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Abstract. Math-aware fine-grain search is expected to be widely avail-
able. A key question is what roles it can play in mathematics. It will
be argued that, besides finding information, math search can help ad-
vance and manage mathematical knowledge. This paper will present the
short-term goals and state of the art of math-aware fine-grain search.
Afterwards, it will focus on how math search can help advance and man-
age mathematical knowledge, and discuss what needs to be done to ful-
fill those roles, emphasizing two key components. The first is similarity
search, and how it applies to (1) discovering and drawing upon connec-
tions between different fields, and (2) proof development. The second
is math metadata, which math search will surely encourage and benefit
from, and which will be pivotal to mathematical knowledge management.

1 Introduction

Since the advent of the Worldwide Web, serious efforts have been undertaken
to create digital libraries of mathematical contents, and to develop languages,
tools, and systems for faster dissemination and processing of such contents [1,
3, 5, 11–14, 16, 20, 21, 28, 31–33, 36, 21, 22]. For digital libraries of mathematics to
serve their purpose fully, users need to be able to search easily and effectively,
especially for equations, functions, structures, proof patterns, and other kinds
of fine-grained mathematical constructs. Although text search has reached a
high level of maturity [38, 34], mathematical expressions are highly symbolic
and structured, and are not curreently searchable by the available text-search
systems.

Field-based search systems are now widely deployed in several mathematics
databases and by many mathematical content providers, such as Zentralblatt’s
ZMATH and MathDi [40, 23], the Jahrbuch Database [15], AMS’s MathSCiNet
[2], and various professional mathematical socities. These systems afford users
more targeted search, such as search by author, subject, title, abstract, journal,
series, reviewer, review text, and the like. Standard subject classifications, such
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as MSC 2000 [30], helps to a considerable extent in focusing the search. Neverth-
less, like text-search systems, the current field-based search systems are neither
meant nor able to provide access to fine-grained mathematical data.

It will probably be much more useful to the mathematical and scientific
communities to have math-aware fine-grain search systems. The author has been
conducting research and development on that kind of search [29, 39]; much of
that effort is part of the Digital Library of Mathematical Functions (DLMF)
project [18, 19, 29]. The immediate goal of the research on math search is to
create math-aware systems that (1) enable users to search not only for text,
but also for fine-grain mathematical data, such as equations, functions, and
structures; and (2) allow users to express math queries naturally and easily,
using the notation and idiom of mathematicians and scientists.

Math-aware fine-grain search holds considerable promise for the short term
and the long term. For the short term, it will help users fulfill momentary in-
formation needs. Whenever a user needs information about a specific mathe-
matical item, s/he formulates and submits a query to the search system, which
processes the query and returns a number of matching hits, ranked by relevance
(or by some other user-specified criteria). The user will then browse through
the returned hits, looking for the truly relevant ones which satify the need that
prompted the search. At times, the user may have to refine their queries and
repeat the search cycle. However, it is expected that the math-awareness of the
search system is likely to identify much more relevant matches, and the fine-grain
nature of the search leads to hits that point to small-size units of information.
These two outcomes will greatly reduce the amount of time a user spends on
searching and browsing through hits to find what is needed, and thus enable the
user to return quickly to the main task at hand.

For the long term, math-aware fine-grain search holds promises that have
potentially broader scope and greater impact. Specifically, it will be argued in
this paper that such a search capability can contribute to the advancement and
management of mathematical knowledge. For example, math-aware search can
be used to find similarities between a piece of mathematics being developed,
on the one hand, and proved theorems and well-developed theories in the same
or different fields of mathematics, on the other hand, thus pointing the mathe-
matician to fruitful methodological directions and interesting connections (note:
two expressions or patterns are similar if some appropriately defined distance
between their structures is below a certain threshold). Furthermore, through
similarity search, it is possible to provide interactive computer-aided proving
(CAP), either as a standalone system or as a complement to proof planning sys-
tems (e.g., λClam [6, 9] and Omega [4, 26, 27]). In the standalone mode, a CAP
system can, by constant monitoring of an evolving proof or at the prompting
of a user, automatically search for similar proof patterns, and thus periodically
suggest to the mathematician relevant strategies, tactics, and/or logic rules that
can be applied to further the proof. In the other mode, as a component of a
proof planning system (PPS), math-aware fine-grain search can help the user
first find initial plans of proof (of “similar” theorems), and later in the proof
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process find refinement tactics, all through ongoing search for similar plans and
tactics against either a standalone knowledge base or Web-accessible math repos-
itories of appropriately marked up contents and proof patterns. These and other
potentialities of math-aware fine-grain search will be discussed later in the paper.

With regard to contributing to mathematical knowledge management, math-
aware fine-grain search can help classify manuscripts. The search, in a semi- or
fully-automated classification environment, can be used to find similarities and
associations between different manuscripts. Using the similarities and associa-
tions, a librarian or a system can classify and characterize (with metadata) a
previously uncategorized document, by borrowing the classes and descriptive
metadata of the search-discovered similar documents. Furthermore, in a radical
departure from current practices, this process of classification and metadata-
enrichment can and sould be done at fine ganularity — at the level of equations,
functions, structures, proof patterns, and the like. This can be done by and for
math-aware fine-grain search.

It is evident from the above that similarity-search and metadata are funda-
mental to those envisioned long-term roles of math search, and to the symbiotic
relationship between search, management, and advancement of mathematical
knowledge. Similarity-search, a fairly developed area in data mining applica-
tions [37], is a new area in math search, and will be discussed later in this paper.
As for metadata, international, professional, and academic efforts towards de-
veloping math metadata have been initiated, such as the MathNet project in
Germany [25], and the activities of the International Mathematics Metadata
Task Force (and its affiliated American task force) [24]. The planned metadata
of those efforts seem to be at a coarse-grained level: at the level of books, articles
and manuscripts. The benefits of such efforts towards improved access, dissemi-
nation, and management of mathematical knowledge, will be considerable. They
will be even greater if the metadata is at a fine-grain level. Of course, providing
metadata at any level, but especially at a fine-grain level, is a daunting task.
Therefore, automatic generation of metadata is indispensable.

This paper will address the short-term and long-term objectives, roles and
capabilities of math-aware fine-grain search. Specifically, the paper will identify
the main aspects and pertinent issues, present the state of the art, and, where
possible, outline approaches to follow.

2 Math-Aware Fine-Grain Search

This section will address the basic objectives, and issues, and state of the art of
math-aware fine-grain search.

As a result of the work on and experience with the development of math
search on the DLMF, the author has identified some key objectives that math
search systems ought to meet, at least to a significant extent. The next subsection
describes those objectives.
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2.1 Basic Objectives of Math Search

1. Math-awareness: Much of the mathematical knowledge is embodied in
mathematical symbols, elaborate notations, and structures of various lev-
els of complexity. So for math-search systems to be effective, they have to
recognize mathematical symbols and structures.

2. A natural math-query language: A math search system must provide
an intuitive yet expressive math query language. Users in the mathematical
and scientific communities should be able to express their queries in the
same way as they would write other mathematical expressions, such as in a
Latex-like syntax. Table 2.1 shows several examples of queries and describes
the corresponding matching records.

3. Fine granularity of searchable and retrievable information units:
With the vast and fast-increasing amount of mathematical knowledge avail-
able for electronic access, it is desirable to search for the most targeted
information, be it an equation, an integral, a differential equation, a Fourier
transform of a function, a definition, a graph, a theorem, a proof technique,
etc. If such is the size (granularity) of what a user needs in a given situation,
it would be a waste of the user’s precious time to provide him/her a larger
amount of information and expect him/her to sift through it to locate the
relatively tiny piece of interest. Therefore, an important objective of math
search is to aford users the ability to search for and retrieve fine-grain tar-
gets. (A target or record is any searchable and retrievable information unit
in a database.)

4. Perfect recall: Recall is a standard metric in all search systems; the recall
per query is defined to be the ratio of the number of relevant hits to the
total number of relevant targets in the database. It is a universal objective
of search to maximize recall. That is, every target that matches a query must
be included in the hitlist.

5. Perfect precision: Like recall, precision is another performance metric of
all search systems; the precision per query is defined to be the ratio of the
number of relevant hits to the number of hits in the hitlist. Every attempt
should be made to maximize precision. That is, every hit in the hitlist must
match the query; the hitlist should not contain any false hits.

6. Perfect relevance-ranking: Ideally, if hit A is more relevant than hit
B, then A should appear before B in the hitlist. In particular, the most
relvant hit(s) must appear on top of the hitlist, or at least near the top.
This objective is particularly pressing because of the very large and ever
increasing number of potentials hits.

7. Useful highlighting: Highlighting within a retrieved target should be done
in a way that informs and justifies to the user why the target matched,
and which specific parts matched. For very fine-grained targets, such as an
equation or a graph, highlighting is not so critical, but for large-grained
targets such as an article or manuscript, highlighting is very desirable to
help the user identify quickly the more relevant parts of the hit.

8. Minimum hit-redundancy: In systems where targets at different levels of
granularity are available, some targets may be subsets of other targets, such
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as a separately accessible equation that is a part of a separately accessible
section. In such environments, redundant hits are possible. For example, if
target A is a subset of target B, and if B matches a query only because A
matches the query, then presenting both A and B as two separate hits in the
hitlist constitutes redundancy. Hit A should be presented, and B should be
left out. The objective is to eliminate redundancy. If that is too costly, an
attempt must be made to reduce the effect of redundancy; for example, have
hit B appear much later than hit A in the hitlist. Note that if the targets are
disjoint, no redundancy should arise; redundant hits would be a reflection of
poor system design.

Table 1. Examples of Queries

Query Matching Records

sinˆ2 x+cosˆ2 x Those containing the expression sin2 x + cos2 x
J_n(z)= Those containing the fragment “Jn(z) =”
Gamma(1/2)= Those containing “Γ( 1

2
) =”, for the values of Γ( 1

2
)

sqrt(Aiˆ2+Biˆ2) Those containing the expression
√

Ai2 + Bi2

ˆ(x+2) Those containing x + 2 as an exponent
intˆinfinity Those containing

∫∞
int (sin x)/x dx Those containing

∫
sin x

x
dx

DeMoivre and cos (n theta) Those containing both “DeMoivre” and cos(nθ)
“Fourier transform” and Those showing Fourier transforms of spheroidal

spheroidal functions, in addition to those containing
the terms “Fourier transform” and “spheroidal”

Ai and Bessel Those showing connections between Airy Ai
and Bessel functions, in addition to those
containing the terms “Ai” and “Bessel”

Ai = BesselK Ideally, those containing equations expressing the
Airy Ai function in terms of the Bessel function K

2.2 Issues and Policy Decisions

In meeting those objectives, several fundamental issues must be faced and some
policies for resolving them must be implemented. Here are some of the more
important issues and challenging policy decisions that have to be handled.

– Target definition and granularity: The designer must define what should
be a searchable and retrievable target, and decide on the appropriate gran-
ularities of targets.

– Literal vs. abstract understanding and weighting of query terms:
Mathematics is rife with abstraction and levels of abstraction. As a simple
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example, the name of a function argument is not to be taken literally, whereas
the standard name of an elementary function or a special function should be
taken literally. Another aspect is whether users can characterize rather than
specify the terms that must occur in the matching targets. For example,
can users enter “trigonometric” to stand for any term that is the name of a
trigonometric function?

– Whether to return mathematically equivalent hits, and to what
extent: Many a mathematical concept or expression can be expressed in
several equivalent forms. The question is whether or not documents that do
not contain a literal match of a query expression but contain an equivalent ex-
pression should be returned as hits. If the search is for “sin(π

2−x)”, should the
system return documents containing the equivalent expression “cos x”? How
about if the query is “ 1

x” and a document contains “x−1”? Some equivalences
are so commonplace that users may wish them to be detected and matched
in search, while other less familiar equivalences would cause confusion if
detected and matched. The extent of equivalence-awareness in search is a se-
rious design decision. Of course, the implementatioin of “deep-equivalence”
awareness is a major task that requires sophisticated mathematical reasoning
algorithms.

– Determination of the intented meaning of a user’s query: There is
considerable “overloading” of names and notation, i.e., the same symbol re-
ferring to different things in different contexts. For example, the zeta symbol
(ζ) can refer to the Jacobi zeta function, the Weierstrass zeta function, the
Riemann zeta function, or a generic symbol with no specific denotation. If a
user includes zeta in a query and has a specific context in mind (e.g., number
theory) but that context is not communicated in the query, the system will
have no way of determining which zeta occurrences to match, or how best
to rank the hits, creating a likely situation of high user dissatisfaction with
the results.

All but the first point above involve the extremely challenging problem of de-
termining the user’s intent and wishes, without soliciting too much information
per query from the user. Decision policies are needed in order to make ”edu-
cated guesses” about the user’s intent and wishes from the limited information
provided in the query, and, accordingly, to determine what targets are truly rel-
evant and how to relevance-rank the various hits. For more accurate assessment
of relevance, the context of the search must be determined, such as the user’s
field and level of expertise, and the area of interest at the time of the search. It
is worth noting that relevance is a relatively old, open question in the general
field of text information retrieval (IR) [35], and the issue of context-based search
is a current research topic with considerable interest in the IR community [17].

2.3 State of the Art of Math-Aware Fine-Grain Search

As mentioned in the Introduction, all search systems deployed by the current
mathematics databases and mathematical content providers are conventional
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coarse-grain field-based text search systems with little math-awareness. In math-
aware search, some work has started to appear. Recently, Guidi et al published
papers on a math query language MathQL [12] and related searching techniques
[11], both of which are for RDF metadata repositories, where RDF is the XML-
based metadata markup language standard. The MathQL syntax is a markup
style that is advanced in its expressive power, and requires the users to be ad-
vanced mathematicians. An earlier effort in math-aware fine-grain search is the
work by Einwohner and Fateman [10], which was limited to integral-lookup.

The most recent work on math-aware fine-grain search is the work on the
DLMF search [29, 39]. All the eight objectives presented in Subsection 2.1 have
been met to a large extent. The resulting system, to be deployed in the near
future, is fully math-aware and supports search and access to fine-grain targets
such as equations, figures, tables, definitions, and named rules/theorems. It al-
lows users to submit queries with Latex-like syntax. It achieves perfect precision
and recall as far as term-occurrence search is concerned; also, through meta-
data enrichment, additional relevant hits are matched beyond literal occurence
of terms. Relevance ranking is satisfactory, and is being improved. Small-grain
targets (such as equations and figures) are highlighted when displayed within
larger documents (such as sections). Finally, redundancy is greatly minimized,
and when users restrict the search results to a specific type (such as equations
or figures), no redundancy arises.

3 Objectives and Roles of Math Search in the Long Term

Beyond the conventional search for documents, it is envisioned that math search
can fullfil higher-level and farther-reaching roles. This section will discuss some
of those roles.

3.1 Discovery of Similarities between Fields

Research in an evolving new field (or sub-field) may discover preliminary pat-
terns and laws that happen to be similar to those in older, more established
fields. Early discovery of such similarities may suggest new patterns, laws, and
properties, which are well-established in the older fields, to explore in the context
of the new field. Also, proven useful methodologies in the older fields may ap-
ply to the new field fruitfully. The bridging and borrowing apply to both broad
methodologies and specific proof techniques & patterns.

Math search can help in the discovery of such similarities — as long as
the content repositories are well-formatted, adequately marked up, and accessi-
ble. Section 4 will discuss methods of discovering and measuring mathematical
similarities. (Recall from the Introduction that two expressions or patterns are
similar if some appropriately defined distance between their structures is below
a certain threshold. That is, the two expressions/patterns are similar if their
structures are identical or near-identical.)



8

Suffice it to say at this point that a search-driven technology of similarity-
discovery is likely to increase productive interdisciplinary activities, not only
between mathematicians of different specialties, but also between mathemati-
cians and researchers in the natural and even social sciences. Indeed, it is often
the case that scientists, who are in other disciplines than Mathematics and hap-
pen to be engaged in some mathematical work related to their disciplines, need
to know what mathematical theories and knowledge can help them advance their
fields, and which mathematicians are doing such work and can thus be invalu-
able collaborators. A math-similarity search capability can help such scientists
locate relevant mathematical work and potential collaborators.

3.2 Computer-Aided Proving

A second major role that math-aware fine-grain search can play is computer-
aided proving (CAP). That can take at least two shapes: (1) a straightforward
online computer-aided proving (O-CAP) role, and (2) a more elaborate interac-
tive real-time computer-aided-proving (R-CAP) role. Both are discussed next.

Online computer-aided-proving A user engaged in developing a proof for a
theorem can, at various junctures of the proof development, submit expressions
and Logical patterns (from the evolving proof) as queries. Matches may contain
“identical” or similar proofs that are complete and valid; such proofs can then
be mimicked, or learned from, to complete the proof at hand in an analogy-
driven fashion. Also, atomic entities, expressions, and possible patterns from
the premises (or conclusions) of the to-be-proved theorem can be submitted as
queries, to search for similar theorems; the corresponding proofs may serve as
a good aid to the proof at hand. Note that this O-CAP functionality is easy to
have and use, for it is nothing more than straightforward math-aware fine-grain
search.

Real-time computer-aided-proving This is similar to O-CAP except that
no explicit queries need be formulated and submitted by the user. Instead,
a software system will, in the background and during the course of a proof-
development, carry out the following steps:

1. monitor the evolving proof;
2. formulate & submit queries (from the expressions and logical patterns present

in the partial proof);
3. search for similar expressions and logical patterns
4. evaluate, rank, and distill the returned matches; the distilling involves

– identifying the known properties of entities (e.g., functions and opera-
tors) and of the premises/hypotheses; the entities and premises are those
that are in the theorem or in the emerging proof.
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– identifying intermediate theorems/lemmas, as when the query consists
of premises (from the original theorem or the emerging proof), and the
matching hit is a theorem with the same premises; the conclusions of
those matching theorems, and possibly their proofs, as well as biblio-
graphic references to them, will be among the distilled materials pre-
sented to the user.

5. report the distilled results in real time as suggested directions (tactics) and
intermediate sub-conclusions to the mathematician that is developing the
proof;

6. repeat this cycle (steps 1-5) throughout the proof development, until the end
of proof.

Note that in Step 3 of the R-CAP cycle, as well as in O-CAP, the search
can be conducted not only against a local knowledge base, but also against all
kinds of math repositories. For this to work, the math repositories must be well-
formatted, adequately marked up, and indexed for searching. Such repositories
are growing in size and number. They include: the DLMF [18, 19, 29]; MBase
[16]; Mizar (at mizar.org); and so on.

An R-CAP implementation can be very much like integrated development
environments (IDEs), which are very widely used by software developers in the
computer science community. (Good Latex editors are small instances of IDEs).
In an IDE, static and locational dynamic menus are available. The static menus
offer fixed services and functionalities. Dynamic menus are menus whose items
change depending on the context, and are populated by search systems working
in the background; those menus pop up when the user mouses over certain words
or commands in the file, or when the user types up the first few characters of
certain patterns. An R-CAP IDE can behave in similar ways by popping up
dynamic menus containing suggestions for new logical patterns/tactics/rules to
follow, and those suggestions vary depending on where in the proof the user is,
and what premises and intermediate conclusions have been put in the proof.
The suggestions in the dynamic menus will be constantly gathered and updated
by the R-CAP math search, which is working in the background. The search
items that populate the dynamic menus in typical IDEs are usually obtained
from search against an internal database as well as against the opened file. In
an R-CAP IDE, however, the search can be extended beyond a local knowledge
base (KB) and the opened file, to include Web-accessible knowledge bases; the
user of the IDE would also have the configuration option of specifying which
specific external KBs to make use of.

CAP as presented above bears a strong relation to proof assistants and proof
planning systems in particular. Proof planning was introduced by Alan Bundy
for inductive theorem proving [6, 7], and was implemented in the systems Clam
λClam, and IsaPlaner [8]. The Omega system [4, 26, 27] extended Clam’s proof-
planning paradigm to knowledge-based proof planning. Proof planning systems
start with an abstract-level proof plan, and then ”carry out” the abstract-level
plan, interactively (with the user) and recursively when needed, by expanding
the steps into concrete sequences of logical steps.
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Therefore, the proof-planning approach (of Omega and Clam) to proving is
primarily top down: from an abstract proof-plan to a final detailed proof. The
search-driven R-CAP approach, described above, is fundamentally an incremen-
tal, bottom-up approach, driven mainly by the direction that the mathematician
is taking in the proof, but at the same time helping the mathematician to further
that direction along, or suggesting alternative tactics and patterns as a result of
similarity search.

3.3 Learning Aid

In addition to its research-furthering roles, math search can be used by math
& science educators and students for educational purposes: finding what they
need, and learning from what they find. It is an obvious and natural role of any
search system.

In the context of math education, however, some issues arise. One important
issue is the relationship between the granularity of the retrieved information, on
the one hand, and the information need and the educational level of the user, on
the other hand. For example, if a physicist is seeking the value of an integral or
the general solution to a specific differential equation, the search results should
be at the level of an equation, rather than the title of a book about the subject.
Likewise, if a novice wishes to learn about number theory, the search results
should be books and perhaps articles about the subject, rather than stand-alone
equations about the Riemann ζ function or the Euler ϕ function. The notions
of relevance and context-based search mentioned earlier are pertinent here.

Another issue is how best to integrate math-aware search into math learning
systems in a synergistic fashion. Like many of the ideas discussed in this paper,
this integration topic is in its infancy, and will require considerable research.

3.4 Routing

Routing is the process of informing users (or subscribers) of the latest infor-
mation that match a pre-determined query specified by the user, as soon as
the information becomes available. Math search can be used to stream to a
mathematician all articles and manuscripts that match the mathematician’s pre-
specified query (or queries) whenever and as soon as the information becomes
available. The source of the information can be professional societies, publish-
ers, or researchers posting their manuscripts on their institutions’s Web sites.
The system(s) to do the routing can be centralized systems on the information
providers’ Web servers, or federated systems that periodically ”crawl” the Web
(or at least certain specific sites) searching for newly posted information. Either
way, math search must be a central component of the routing system, and the
posted information must be formatted and marked up adequately, and indexed,
in order for the background searching to take place and the search results to
be routed to the appropriate users, each according to his or her pre-specified
queries.
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4 Methods for Discovering and Measuring Similarity

As seen throughtout the paper, similarity search is useful in many contexts. It
is referred to sometimes as approximate search or fuzzy search. Before one can
proceed further, a formal definition of similarity is called for.

Definition 1. Given a distance metric d in the “space” of mathematical expres-
sions or patterns, and given a threshold h, two expressions or patterns E1 and
E2 are said to be h-similar if d(E1, E2) < h.

Two remarks must be made. First, the distance d need not be a distance
in the strict topological sense, nor the “space” of expressions or patterns need
necessarily be a topological space. Rather, d should satisfy the two properties

d(E1, E2)⇔ E1 = E2,

d(E1, E2) = d(E2, E1)

But the triangle inequality is not essential.
Second, the actual definition of the distance d must capture, to the extent

possible, the intuitive subjective notion of (dis)similarity between expressions
or patterns. For example, x2 + y2 and cos2 θ + sin2 θ are intuitively similar ex-
pressions, whereas x2 + y2 and

∫
xdx are quite dissimilar. Also, d must capture

comparative information about similarity, that is, if E1 is more similar to E2

than F1 is to F2, then we should have d(E1, E2) < d(F1, F2). For example, one
would expect that d(x2 + y2, u2 + v2) < d(x2 + y2, x2 + y).

Ideally, the distance d should be sensitive to the notion of different levels of
abstraction. Specifically, if an expression E is an abstraction of another expres-
sion F , and F is in turn an abstraction of G, then one should have:

d(E,F ) < d(E,G), and d(F,G) < d(E,G).

Furthermore, if E and F are mathematically equivalent expressions but have
different structures, as is the case for the two expressions (x+1)2 and x2+2x+1,
then one would expect that d(E,F ) = 0. This expectation, however, assumes
that the similarity system incorporates the detection of logical equivalence and
value-equavalence, which is a rather difficult problem of symbolic computation
and automated mathematical reasoning. Therefore, for pragmatic reasons, one
may wish to leave out the requirement that d(E,F ) = 0 ⇔ E ≡ F , although
preserving it can lead to much more interesting similarity results, at the cost of
much more computationally intensive similarity measurement.

With all those considerations in mind, one approach to quantifying similar-
ity (or distance) between mathematical expressions and patterns is by modeling
expressions as parse trees with node labels that represent the names of func-
tions/operators in the expression. Similarity (or distance) can then be defined
using the structures and node labels of the trees. The more nodes with like-
labels in the two trees, the more similar the trees. Also, the more sub-trees
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of identical structures that the two trees share in common, the more similar-
ity there is. Similarity between the internal (non-leaf) nodes in the two trees
is more important than similarity between the labels of the leaves in the two
trees, because leaves often represent arbitrary variable names, while non-leaves
represent essential operational and structural information of a math expression.
Also, structural and label similarities higher up the two trees are often more im-
portant than those further down the trees, because the ”fundamental” structure
of a formula/expression is reflected more near the root of the parse tree. These
differences in importance suggest weighted measures of similarity, where higher
nodes and higher subtrees are assigned more weight than the lower ones.

The precise development of those ideas of quantifuing similarity, and the
development of algorithms for measuring similarity (or distance), are subjects of
ongoing research in the author’s research group.

One final note is that once one has an adequate definition of similarity (or
distance) and a good algorithm for computing the distance between two expres-
sions/patterns, it is straightforward to incoporate the distance and its algorithm
into math-aware fine-grain search systems for performing similarity search, at
whatever level of desirable similarity (as specified by the threshold h).

5 Approaches for Generating Fine-Grained Metadata

In most application, metadata is generated manually. In fact, in many instances,
metadata is extrinsic to the object being described, such as the date and journal
of a publication; therefore, such metadata cannot be derived in any other way but
manually. Fortunately, extrinsic metadata is small in size, and need be enetered
at the coarse-grain level (i.e., at the level of books, articles and manuscripts). In
the case when the metadata describes something intrinsic, such as the properties
of a certain function, the properties may be so complex and intricate that only
the author or a domain expert is in a position to unearth them and state them
explicitly. For the sake of fine-grain search, the metadata will have to be entered
at the level of equations, definitions, functions, proof patterns, and the like. The
metadata must also to be marked up properly so search systems can make use
of them. Both the metadata generation & entry, and the marking up, are time-
intensive tasks that few authors would be willing to do. Therefore, it is preferable
to automate the math-metadata generation process.

Most mathematical functions and concepts enjoy many properties and fall
under a hierarchy of mathematical categories. To illustrate, assume that an equa-
tion (or math file) E has the cosine function ”cos” in it. This function falls in
the category of trigonometric functions, which is a subcategory of elementary
functions, which in turn is a subcategory of special functions. It also enjoys the
property of periodicity, among other things. Recall from earlier discussions that
such properties are desirable to have as metadata. A user may wish to search
for equations that have, among other things, periodic functions (or trigono-
metric functions, etc.). Clearly, even if the equation/file E does not contain
explicitly any of those terms or phrases (”periodic functions” or ”trigonometric
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functions”), E is a relevant object and should be returned as a hit. But without
metadata, this is not possible.

We have developed a knowledge-based approach to generating metadata.
First, a knowledge base was compiled, consisting of standard math functions and
operators, on the one hand, and associated metadata on the other hand. Specifi-
cally, for every function and operator in the KB, the corresponding metadata is a
set of descriptive phrases that name the properties that the function/construct
enjoys, and the mathematical categories that the function/construct falls un-
der. Afterwards, we developed algorithms that, for each equation and math ex-
pression, generate from the KB a combined list of the descriptive phrases of
all the functions and constructs that occur in that equation/expression, and
treat that combined list as metadata for that equation/expression. The ap-
proach was enhanced further through using the context of a math expression
to derive additional metadata phrases. Specifically, the titles of the containing
sections/subsections, the captions of the containing tables, and similar headers,
can be used as sources of additional metadata. However, care must be taken
when using context information, because every item of information in the con-
text applies to every equation or expression in that context. For example, if the
title of a subsection is ”Fourier and Laplace Transforms”, and the subsection
contains several equations, some being Fourier transforms, and others Laplace
trasnforms, then latching the entire title of the subsection to each equation in
the subsection leads to inaccuaries.

A more powerfull approach to automated fine-grain-metadata generation de-
rives ”higher-order” metadata from the structure of an equation/expression, not
just from the functions and constructs that occur in it. For example, the Fourier
transform has a recognizable expression structure; an algorithm can be writ-
ten to search for such structures in equations and expressions, and wherever
found, associate the metadata phrase ”Fourier transform” with the contain-
ing equations/expressions. This higher-order metadata generation requires (1)
defining structural patterns (and their characteristics) for a number of mathe-
matical constructs, such as the Fourier transform, the Laplace transform, (par-
tial/ordinary) differential equations, recurrence relations, and so on; and (2)
developing algorithms for recognizing such structural patterns in math expres-
sions so corresponding metadata can be associated with them. One method for
expression-structure recognition is to use expression parse trees, specifically their
structures and the internal (i.e., operation) node labels, as templates for pattern
recognition & classification.
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