an instance of the Min-
imum Weighted Subgraph problem. Then it is NP-complete to
decide whether there exists an induced subgraph H of G such
that w(E(H)) < p, even if G is bipartite, |V;] > 2 for all 1.
1 <1 <, and the length of any directed path in G is equal to
one.

Proof. It is not difficult to see that the problem belongs
to the class NP. We next present a transformation from an
instance of Maximum 2-Satisfiability problem to an instance
of the problem.

Let U = {uj,uz,....un} be the set of variables, C =
{c1.¢2. ....cm} be the set of clauses and k be the given con-
stant as defined in the Maximum 2-Satisfiability problem. We
first construct a bipartite directed graph G(V.E) as follows.
The vertex set of G is

VIGy={cl.cdl <i<myu{u, T3 <5< n)

The edge setof Gis F(G) = {(c,‘.u.,).(cf.'ﬂ),(c?\uﬂ.(cf‘u—;){
literal u, or @ appears in clause ¢,}. Note that ¢! and ¥ are
new formal vertices that correspond to the first and the second
literal of clause ¢,. respectively, assuming that the literals in
each clause are ordered. Figure 5 shows G(1V . E) when ' =
{ur.uz.uz} and C = {c).¢c;} where ¢; = (u; = T;) and 7 =
(uy + uz). Let e = (c?.b) € E(G). where a £ {1,2} and
b€ {u,, T/l <j<n} Weset wie)to be equal to one if the
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a** literal of clause ¢; is b and m? otherwise. In Figure 5, w(e)is
equal to one, if € € {{c},u;),(c},T7), (c}, u1 ), (c2.T3)} and m?,
otherwise. It is not difficult to see that the above construction
produces a graph G as an instance to the Minimum Weighted
Subgraph problem, where the V,’s are {c!,c’} for 1 < i < m
and {u,, %} for 1 < 7 < n. Furthermore, G is bipartite, the
length of any path in G is one, and the sizes of V’s are all equal
to two. It will be shown that there exists a truth assignment
for U that simultaneously satisfies at least k of the clauses in
C if and only if there exists an induced subgraph H(V, E) of
GV, L) with [V(H)| = m + n such that either ¢! or ¢?, but
not both.isin V(H ), either u; or T, but not both, is in V(H)
and w(E(H)) € k - km? 4+ 2m®.

wie) = m* for all edges not marked with weight 1
Figure 5

Suppose there exists a truth assignment for U that simul-
taneously satisfies kg ( > k ) of the clauses in C. One can
“+ an induced subgraph H(V, E) of G(V.E) as follows.

The vortex set of H is

COnsLre

Viedly = {u, € V(G)lu, is true } U {Ty € V(G)[T; is true )
~{el 1 <1 < mosuch that if the first literal of clause ¢; is true
then a = 1 else @ = 2.}

The edge sct of H is the set of those edges in E(G) that
kave both ends in VIH). In order to compute the value of
wiE M we note that the number of edges in E(H ) incident

at ey < VM fora =1 or 2. is two. Suppose ¢; is true and c!
respectively, ¢fyis in V(H ). Then, the first {respectively, the
second) literal of ¢, say 2 (respectively, z2), is also in V(H )
and tie weight of edge (e}, z') (respectively, edge (cZ,22)) is
“quil 1o one. Since the weight of the other edge incident at
e or ¢ is equal to m?. the sum of the weights of these two
edges incident at ¢! or ¢? is equal to (1 + m?). On the other
hand. assume that ¢, is not true. Then ¢ isin V(H) and
the werghts of both edges incident at ¢ are m?. This im-
vies that w BV 0 = k(1 = m*) + (m — ko)2m?, which is
L= 2t Then, w(Ed < k(1 —m*)+ m®. because
b2k aud 1 - mT <0

Lo VO E) be aninduced subgraph of G with w(E(H 1)
- = v such that (VA0 {ch,e}i=1and V(0
I. Then. there are at jeast k vertices in V{H |1
! < m} such that the sum of the weights of
the vdges incident at those vertices are (1 = m?;. To ver-
iy this. suppose that there are only &' (< k} such vertices.
Ie follows that since V(H 0 {cledil < 1 € m) = m.
wn EvIl ey = K1+ w7y + (o= k')2m, which is larger than
=g = 2m®) assuming that m > 1 without loss of any gen-
erality. These observations establish tie existence of a truth
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assignment for U that simultaneously satisfies at least k of the
clauses in C. In particular, assigning true value to literal u; {or
) if uy € V(H) (respectively, if T € V(H)) gives a desired
assignment. This completes the proof of the theorem. [

3.2 A Linear Time Algorithm

In this subsection we shall present and discuss a linear
time (linear in the number of edges) algorithm that determines
the optimal configurations when the precedence graph is a tree.
The precedence graph of many tasks can be represented by a
tree. The precedence graph of Example 2.2 is seen to be a
composition of two disjoint trees as can be seen from Figure 2.

Let G(V, E) be a directed graph such that V=V, uV, u
--.UV] as defined in the minimum weighted subgraph problem.
We construct a directed graph Go(V, E) with [V{Go)| = [ as
follows. The vertex set of Gy is

ViGo)={nj1<i< i)
and the edge set of Gy is
E(Go) = {(vi, v JE(V,,V;) # @, for all ViV, C V)

We call such a graph Gg the basis graph of G. Note that
the NP-completeness result in the previous thearem holds even
when Gy is a bipartite graph. However, if Gg is a tree. there
exists a polvnomial time algorithm which vields a minimum
weighted subgraph of G. Note that in practice, the basis graph
Gy represents the precedence graph. When Go is a tree, the
children of a node are its predecessors and the root is the ter-
minal node.

Before we describe our algorithm, we note that an input
to the algorithm is a weighted graph G(V, E) as defined in the
minimurm weighted subgraph problem, such that 1 = Uity
and the basis graph G of G is a tree. Let 1, = {o], e, ek
for all 2.1 < 1 < I, and V(Gy) = {vi,22,...,0;}, where v,
corresponds to subset V; of V. We are now ready to describe
our algorithm.

Initially. we have that w{r?}) = 0 for all v] € V such that
the corresponding vertex v in G is a leaf. If v; € V(Go) is
not a leaf, then w(v!) is not defined vet. Let v; € V(Gyp) and
{v,x.v,,,...,v,,} be the set of predecessors of v, in Gg. Note
that vertex », € V(Go) corresponds to subset Vi C V and
vertex v;, € V(Gq) to subset Vi, C V' for all g, 1 £¢g<p For
each v} € V,, compute

wir]) = Z {mi71{uv(z‘f‘v.z‘f) + w(rf‘;)il <J <k
1<9¢p

This can be done by first computing w{v]) for all v/ € V" such
thiat the predecessors of v, € V{Gg s are all leaves. We then re-
cursively compute the values of all the remaining vertices until
the values of the vertices in V' corresponding to the terminal
vertex in V(Go) are computed. After we have completed the
computation of w(v]) for all v7 £ V. the weight of a minimum
weighted subgraph of G beconjes nanfunel il < 3 < k)
where v, € ViGy) is the root of Gg. In the above computa-
tion. if there exists a tie. we cau arbitrarily select one among
then. Figure 6 shows the welghts computed for the precedence
graph shown in the fizure. The time compiexity of our algo-
rithm is O(E!). since eacl edge (u, 1) is considered exactiy
once to compute wir;.
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Figure 6

Note that in practice. the basis graph Go, which repre-
sens the precedence graph® is taken as the initial input, while
© car but does not have to be explicitly generated. The im-
vementauon of the above algorithm in the practical setting of

eduling precedence graphs is given in the next section.

“4. Scheduling

The function of the high level operating system (laver 2)
S 10 select a set of algorithms to be used, for computing the
1678 task. 10 get a good execution time. The goal is to find
tapping of the necessary algorithms onto the machine’s re-
é;‘arce: in order 10 achieve a good performance and make an
©lment use of these resources. The system accesses the prim-
“uves table 1o determine a good selection. Layer 2 operates in

, Y6 modes, when the precedence graph generated by Laver 1

@ tree. Laver 2 employs a linear time algorithm that mini-
fmzes the Tun time of the precedence graph that will be called
& precedence tree. The details of this part of Layer 2 are dis-
f“s“-d i section 4.1. When the predence graph generated by
“:“‘f"f-' iig ot a tree, Laver 2 performs scheduling based on the
<ol orimatives supplied by Laver 1, the information in the

“Tatives tabie. and the current configuration of the syster.
;;iuf‘d}is of t‘his part of Layer 2 are discussed in section 4.2
| b stetions describe the functionality of Laver 2 whick in-
;V':u:iﬁ‘:& with both Laver 1 and Laver 3. Therefore. we next

*CNbe the the interface between Layer 2 and the these two
ST

: fo“omng operations are exported by the Primitives.table
**Tact data type:
»'“leyv,

o alives' Primitive - number of alternative network con-
SECLIGHS 4vai] - . L
L HOns available for this primitive.

R o . . .
h Fmitiveds - network type for the i-th alternauive of Prim-
Sive ;
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Time(Primitivei,P) - execution time of the i-th alternative of
Primitive given P processors.

Two services of layer 3 are used by the allocation function:
Layer3_AvailableP(Net) - number of processors available con-
figured as Net connection type.

Layer3_Allocate(Net,P) - allocate a network of type Net with
P processors.

4.1 Scheduling of a Precedence Tree

Layer 2 starts the scheduling of a precedence tree by in-
voking MinRunTime that computes the minimal run time of a
precedence tree. When a precedence graph is a tree, we callita
precedence tree. The parameter of the procedure is the root of
the precedence tree. For simplicity of exposition assume that
the precedence tree is an abstract data type which exports the
following functions and procedures: k

Predecessor(V,i) - provides the i-th predecessor of node V.
NumPredecessors(V) - returns the number of predecessors
node V has.

Root - provides the root of the precedence tree.

Leaf(V) - returns true if V is a leaf in the precedence tree.
AddWeight(V i, weight) - adds weight to the i-th alternative of
node V.

NextPrimitive - returns the primitive and the configuration
specified by the next node in the precedence tree to be exe-
cuted.

Primitive(V) - the primitive specified by node V' in the prece-
dence tree.

Assume also that a function called MinAlternative Weight
is provided. It takes as parameters a node of a tree and the

index of the alternative and computes the minimum weight
according to the discussion in section 3.2. After choosing the
minimal alternative, the chosen alternative is recorded in the
node representing that alternative.

A high level code of MinRunTime follows.

MinRunTime(Node)
i,jiinteger:
begin
for i:=1 to Alternatives(Primitive(Node)) do
for j:=1 to NumPredecessors(Node) do
if Leaf(Predecessor(Node,j}) then
AddWeight(Node,i,MinAlternativeWeight{Node,j)):
else
MinRunTime{Predecessor{Node,j));
endif;
endfor;
endfor:
end RuniinTime;

Whern presented with a precedence trec. Laver 2 issues the
call MinRunTime(Root) to compute the minimal run time of
the tree. After this computation, Laver 2 is ready to schedule
the primitives specified by the tree in the chosen configura-
tions. It calls NeztPrimitive to acquire the primitive and con-
figure that have to be scheduled next. Using this data. Layer
2 attempts to schedule the primitive in the right configuration
by calling on Laver 3 to ascertain that the resources needed are
available. There are two possibilities in this case. the resources
may be available {from a primitive in the precedence tree that
hias just terminated or no previous resources are available. Tu
the first case an attempt to scliedule the primitive on the al-
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ready aliocated resources is made. In the second case, Layer
3 is requested to allocate new resources. If the resources, i.e.,
number of processors and interconnection network, are avail-
able, Layer 3 is requested to allocate the resources, download
the algorithm specified in the primitives table, and execute the
primitive. If the resources required to execute the primitive are
not available, the request is queued using the queueing policy
employed by Layer 2. The queued request will be scheduled
once it becomes the highest priority request in the queue and
the needed resources becomes available.

Layer 3 notifies Layer 2 when a primitive completes exe-
cution and retains the data produced by the terminating prim-
itive and the resources allocated to it allocated to the prece-
dence tree. Layer 3 now attempts to scedule the primitive
succeeding the terminating primitive. If there is no such prim-
itive, and there are no other nodes remaining in the precedence
tree, the task in terminated. If there s a succeeding primitive,
Layer 2 attempts to schedule the primitive on the resources
available to the terminating one. If this is not possible, Layer
2 in cooperation with Layer 3, will take care of data move-
ments, reconfiguration, and allocations as required.

4.2 Scheduling of Lists of Primitives

When Layer 2 receives the list of primitives to be exe-
cuted from Layer 1, it looks up the table entries corresponding
to that primitive and uses the information towards the selec-
tion of an efficient algorithm 10 be executed on the available
machine resources. It calls the Allocate_Partition function, and
the input parameters are the primitive and the optimal num-
ber of processors required for each alternative network. The
partition allocation algorithm first checks if the first priority

algorithm (i.e., on Net-1) with the optimal number of proces-
sors can be scheduled. If this is not possible then the expected
execution time is used to decide which algorithm is to be im-
plemented and the number of processors to be used. For ex-
ample. if the primitive was Image-Smooth, with 100 as the
size of the input image, then the system first checks if a Mesh
of 100 processors can be allocated to the algorithm, failing
whick it looks at the other choices. To determine the num-
ber of processors available and if a partition of a specific size
and configuration is available, the algorithm calls two Layer 3
services. The Layer3_Allocate(Net i, P) routine asks the layer
3 system to allocate a partition of P processors configured as
network Net i, and layer 2 sends the address of the code (for the
selected algorithm) to be downloaded by layer 3 into the ma-
chine. The Layer3_AvailableP{Net i) routine checks the status
of the system and returns the number of processors available
configured as Neti. These two routines serve as the commu-
mication channel between laver 3 and layer 2. We also pro-
vide the Allocate_Partition algorithm with a set of functions
which access the primitives table (the primitives table com-
ponent). The function Net(Primitive,i) reads the table and
returns the network of the i-th choice for the primitive. The
function Time(Primitive.i,P) looks in the table for the exe-
cution time formula and computes the expected time for the
algorithm using P processors configured as Network i. For ex-
ample. Net/Image-Smooth,1) returns the first choice which is
a Mesh network and Time(Image-Smooth,1.100) returns the
expected run-time for the algorithm using a Mesh of 100 pro-
cessors. We now present the Allocate.Partition algorithm.

Function Allocate_Partition performs the main task of al-

locating a partition for the execution of a primitive. This func-
tion resides in layer 2 and uses the services provided by the
abstract data type Primitives. Table and the services of laver 3
operating system calls.

We assume the existence of two types: Primitivesis a type
defining the range of all possible primitives. ProcessorN is a
type defining the range of the possible number of processors in
the system. In function Allocate_partition access to operations
exported by Primitives_table are preceded by the characters
PT in a typical qualifying way.
function Allocate_Partition(Primitive:Primitives:N:Processor\N |

return boolean;

P,PreP:ProcessorN;

Start:boolean:=false;
i,Previ:integer;
begin
1. for i:=1to PT.Alternatives(Primitive) do
2 P := Layer3.AvailableP(PT.Net(Primitive));
3 if P # 0 then
4. if not Start then
5. Start:=true;
6 if P> N then
7 Layer3_Allocate(PT.Net(Primitive,i).N};
8 return true;

9. else

10. PrevP:=P;

11. Previ:=1;

12. endif; )

13. elseif PT.Time(Primitive,Previ,PrevP)>
PT.Time(Primitive,i,P);

14. then

15. Layer3_Allocate(PT.Net(Primitive i) P);

16. return true;

17. endif;

18. endif;

"19. endfor;

20. if Start then
21 LayerS_Allocate(PT.Net(Primitive.Previ),PrevP):
22. return true;

23. else
24. return false;
25. endif:

end Allocate_partition;

Since the table entry contains the formula for the execu-
tion time (PT.Time(Primitive,i.P), the function is able to cal-
culate the approximate execution time for an algorithm using
F processors connected as network type PT.Net(Primitive,i}.
This way the function can consider the alternatives it can
schedule. For instance, if the primitive is Image Smoothing
with an image size of 512 x 512, we may have a choice be-
tween a 16 processor Mesh as one priority and a 100 processor
Ring with a lower priority. The function will schedule the al-
ternative with the lowest return from FPT.Net(...}) {in this case
the Ring). Steps 15 and 21 accomplish this function. There-
fore. the system may allocate an available partition when the
optimal partition configuration is not available. We call this
process a folding of the algorithm since we are using a reduced
number of processors and/or a network configuration that may
not be the first alternative. In our simulation runs it was ob-
served that using the folding steps leads 1o a better svstern




performance (both in utilization and the total exechion time).
The decision to fold is based on the expected run-time of the
algorithm and the current state of the system. Using the ap-
proximate run-time information in the table and the current
status of the tasks executing on the system, the scheduler can
‘predict’ when the tasks (currently running on the system) \?'11]
complete. This information is used by the schefll'xler to dgcxdg
whether to allocate a currently available partition (which is
rot of the optimal size) by folding the algorithm or to wait till
the first task finishes and assign a different configuration. The
details of this process are omitted in this paper.

When Allocate_partition returns a false, layer 2 queues the
request. The queuing policy reflects the scheduling function
used by this layer; it can be queued according to the smallest
numbe'r of processors requested or the largest such number
depending on the optimization sought.

When the function returns true, layer 2 has to update its
task tables to indicate that this primitive was scheduled and
then initiate the start of its execution by sending the address
of the executable code to layer 3. Layer 3 then proceeds to
download the code and commence execution on the processors
in the partition selected for the task.

We simulated four layer 2 scheduling strategies on a hyper-
cube of 512 processors. Similar results were attained for other
cube sizes. The four strategies are: smallest cube first (SCF),
smallest cube first with folding (SCF+fold), largest cube first
{LCF). and largest cube first with folding (LCF+fold). Four
identical randomly generated groups of tasks were run with
each strategy. SCF gives a better average turnaround time,
while LCF gives a better utilization of the hypercube. In both
cases. folding improves on the results of the underlying strategy
except where the load is extremely high The hypercube par-
tioning. 1.e.. LayerS_Allocate was based on a buddy system

2
I

5. Conclusions

This paper presented a system that uses the knowledge
Ul task characteristics to match the task requirements to the
s¥stem resources and the concept of parallel primitives reduces
the burden of parallel programming on the user. The paper has
provided a sample of primitives for the domain of image un-
derstanding and vector processing. We demonstrated how the
system uses the primitives table to determine efficient config-
urations for the users tasks and for scheduling attempts, thus
Temoving this responsibility from the user. We presented a lin-
“a’ ime algorithm for determining optimal configurations of
primitives when the precedence graph is a tree.

The proposed system provides an approach for paralle]
PIocessing using parallel primitives and their characteristics.
! the future, one needs to define more primitives and their
specilications. aiso the inclusion of maore parameters, such as
i type of processors etc.. into the primitives table. I the
rea of scheduling. an efficient heiuristic to determine optimal
onfigurations for general precedence graphs is needed. To de-
termine efficient partition allocation and scheduling policies we

47¢ evaluating various scheduling and partitioning algorithms.
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