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A Parallel Algorithm for Random Walk
Construction with Application to the Monte
Carlo Solution of Partial Differential Equations

Abdou Youssef

Abstract—Random walks are widely applicable in statistical and scien-
tific computations. In particular, they are used in the Monte Carlo method
to solve elliptic and parabolic partiat differential equations (PDE’s). This
method holds several advantages over other methoeds for (PDE’s) as it
solves problems with irregular boundaries and/or discontinuities, gives
solutions at individual points, and exhibits great parallelism. However,
the generation of each random walk in the Monte Carlo method has
been done sequentially because each point in the walk is derived from
the preceding point by moving one grid step along a randomly selected
direction. In this paper, we present a parallel algorithm for the random
walk generation in regular as well as irregular regions. The algorithm is
bhased on parallel prefix computations, and takes ()( [L/n]log n} time,
where L is the length of the random walk, and » is the number of
processors. The communication structure of the algorithm is shown to
ideally fit on a hypercube of nodes.

Index Terms— Hypercube, Monte Carlo method, parallel algorithms,
parallel prefix, partial differential equations, random walks.

I INTRODUCTION

The Monte Carlo method has been studied and used to solve elliptic
and parabolic partial differential equations (PDE) [8], [9], [14]. It has
several advantages over other methods, such as solving problems with
irregular boundaries and/or discontinuities, giving solutions at single
points independently from the solutions at other points, and allowing
for greater parallelism.

The greater amount of parallelism is derived from the fact that
the solutions at different points are independent, paving the way to
independent processes that can be executed in parallel. Moreover,
the solution at each point consists of first evaluating a “primary
estimator” (to be defined later) along each of many random walks in a
grid, and then averaging these primary estimators. The random waiks
are independent and therefore constructable in parallel. Such paralle]
algorithms have been studied [1), and various computer architectures
for their execution have been proposed (2], [3], [14].

In the above outline of the Monte Cario method of solving PDE’s,
the whole process is parallel except for the sequential construction of
each random walk and the corresponding computation of the primary
estimator. A random waik is constructed sequentially by starting
at some initial point in a grid and moving in randomly generated
directions until a boundary point is reached. Intuitively, the random
walk construction seems inherently sequential because every point in
the walk can be generated only if its preceding point is known.

The primary focus of this paper is the development of a paralle]
algorithm for constructing a random walk in rectangular and nonrect-
angular grids. The parallel algorithm will be derived by showing that
random walk construction reduces in principle to prefix computation,
which is a well-studied problem (4], [10])-[12]. The derived parallel
algorithm significantly improves on the time to construct a random
walk. Precisely, it reduces the time from linear to logarithmic (in the
length of the walk).
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After the parallel generation of the points of a random walk. one
needs to check whether a boundary has been reached and, if so, to
determine the first point at which the boundary is crossed because
the succeeding points have to be discarded. With a novel use of
parallel prefix, a second parallel algorithm for boundary checking
and first-boundary point calculation is presented. This algorithm is
also logarithmic in time.

Since random walks have many applications in statistical and sci-
entific computations where the grid is multidimensional, the parallel
algorithm for random walk construction is generalized to handle
multidimensional grids. The paper will also show how to ideally
map this generalized algorithm onto a hypercube system so that the
computation time and the communication time are minimized.

A secondary focus of this paper is the application of parallel
random walk construction to the Monte Carlo solution of PDE's.
As was indicated earlier, the coastruction of random walks was the
only remaining sequential segment of the Monte Carlo algorithm.
With the new parallel algorithm for random walk construction, the
time needed by the Monte Carlo method is significantly reduced
if the method is run on a parallel computing system with enough
processors. Clearly, no commercial system currently available has
enough processors to take advantage of all the natural parallelism as
well as the new parallelism in this problem. However, the advances
in VLSI and computer architecture make the prospects for massively
parallel systems promising. Systems with hundreds of thousands or
even millions of processors may be a reality in the near future. The
improved Monte Carlo algorithm will then run much faster on such
massively parallel systems.

It should be pointed out that several techniques for solving PDE’s
have been used. Examples include the well-known finite difference
method and finite element method., We pointed out at the outset
the advantages of the Monte Carlo method. However, it is outside
the scope of this paper to thoroughly compare the Monte Cario
method (with or without parallel random walk construction) to these
other methods. Suffice it to say that whenever the use of the Monte
Carlo method to solve PDE’s (or any problem) is advantageous,
and if enough processors are available, the parallel random walk
construction should be used because it significantly improves the
performance of the the Monte Carlo method.

This paper is organized as follows. The next section presents
briefly the Monte Carlo method for PDE’s and identifies the role
of random walks. Section i develops a parallel algorithm for the
random walk computation. Section IV generalizes the parallel random
walk construction to grids of multiple dimensions. Conclusions are
presented in Section V.

II. THE MONTE CARLO METHOD AND ITS INHERENT PARALLELISM
Let

AU +2BUy + CUyy + DU+ EU, + F =0 (1)

be a PDE defined over a region A with boundary ~. The factors
4, B. C. D. E. and F and the unknown function " are functions
of r. y and possibly the time variable ¢.
The Monte Carlo method is used to solve the following two
problems:
A. The Elliptic PDE Problem:
U. 4. B, C. D. E. and F are time-independent and
B® ~ AC < 0 on A. The problem is to solve (1) subject
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Fig. 1. A grid point Py and its five relevant neighbors.

to the boundary condition

UClecy)y=ola.y) if (ey) €~ (2)

B. The parabolic PDE problem:
U. 4. B. C. D. E. and F are time-dependent and B? —
AC =0 on A. The problem is to solve (1) subject to

Boundary Condition : Ulecy. )y =ole.y. t) if(r.y) €~

3

if leoy) € AL
G

The region A is divided into a regular grid of size h. Each
point P of the grid (except the boundary points) has 5 neighbors
Pi. Py, -, Ps as depicted in Fig. 1. We denote by &, the direction
along which we move from Py to P, where i = 1.2.3.4.5. A
random number generator (RNG) generates random directions (ie.,
61.62.---.85). A random walk starting at P, is constructed by
moving away from Py following directions generated by RNG until
an absorbing point is hit. A point is said to be absorbing if it is a
boundary point in the elliptic case, while in the parabolic case a point
is absorbing if it is either a boundary point or a point reached at a
certain specified time.

Letr(P)=2(A~B+C)+h(E+ D), where A. B. C. D. E,
and F are evaluated at (.r.y), the coordinates of the point P. Let
also W, be a random walk starting at Py and ending at a boundary
point Q;, and

Initial Condition : U(r.y.0) = g(a. y)

ZW)=o(Q)+h Y. )

P,ew;

Fip)
rP)’
The Monte Carlo solution of the elliptic equation (1) at point P,
subject to condition (2), consists of generating a number of random
walks Wy . W.-.. . Wy, all starting at Py and ending at some
boundary points Q1. Qa.---.Qw, respectively. Afterwards, Z (W)
is evaluated for all i = 1.2.---..V. Finally, U(P,) is approximated
by
1 N
f = 5 Zl Z(W,). (6)

Z(W.) is called the primary estimator of '(P,), and 6 the
secondary estimator. For the proof that 6 is a good approximation
of U, see [14].

For the parabolic case, where [ and the coefficients of
(1) are time dependent, the time scale is discretized into
equal units of length k (ie, f, = sk, s > 0), and
U(PR). o(F), A. B, C. D. E. F and r(P,) at time t, are
denoted U, (). ¢,(Py). A,. B,. C,. D,. E,. F, and r,(B),
respectively. A random walk W; in this case is constructed as before
except that W, is started at Py at time ¢, = sk, and after each step

(following a new direction), the time is decreased by one unit. The

walk 11" is finished if either a boundary point is reached (at some

time t,) or the time runs out (after s steps), whichever comes first.
In this case, the primary estimator Z(13) of I",( Py} is

3 -t

. . 2 F._(P)
ZIW) =1Q) +h* —_— 7
Q) ; ] (7)

where
W, is a random walk starting at P, and ending at some
absorbing point @, such that (), is reached at time t, = «k,
and

. 2(Q.)
1,0,)=4°
(@) {Q(Q,)

ifQ, €~anda>0
if a =0 (ie, Q, is reached at time 0)’

The Monte Carlo solution of the parabolic equation (1) at point Py,
at time ¢,, subject to the conditions (3) and (4), consists of generating

.V random walks W7, W, .. Wy, evaluating the Z(1},)’s and
averaging them as in the eliliptic case.
It can be clearly seen that the random walks W, 115, .-, IV are

independent, and that Z(¥17). Z(W%).--- . Z(Wv) can be computed
independently (i.e., in parallel). This inter-walk parallelism has been
studied in {2], [3], and [14]. It is also clear to see that [ can be
computed at different points independently and thus concurrently.

The third area for parallelism is the construction of each random
walk 1" and the computation of Z(W') along with it. We refer to
this process as the random walk computation (RWC). Although RWC
seems inherently sequential, this paper will parallelize it.

III. PARALLEL CONSTRUCTION OF RANDOM WALKS

To parallelize the random walk construction we first need a
number of independent random number (i.e., direction) generators
that generate a sequence of random numbers simultaneously. Assume
we have n - 1 independent random number generators running on
n - 1 processors (the choice of n — 1 as opposed to n will be justified
later). The problem can be stated as follows:

Given a grid, a point P, in the grid, and a sequence of n — 1
random directions d1.dz. - - - . d.._, generated by the n—1 ran-
dom number generators, construct in parallel the random walk
consisting of the sequence of points Py, Py, P,,---. P,_, such
that P is the d,th neighbor of P;_, fori = 1.2.---.n — 1.

For simplicity, assume first that the grid is an m x k rectangular
grid labeled in such a way that the grid point (i, j) is in the ith row
and jth column, where (0,0) is in the bottom leftmost point. The case
where the grid is not rectangular will be treated later.

A move along a direction d can be viewed as a translation T4
for some vector 4 = (a.b) such that Th(i.j) = (i.j)+ A =
(1 + a.j + b). The translations corresponding to the five directions
are: Tig 1) for the move to the east direction, Tio.~1) for the move to
the west direction, T;; o, for the move to the north direction, Ti_1.0
for the move to the south direction, and T(_.1) for the move to the
southeast direction.

Given an initial grid point P, and n — 1 random direc-
tions di.dz.---.dn-1, the corresponding translations Ta4,.T4,,
+-+.Ta,_, can be simply found and the points P,.P>,---, P,_,
are derived as follows: P, = T4,(P) = Po + Ay, P, =
T42(P1) = T42 TAI(P()) = Py 4+ 41 + A2, and in general, P, =
Ta(Poy) = Ta, - Ta,Tay(Po) = B+ A1 + A2 + - + 4,
for i = 1.2.---.n — 1. Finding these points is now a standard
parallel prefix computation [4], [10]-[12] which can be solved in
O(log n) time. However, further work has to be done to check
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boundary crossing. A point P, = (p.g¢) is a boundary point simply
ifp=0.p= Oorg =k~ 1, but what is required
is to determine, in a parallel setting, the firs: boundary point and
to discard all the remaining points after it. If there is no boundary
crossing and F,_ is not a boundary point, the algorithm has to
be repeated until a boundary point is reached. The details of this
algorithm are elaborated next.

The algorithm makes a heavy use of the procedure PAR-PREFIX
which does the prefix computation on n processors in parallel
taking ((log n} computation time, and. if tun on a hypercube of
n processors, it takes (f{logn) communication time. A similar
procedure. called SCAN, is implemented on the Connection Machine
[S]. Section HI-A will present the procedure PAR-PREFIX. Section
[II-B will describe the parallet (RWC) for the elliptic PDE’s on
rectangular grids. The case of nonrectangular grids is shown to be a
slight variation of the rectangular case and is addressed in Section
[I-C. Afterwards, the necessary modifications to handle parabolic
PDE’s are discussed in Section III-D.

m—1l.g =

A. The PAR-PREFIX Algorithm

The procedure PAR-PREFIX performs the parallel prefix compu-
tation for any associative operator. Specifically, the prefix problem
is to compute the values of Xy. Xoo X,. Xgo0 X, 0 Xo. -,
XooXio0-.0X,_, given the values Xo.X,. . X,_;. The
operator o is any arbitrary associative binary operation such as scalar
addition (+), vector addition (+), the minimum operator (MIN), the
Boolean OR, and so on. The integer n can be assumed to be a power
of 2. The parallel prefix problem is to compute the values above in
parallel.

The parallel prefix problem has received much attention [4],
[10]-[12], and various VLSI circuit implementations have been pro-
posed [12], [13], [15]. For compieteness, we will present in this paper
an optimal parallel algorithm for prefix computation. The algorithm
communication structure will be shown to ideally fit on a hypercube
network of n nodes. This algorithm will be later generalized in
Section IV to construct random waiks in multidimensional grids.

The algorithm for PAR-PREFIX is best explained first as a re-
cursive algorithm of one basis step, two recursive calls, and one
combining step. Let X, denote X; o Xiy1 0 --- o X;. Initially
processor pe; has X,. At the end of the algorithm pe; will have the
value Xo.; and Xo.,-1. To understand the basis step of the recursive
algorithm, assume there are 2 processors only, that is, n = 2. Then
the algorithm proceeds as follows. pey sends X, to pe; and pe;
sends X, to peo. Afterwards, every pe computes Xo.; := Xp o X}.
Thus, peq has now Xo.0 (which is Xo), pe; has Xo.1, and both pe’s
have Xo.g.

To understand the recursive part, assume that the processors
are divided into halves. The first half consists of processors
Peo.per. - .penso-y, and the second half consists of processors
P€ny2.P€(n/2)+1-.*"* . P€n—1. The recursive part consists of per-
forming PAR-PREFIX by the first half of processors on the data
Xo.X1,---. X(ny2)-1, and also by the second half of processors
on the data X, /5. X, 2)41.+-.Xn-1. The effect of these two
PAR-PREFIX’s is that for every | = 0.1.---.(n/2) - 1, pe:
has the value Xy, and the value X.(n/2y—;, and that for every
i=n/2.(nf2)+1,---.n — 1, pe; has the value X(n/2y:i and the
value X(,/2).n—1. The combining step is next performed so that every
processor pe,, for i = 0,1.---,n — 1, will have the values X,.; and
Xo.n—1. This step is accomplished as follows. Every processor pe; in
the first half sends the value Xo.(n/2)~1 to Peiy(n/2) in the second
half. Similarly, every processor pe, ;(n /2 in the second half sends the
value X(,,/2).n—1 0 pe, in the first half. Afterwards, every pe; in the
second half computes Xo.; := Xo:(n/2y~1 © X(n/2)... Finally, every

pe. in both halves computes Xo.—1 1= Xo n/2-y 0 X, /a, 0oy,
By this combining step, every pe, has Xy, and Yo, _,.

This algorithm can be implemented nonrecursively in log n stages
as follows. In the first stage. every pair of processors pey and pes,,.,
do the same on their respective data as is done in the basis step of
the recursive algorithm explained above. At stage ¢, the n processors
are divided into n/2' independent Subsvstems (I, lo< <insz)—1s
where I, is the set of pe ‘s of labels in [j2'.(j + 112* = 1] =
(U200 )2+ 10 j2+ 2. (j + 112 — 1}. Each subsystem [, is in
turn divided into two halves of processors [j2'.j2' +2'~' — |] and
[J2' 4+ 271 (j + 1)2° = 1] such that every pe; in the first half has

the values X ;. and X 5. 50 50-1_, (computed in stage /i — 1),
and every pe; in the second half has the values X, ii9-1, and
X 2is20-1 (,41)20~;- In stage i, the processors in these two halves

perform the same job on their data as the two halves in the combining
step in the last paragraph. The details of this job are presented in the
first inner for-loop in the procedure Stage(;) below. This procedure
implements the /th stage just explained.

To fully understand the working of Stage(/), the semantics of three
special parallel language constructs in Stage(/) need to be specified.
The first is of the form

for ] =
proc,;
endfor

m to k pardo

which means that the processes proc...procma,.---
simultaneously.

The second is of the form: pe, does: S; which means that
processor pe; executes the statement S. The third is of the form
Send (pe,. a.pe,); which means that processor pe; sends the data
value a to processor pe,.

.procy run

Procedure Stage(:)

begin
for j =0to (n/2')—~ 1 pardo /x; denotes the subsystem I,/
for | =2 to j2' +2'~" — lpardo / * ranges over the first

half of I, *
Send (per. X 51 01 1oi-1 1 Peyge-1 )
Send (pe; -1 X 5upge- 1<1+1)21-1 “per;
perypoi-r does: X oy 0o 1= X 50 i igim1 g0
\,z‘ 2 g2t
endfor

for | =2 to (j + 1)2' — 1 pardo
per does: X o0 11ypi g 1= X g jnppi-140
A LIPS IL I
endfor
endfor
end

The full algorithm for PAR-PREFIX is a simple sequential for-loop
executing stage 1, stage 2, - - - , stage log n, as presented below.

Procedure PAR-PREFIX (X (0..n — 1))

begin
for i = 1to logn do
Stage(:);
endfor
end

Communication and Complexity analysis of PAR-PREFIX: By a
simple inspection of the procedure Stage, we observe that communi-
cation occurs between processor pe; and pe;, ,.~1 for various values
ofland i suchthati = 1,2, lognand j2' <1< j2'+27' -1
When [ is expressed as a binary number /,_,---l;l5, 1t can be
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seen that /,_, is equal to O and that | + 2'7! has the same binary
representation as [ except that bit [,_1 is complemented. That is, /
and { 4+ 27" differ in only one bit. Consequently, if PAR-PREFIX
is run on a hypercube system of » processors. every two processors
that need to communicate will have a direct link between them. In
other terms. the hvpercube structure is an ideal structure for PAR-
PREFIX. For more detail on parallel prefix implementation on the
hypercube, see [7].

Note that when the operator o is scalar addition, vector addition,
the minimum operator MIN, or the Boolean OR, PAR-PREFIX is
referred to as ADD-PREFIX, VADD-PREFIX, MIN-PREFIX, or
OR-PREFIX, respectively.

B. Parallel RWC for the Elliptic PDE’s

Given an initial grid point I and n — 1 directions corresponding to
the translations T'y,. Ty, --+. Ty, _,, the points Py. Py.- -+ Py
of the random walk are found by calling VADD-PREFIX(.4(0..n —
1)), where 4(0) = Fy and 4{/) = 4, for/ =1.2..--.n — 1. Since
P =P+ 4, + A +---+ 4, we conclude that P, = 4., and
is hence computed by pe,. At this point, the boundary checking test
has to be performed.

Assume that the coordinates of P, are («,. b, ), or equivalently, that
Ao, = la..b,). Each pe, will check if the point P, is a boundary
point and will also compute a certain flag f, as follows:

Procedure Check-Boundary(P,. f,) /x done by pe, *
begin
if (a, =00r a, =m-=1or (b =00r b, =k ~1)
then
/* P, is on boundary+/
foi= 1
else
f. := 2n; /* or any number > nx/
end

To determine the first boundary point so that all succeeding
points are discarded, we determine the minimum of all the flags
fo. fi.---. fa=1. This can be accomplished by executing MIN-
PREFIX(f(0..n — 1)). The minimum min is fo.n—, and is available
at every pe, at the end of MIN-PREFIX. If all the points are within
boundary, then each f, = 2n and hence the minimum is 2n. If
there is a boundary point, assume that P is the first boundary point.
Therefore, f; = {, and for/ < !, f, = 2n > fi. Fori > I, f, is either
i or 2n based on whether P, is a boundary point or not. Therefore,
whether i < lor: > 1, fi =1 < f,. Thus, f; is the minimum of all
the f.’s, and is equal to l. It follows that min is equal to 2n if all
points are within boundary, while if there is a boundary point, min
is equal to the index of the first boundary point, that is, P, is the
first boundary point.

After the boundary checking and the computation of the minimum
min of the flags f.’s, each pe, checks if min = 2n (recail that
every pe, has the min after MIN-PREFIX). If pe; finds min = 2n
or i < min, then pe, computes the value r, = (F(P)/r(P))h?
because the point P, is on the walk. If { > min, the point P, is after
the first boundary point, in which case pe; sets r, to 0 (so that it
will not contribute to Z(117)).

Now if min # 2n, then P,,;, is the first boundary point (i.e., the
endpoint Q of the random walk W just generated). In this case,
PEmin SEIS Imuin 10 Imuin 1= Imin + @(Pmun). Afterwards, the
PrOCESSOTS peg, peq.---.pen—1 sum their r;’s to form Z(W). This
is accomplished by executing ADD-PREFIX(xr(0..n — 1)).

On the other hand, if min = 2n, then no boundary point has been
reached yet. The sum ro +.ry + - -+, is computed using ADD-
PREFIX(r(0..n — 1)), and then stored in a temporary variable Z in

peo. Afterwards. peq sets the points Py to P,y (i.e.. Pyi= P, _y),
while all the other pe s clear all their variables, and the whole process
of generating n ~ 1 random directions and finding new points is
repeated. The ~Z-value™ of every new set of points is computed and
added to the old Z variable. The process is repeated until a boundary
point is reached.

These steps of the parallel construction of a random walk and the
computation of the associated primary estimator are summarized in
procedure PAR-RWC.

Procedure PAR-RWC(F;)

begin
1. Z:=0;
2. for i = 1to n — 1 pardo

pe, randomly generates a direction J, and computes the
corresponding 4, ;

endfor
3. VADD-PREFIX(A(0..n — 1}); /«Find the n points
P{).Pl."'.Pn—l*/

4. for / = 0to n — 1 pardo
pe. does : Check-Boundary(P.. f,);
endfor
5. MIN-PREFIX(f(0..n - 1));
/¥min = fo.n-1 which is the minimum of all f,’s and is
stored in every pex/
6. for / = 0to n — | parde

pe. does: if (min = 2nor « < min)then
€, = —f(‘%)—)h‘)’;
else
r, = 0
endif
endfor

7. if (min # 2n) then /* An absorbing point P, is reached */
PEmn A0S : Trvin 1= Ein + O Pmin);
ADD-PREFIX(r(0.n = 1));

Z =2 4 roan-1;
return;
else /xNo absorbing point has been reached*
ADD-PREFIX(.r(0..n — 1)});
Z = Z 4 ron-1;
Send (pe,—.P._1.peo);

peo does : Py := P,_y;
goto 2; /«x Repeat the process */
endif

end

The execution time of PAR-RWC is O([L/n] log n) on a hyper-
cube architecture of n processors, where L is the length of the random
walk. This is so because each goto-iteration takes O({log n) time, and
the number of goto-iterations is [L/n].

This ends the development of the parallel RWC algorithm for
rectangular grids and elliptic PDE’s. In the next two subsections,
nonrectangular regions are handled and then the modifications needed
to handle the parabolic PDE’s are presented.

C. Handling Nonrectangular Regions

For the case of nonrectangular convex regions, the region is
embedded in the smaliest rectangular m x k grid such that the
boundary lines of the grid are tangent to the region where the
upper/lower lines are horizontal. The two points of intersection
between the region boundary and row p of the grid are recorded
for each p. The western intersection point takes the label of the grid
point immediately to its west (denoted (p. W(p))), and the eastern
intersection point takes the label of the grid point immediately to



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. 4. NO. 3. MARCH 1993 359

its east (denoted {p. E(p))). Similarly, the two points of intersection
between the region boundary and column « of the grid are recorded
for each 4. The northern intersection point takes the label of the grid
point immediately to its north (denoted (N{yq). ¢1). and the southern
intersection point takes the label of the grid point immediately to its
south denoted 1 5(1. 4). The random walk generation PAR-RWC is
the same as in the rectangular case except for boundary checking.
A paint I = ip.y) is a boundary point if p = Niyy or S(y), or
¢ = Etp)or IWip). Thus the Check-Boundary procedure becomes:

Procedure Check-Boundary(P,. f,) /+ done by pe,,

P o= (u,. b, )%/
begin
if v, = Nb,yor u, = Sthyor b, = Etayor b, = 1(a)
then
& P, is on boundary+/
fo= 0
else
fr == 2n: /% or any number > n«/
end

To be able to execute this procedure, every pe has to store
Wip)h E(p). Nig). and S(q) for all 0 < p £ m-—1 and
0< ¢y < k-1

Thus the parallel RWC algorithm keeps its simplicity and speed,
requiring only some additional storage for the intersection points
between the region boundary and the grid.

D. Parallel RWC for Parabolic PDE’s

The parallel RWC algorithm for the parabolic case is very similar
to the algorithm for the elliptic case. The only difference is the
definition of absorbing points and the subsequent change needed to
detect absorbing points. Z(11") is also slightly modified.

At the outset of the algorithm, every pe, has a counter T (for
time) initialized to s. The algorithm finds the n — 1 points first in the
same way as in the elliptic case. It also performs boundary checking
as before. If a boundary point has been detected, say P,,,,, and if
T—min >0, then P,,, is an absorbing point, and hence every pe ,,
for j < min, computes v, := (Fr_,(P,)/rr—,(P,))h?, and then
PErmin SEIS Lrin 10 Lmin + OT—pen (Pnin ) as required to compute
Z{1¥) of (7). All the remaining pe’s set their s to 0. Z(W) is then
computed by executing ADD-PREFIX as in the elliptic case.

If on the other hand, T — min < 0 (ie., time-out), then the
absorbing point is Pr. In this case, only the pe;’s where j < T
compute x, := (Fr_ (P))/rr—,(P,))h?, while all the remaining
pe’s set their +’s to 0. Then Pr performs r7 := rr + g(Pr).
Afterwards, Z(11") is computed using ADD-PREFIX(.r(0..n — 1)).

If min = 2n (ie., no grid boundary point is reached) and if
T < n~1, then Pr is an absorbing point and the algorithm does as
in the preceding paragraph. However, if T > n ~ 1, then no absorbing

_point has been reached. In this case, the same computations are done
as in the elliptic case (to accumulate Z), but before we repeat the
algorithm with a new set of n ~ 1 random directions, the counter T
in each pe is updated: T := T — (n — 1). Afterwards, the algorithm
is repeated until an absorbing point is reached.

As can be seen, the additional computations needed for the
parabolic case take constant time. Consequently, the overall time for
the parallel RWC for the elliptic or parabolic PDE’s is O([£]log ),
whether the region is a rectangular grid or not, where L is the length

of the random walk, and n is the number of processors.

IV. RANDOM WALKS IN MULTIDIMENSIONAL GRIDS

This section will address scaling up the parallel RWC algorithm
to m-dimensional grids where m > 2. Recall that the »n points

Po. Py P, _y of a random walk are generated by conducting
a parallel prefix (of vector addition) on 1 vectors Ao A ALy,
where 4o = P, and 4, is a vector that characterizes the direction
to be followed in the grid to generate P, from P, .\ Each point P,
1s equal to 4y + 4, + --- + 4.

Inapi xpx- xp,, grid of dimension 1. the vector 4, consists
of i numbers. Therefore. if the vector addition s to be done by single
processors. it takes /» time steps. This forces the parallel prefix to
take Otmlog n) time on an »-node hvpercube. However, this time
requirement can be easily cut down by a factor of 1 on an mn-
node hypercube by using the 1:-fold natural parallelism in the vector
addition operation. This is explained below.

1) Divide the »i1-node hypercube into n subcubes of m nodes
cach. The labels of the nodes in each subcube agree in the log n
most significant bits. These log n bits are taken to be the label
of the subcube. View cach subcube as a “hypernode”. Due
to the connectivity of hypercubes, these » hypernodes form
an n-node hypercube where between every two neighboring
hypernodes there exist 1 links (one link between every pair of
corresponding nodes in the two hypernodes).

2) To do a parallel prefix on the vectors 4. Ay o dn 2y, each
-1, is stored in the hypernode of label / such that the Jth number
of 4, is stored in the jth pe of hypernode / (i.e., pr,a,, where
i o j denotes the concatenation of the binary representations
of / and ;). Perform the parallel prefix on the n-hypernode
hypercube (as in Section 1) treating each vector addition and
each Send as an atomic operation executed by a hypernode.

3) The atomic vector addition of two vectors oty Lty —y)
and (ro.¢y.-++. ¢, 1) is done in parallel by the m nodes of
the hypernode:

for j=0to m -1 parde
Peie, (i€, the jth node of hypernode /) does : U, + v,;
endfor

This clearly takes one time unit needed for one scalar addition.

4) Similarly, the atomic vector Send sends a vector (g ty,e--.
tm—1) from one hypernode i/ to a neighboring hypernode ¥ in
this parallel fashion:

for j=0to m~1 pardo
Send (pe.s,.v,. pre,);
endfor

This takes one unit of communication time because there is a
direct link between pe,,, and pej,,.

5) When the n points P,. P,.---.P,_, have been computed,
boundary checking has to be conducted. Each hypernode ¢
takes advantage of its being an m-node hypercube to check
if its point P, = (yo.y1.---.ym—1) is a boundary point as
follows:

for j=0to m -1 pardo

D€.o, does : if (yy =00r y, =p, ~ 1) then
¢, := 1; /* Hit the boundary
in dimension j */
else
¢, 1= 0;
endif
endfor
OR-PREFIX(c(0..m — 1)); /x computes the Boolean or of
the ¢;’s%/
Peieo does : if (co.m-1 = 1) then

fir=i4/x P isa
boundary point */
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Afterwards, the n-node subcube consisting of the proces-
sors peep's for /0 = O.L.---.n — 1 performs MIN-
PREFIX(( f(0..n -~ 1}) as in the previous section to check if a
boundary point has been reached, and if so. to calculate the first
boundary point. If no boundary point is reached, the process
is repeated.

Steps 1-4 take O(log n) time. and step S takes O(log m) time.
Thus, the process of computing a random walk of length L is
O([L/nldogm +logn)) = O[L/n] log(mn)).

[t should be noted that the random walk can also be computed
on the mn-node hypercube using the approach of the previous
section where each vector addition operation is done on a sin-
gle processor (in m steps). The random walk construction takes
O([L/mnTmlog(mn)) in this nonhypernode approach. Observe
that for all L, n and m, [L/n] < [L/mn]m. Also, when n < L <
mn, we have [L/n] < [L/mn]m. Consequently, the hypernode
approach is at least as fast as the nonhypernode approach. This makes
the hypernode approach preferable.

V. CONCLUSIONS

We have presented in this paper a parallel algorithm for the con-
struction of random walks and applied it to the Monte Carlo solution
of elliptic and parabolic partial differential equations. The algorithm
was shown to ideally fit on a hypercube structure. The algorithm is
optimal in time and space when the region is a rectangular grid. It
is also optimal in time when the region is irregular. This parallel
construction of random walks offers great speedup in the solution of
partial differential equations. It reduces the time of random walk
construction from linear to logarithmic time in the length of the
random walk.

The parallel random walk construction algorithm was also gener-
alized to multidimensional grids and shown to execute efficiently on
hypercubes.
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