
An Extensive Math Query Language

Abdou S. Youssef
Department of Computer Science

The George Washington University
Washington, DC, 20052, USA

ayoussef@gwu.edu

Moody E. Altamimi
Department of Computer Science

The George Washington University
Washington, DC, 20052, USA

maltamimi@gmail.com

Abstract

 Math search is a new area of research with many ena-
bling technologies but also many challenges. Some of the
enabling technologies include XML, XPath, XQuery, and
MathML. Some of the challenges involve enabling
search systems to recognize mathematical symbols and
structures. Several math search projects have made con-
siderable progress in meeting those challenges. One of
the remaining challenges is the creation and implementa-
tion of a math query language that enables the general us-
ers to express their information needs intuitively yet pre-
cisely. This paper will present such a language and detail
its features. The new math query language offers an al-
ternative way to describe mathematical expressions that is
more consistent and less ambiguous than conventional
mathematical notation. In addition, the language goes be-
yond the Boolean and proximity query syntax found in
standard text search systems. It defines a powerful set of
wildcards that are deemed important for math search.
These wildcards provide for more precise structural
search and multi-levels of abstractions.

1 INTRODUCTION

The need to facilitate scientific information exchange
between researchers has resulted in the creation of a
growing number of specialized mathematical library pro-
jects around the world. These projects aim to make scien-
tific literature available on the Web. With the increasing
online availability of electronic documents that contain
mathematical expressions, the ability to find relevant in-
formation has become increasingly important. Yet, sup-
port for searching for mathematical expressions is only in
its infancy.

The development of math search capabilities is a new

area of research with many technical challenges. Some of
the challenges involve enabling search systems to recog-
nize mathematical symbols and structures. Several math
search projects have made considerable progress in meet-
ing those challenges. Several research projects on math
search have resolved many of the issues and challenges in
math search. Notable among those math-search projects
are the math search of the DLMF project at NIST [1], and
the math search system of Design Science [2].

The query languages assumed or implemented in those
systems follow primarily the same syntax as standard text
search. That syntax consists mainly of Boolean query op-
erators (i.e., “and”, “or”, and “not”) and phrase operators.
Phrase queries are important in math search since math
expressions and fragments of expression are meant to be
sequences of consecutive terms, that is, phrases. The
standard syntax provides for a limited use of wildcards,
namely, “?” and “*”. The first stands for one arbitrary
character inside a keyword, and the second stands for zero
or more arbitrary characters inside a keyword. Such wild-
card syntax is severely limiting in math search. For ex-
ample, it is not capable of expressing an ellipsis. Also, if
a user does not care what certain terms are (such as vari-
able names) but cares that two or more of those terms are
identical, the standard query syntax is inadequate to ex-
press such a need.

This paper proposes a new query language that extends

the current standard query syntax. The language describes
the user’s information needs by allowing the authoring of
different types of queries and allowing the use of an ex-
panded set of wildcards. The proposed math query lan-
guage will enable science and math users to specify their
information needs in a more precise way to guarantee that
the matches are more relevant to their needs.

The implementation of the language maps queries writ-

ten in that language into XPath/XQuery queries [3, 4]. It
is assumed that the math content is in Content MathML
[5]. The justification for this assumption is based on cur-
rent technological advances and expected future practices.
For example, many conversion tools already exist for
converting LaTeX to MathML, such as the Rice Univer-
sity tool for conversion to Content MathML [6], and
Bruce Miller’s LaTeXML and associated software [7],
which convert from LaTeX to a special XML syntax that
includes presentation MathML and some content mark up.
Furthermore, as the math authoring community becomes
more comfortable with MathML and, more importantly,
becomes more convinced of the need for and benefits of
Content MathML, more conversion tools and authoring
tools that yield Content MathML will become available
and more dominantly used.

2 BACKGROUND AND RELATED
WORK

This section surveys work related to equation-based

math search systems and the user query languages they
offer. Mainly query languages developed for the DLMF
project, Design Science search system, and Mathematica,
will be described.

2.1 DLMF and Mathdex

Youssef et al. [8] developed the first generation of an
equation-based math search system as part of the Digital
Library of Mathematical Functions [1] (DLMF) project at
NIST. The DLMF project provides an online source of
mathematical content such as formulas and graphs, and
allows for the search and retrieval of that content [8]. The
mathematical content of DLMF, originally in LaTeX, is
converted to html and xhtml using the LaTeXML markup
language and software tool developed at NIST. Youssef,
who is developing the search system for DLMF, opted for
an evolutionary approach, building on the existing text
search technology. As a result, the query language syntax
is almost identical to text search syntax, with the added
power of recognizing mathematical symbols and struc-
tures to a great extent.

Mathdex [2] is a web-based search engine developed

by Design Science [9] as part of an NSF grant to facilitate
equation-based search. Mathdex indexes not only LaTeX
but also Presentation MathML, and it crawls the Web
looking for Math contents and indexing them. Like the
DLMF search, Mathdex follows an evolutionary approach
by utilizing text search technology.

Even though text search technology has reached a high

level of maturity, it cannot fully capture all of the charac-
teristics inherent in mathematical content. As a result, the
query language developed for the DLMF project has lim-
ited expressive power when the user is trying to look for
patterns within mathematical structures. For example, if a
user wants to look for an expression where “x^2+1” is
somewhere in the denominator without caring exactly in
the denominator, a user should be able to write the fol-
lowing query “/(…x^2+1…)”; unfortunately, this is not
possible using the DLMF search system or Mathdex. As
another example, consider the situation where a user
wishes to specify a query that contains cos^2 x+sin^2 x
and indicate that the variable x could be any other sym-
bol, the best that can be done currently is to write cos^2
$+sin^2 $, where “$” is a wildcard that stands for any ar-
bitrary string of characters; this, however, fails to enforce
that the two wildcards must stand for the same variable
name.

2.2 Mathematica Search

Wolfram research offers a large online repository of
mathematical functions and formulas [10] encoded in dif-
ferent formats: Mathematica’s standard format, MathML
and ASCII. Mathematica offers an experimental search
tool that allows the user to specify the terms (functions,
numbers, constants, operations) in the query, using drop
down menus. The user can also specify options to filter
the search results based on function types (elementary
functions only or integer functions only). The use of drop
down menus allows the user to create more complex que-
ries by using Boolean AND and OR. The user is able,
however, to search for Mathematica patterns using the
Mathematica language, which eliminates ambiguities in-
herent in mathematical notation. The language covers a
wider range of mathematics than our proposed math user
query language. However, it only offers basic support
structural search and wildcards, and thus suffers the same
limitations of text-based search systems mentioned above.

3 THE PROPOSED QUERY LANGUAGE

Mathematical notation can be ambiguous and cumber-
some to type. The math query language presented in this
paper offers an alternative way to describe mathematical
expressions that are more consistent and less ambiguous
than conventional mathematical notation. The syntax is
intuitive and covers notation that is commonly used when
possible. However, the language is by no means com-
plete. The language focuses on mathematical notation
that is commonly used and supported by Content
MathML 2.0 in the areas of arithmetic, algebra, calculus,
etc. In addition, syntax to handle notation that Youssef
and others didn’t cover but will benefit the math search
community is developed for matrices, ordinary and partial
differential equations, integration, and function composi-
tion. Furthermore, a more comprehensive set of wildcard
symbols is introduced, which will enable the creation of
more complex queries that specify subparts of an expres-
sion, and which will provide for more support of abstrac-
tion and structured search. The end result is an ASCII
language that makes unambiguous use of symbols and has
a well-defined grammar.

The following subsections will describe the character-

istics of the query language

3.1 Characteristics of the Language

In the case of operators and special characters that do
not have a corresponding key on the keyboard, the user is
not required to use additional software. In those cases,
the language provides different symbols and keywords
that are part of the English alphabet. For example, in the
expression a • b, the • symbol is represented as = = =.
Another example is when the mean of an identifier x that

is commonly denoted by X is represented using the

“mean” keyword as mean(x), or simply “X bar” if X re-
fers to an arbitrary variable name.

Common two-dimensional configurations of mathe-
matical notation are represented in a linear form. The su-
perscript and subscript layouts will be captured through
the use of symbols to identify these structures. The “^”
symbol and the “_” symbol are used to explicitly denote
superscript and subscript layout, respectively. Binding
operators [17] like integration, differentiation and summa-
tion, for example, will be made linear through the use of
keywords to denote these operators in addition to the use
of parentheses to group their arguments. Function pa-
rameters (as opposed to function variables) will be repre-
sented using subscript and superscript notation. Struc-
tures such as matrices will have a linear representation
through the use of the “matrix” keyword in combination
with parenthesis where “,” and “;” symbols are used to
separate columns and rows. The linearization of the two-
dimensional layout, in addition to defining keywords that
correspond to symbols that do not exist on keyboards, al-
low for the implementation of an input module that is
easy to use.

For effective processing, ambiguity and inconsistencies

inherent in common mathematical notation are resolved
by developing a language where the focus is on capturing
the underlying conceptual structures rather than the ab-
stract notational structures of an expression. The syntax
requires the user to explicitly define relations between no-
tations that are otherwise implicit or dependent on context
and knowledge of the problem domain. To do so, func-
tions and operators that are omitted for conciseness are
assigned symbols or keywords. For example, when repre-
senting g(x+y) as the multiplication of an identifier g with
the sum of the identifiers x and y, the user is required to
use * to indicate the multiplication operation; otherwise, g
will be considered as a function applied at x+y. Also,
when parentheses are used to represent elements of a set
or a matrix, the user is required to use keywords like set
and matrix in addition to parentheses.

Generally, to minimize ambiguity, the following addi-

tional rules must be obeyed:
• When different formats are used to represent the same

concept, the user is restricted to one form. Handling
mathematical equivalences is out of the scope of this
research. For example, when representing the square

root of x x , x^(1/2) is interpreted differently and
will not mean the square root of x, but root^2[x] will.
Another example, 1/x and x^-1 will be interpreted dif-
ferently.

• Some functions do not require the use of parentheses
when their argument is simple. For example, sin x
does not require parentheses but sin(x+1) does. The
math query language in this case will require the use of

parentheses to enclose the argument regardless of how
simple it is to maintain a more consistent syntax.

• The @ symbol will be used to declare function applica-
tion. As a result, (a, b, c) for example, will be parsed
as a triplet while @(a, b) will be parsed as arguments
of a function.

As mentioned earlier, there are additional features and

syntax that are possible with the XML-query approach but
not easily implementable by text-IR approach. Table 1 il-
lustrates that point with a few examples, and the rest of
this section introduces formally the new features of the
query language.

Table 1. User math queries in different areas of math

Type Query Example and Explanation

Matrices

Matrix[;;...a,b...]
Look for a,b somewhere in the
third row of a matrix

Partial
Differentiation

D_{x^2,y^3}(expr)
Look for the fifth partial deriva-
tive of an expression for 2 times
with respect to x and 3 times with
respect to y

Function
Composition

f\og
Look for f composed with g

3.2 New Capabilities and Features

Wildcards in the area of text search such as “*” and “?”
stand for multiple characters and a single character within
a single keyword. As argued earlier, these wildcards are
very inadequate, and new wildcards are needed. For ex-
ample, there is a need for additional wildcards to stand for
any number of rows or columns when searching for a ma-
trix, and for wildcards to specify subparts of a mathemati-
cal expression.

Three sets of wildcards are introduced to help capture

user needs in the area of math search. The first set of
wildcards handles search at the character level. Their use
is similar to wildcards in the area of text search to facili-
tate keyword search. The second and third sets handle
search at the parsed tree level of a mathematical structure.
These two sets are math specific and allow the user
greater levels of expression.

Character Level (keyword search): At this level, two
wildcards are used: “$” and “?”. Their use is similar to
the use of * and ? in text search respectively. The proc-
essing of wildcards at the character level will be done
through pattern matching algorithms.

Term Level (tree search): From the previous set, the $ can
be used to stand for a single arbitrary term but this is not
sufficient; wildcards that stand for a sequence of terms are

needed. The following wildcards are introduced that al-
low the user to search for a sub-tree in the tree structure of
mathematical expressions.

Table 2. Term-level wildcards

Symbol and its meaning

$ symbol when used alone, the meaning of it is over-
loaded to mean any arbitrary single term, which can be
a variable, a number, a matrix name, a function name,
an operator name, a set name, and so on. For example,
f($) matches a function f with exactly one argument
that is a single term. As a result, f(x) will be retrieved
but not f(x^2).

Another example, $ + 2 is a query that will retrieve
3+2 as well as x+2 but not (3*4)+2 since 3*4 is not a
single term but a group of terms that form a sub-
expression.

--- stands for 0 or more terms that form a sub-
expression. For example, f(x,---) matches a function f
with either one argument x or two arguments with the
first one being x and the other argument being arbitrary.
As a result, f(x), f(x, y), f(x, y^2) will all be retrieved.

Note: --- will also be used to support structural search,
this will be discussed later.

-- stands for one or more terms. This means some-
thing must exist, either a single term or a sub-
expression. For example, f(x, --) will match a function
f with exactly two arguments where the first is x and
the second can be a single term or an expression. As
a result, f(x, y) and f(x, y^2) will be retrieved but not
f(x). Note, on the other hand, that f(x, $) matches
functions f with two arguments where the second must
be a single term.

Another example, matrix(--,x+1) will look for x+1 in
the last column in matrices that have exactly two col-
umns. While matrix(--) matches any matrix with one
row and one column irrespective of the nature of that
entry.

Another example, --+-- matches sin+cos, A+B, and
matrix(a,b; c,d)+ matrix(1,2; 3,4) among others.

Sequence-level and parse tree-level wildcards: The two
wildcards in this set will match for zero-or-more, or one-
or-more members in a sequence, or more generally, for
zero-or-more/one-or-more nodes at the same level in
parse tree. A new wildcard that searches for exactly one

member will not be considered since “--” from the previ-
ous set of wildcards can stand for a single member. (Note
that a sequence can be a vector, a sequence of arguments
of a function, a series, and such.) The two wildcards are
… and .. described and illustrated in the next table.

The following example explains the need for wildcards

in this set. If the content is f(x+5, 2+y+z, z^2-5*z) and
the user wants to write a query that looks for a function f
where the last argument is z^2-5*z and not really know
the exact number of arguments, the previous set of wild-
cards will only allow for f(--,z^2-5*z). That query will
not retrieve the content since “--” will stand for a single
argument. Clearly there is a need for a new set of wild-
cards that allows the user to specify more than one argu-
ment. When the user enters f(.., z^2-5*z), the content will
be retrieved because the search will be for function f with
at least two arguments where the last one is z^2-5*z.

Table 3. Sequence-level and parse tree-level wildcards

Symbol and its meaning

.. stands for one or more consecutive members in a se-
quence, or one or more consecutive nodes at the same
level in a parse tree.

Examples:

matrix(;..,x+1,..) will search for x+1 in the second row
of the matrix irrespective of its column location.

matrix(..) will search for vectors and matrices with a
single column.

matrix(a+..+b, c+---+d,.., 15) will retrieve this vector
matrix(a+f(2,3)+b, c+4+d, 12, 13, 15)

… stands for zero or more consecutive members in a se-
quence, or one or more consecutive nodes at the same
level in a parse tree.

Examples:

f(x,…) matches a function f with at least one argument
x, such as f(x,y), f(x,z^2,y) and f(x).

matrix[;…,x+1,…] matches any matrix where x+1 is in
the second row irrespective of its column location.

Separator Symbols In argument lists, sequences, and in
matrices, different kinds of separators are used. Therefore,
the query language has to provide explicit symbols for
separators, with definite semantics. The next table de-
fines the separators used in our query language.

Table 4. Seperator symbols

Symbol Meaning

, Is used to separate entries in a sequence, or
arguments of a function. In the context of
matrices, it is used to separate columns.

; Separates rows in the context of matrices.
For example, matrix[;;] matches any three-
row matrix, regardless of its content.

@ Indicates function application. For example,
@(x+1) matches any function where its ar-
gument is x+1.

Support for Structural Search Through the use of wild-
cards and separator symbols, the math query language of-
fers support for structural search. This is done by allow-
ing the user to specify where in an expression a term or
phrase must occur, and to specify part of the expression
and not the whole expression. Support for structural
search gives the user math query more expressive power.
• The @ symbol directs the search to arguments of a

function. For example, the query @(x, y) will look for
a function where the arguments are x and y.

• The semi colon directs the search in the rows of a ma-
trix.

• The comma directs the search in arguments of a func-
tion or entries of a column of a matrix.

• The use of the dot symbols (“…” and “..”) in combina-
tion with other symbols helps the user specify where in
the structure to look. The dot symbols can be used to
surround an expression to search for subparts. For ex-
ample, /(…x+1…) will search for x+1 somewhere in
the denominator. In this example, the query is looking
for x+1 where several terms can precede it and several
terms can follow it. In essence, x+1 is part of a sub-
expression that forms the denominator. If the query is
(x+1)/, the search will be for x+1 as the numerator. As
another example, ^(…n…) is a query that looks for n
as part of the exponent. While _{…n…} is a query
that looks for n to be in a subscript.

Support for Different Levels of Abstraction The $
symbol when used alone stands for any arbitrary term,
whether a numeric value or a variable name, and of what-
ever data type. This creates the first level of abstraction
in the query language by allowing the user to step away
from the literal specification of the term. Multiple occur-
rences of $ in a query in this case will stand for arbitrary
terms that may or may not be the same. For example, the
query $^2+$^2=20 makes no distinction between the arbi-
trary terms and can be matched by x^2+y^2=20, by
x^2+x^2=20, and 2^2+4^2=20.

However, if the user wishes to search for patterns that

match cos^2 $ + sin^2 $ with the additional constraint the
two arbitrary terms intended by the two occurrences of
“$”must be equal, the use of cos^2 $ + sin^2 $ will be
wrong because it matches cos^2 x + sin^2 y . Clearly, the

use of $ wildcard alone is inadequate to express that par-
ticular math search need. Consequently, a new syntax is
added as specified the following grammar rule:

WildcardTerm ::= $[1|2|3|...][‘n’|‘v’][‘R’|‘Z’|‘Q’|‘C’|‘P’|‘F’]

Here is the explanation of this syntax. The syntax $ fol-

lowed by a number (e.g., $1 $2, $3, etc.) designates any
arbitrary term, whether a numeric value or a variable
name, and of whatever data type. If $1 occurs twice in a
query, that means that the two occurrences stand for the
same number or the same identifier. If $1 ad $2 occur in
a query, then they stand for arbitrary tokens that need not
be the same. Referring back to the previous example,
cos^2 $1 + sin^2 $1 will be used instead where it is now
clear that the user is searching for an expression where the
terms are arbitrary but equal. In essence, this syntax sup-
ports a second level of abstraction. Not only is the user
being separated from a particular literal meaning but the
user can now specify if are arbitrary are identical or inde-
pendent within the same expression.

The third level abstraction is enabling the user to spec-

ify if the term is a numeric arbitrary value or an arbitrary
variable name by attaching the appropriate symbol to the
$. The syntax $n stands for an arbitrary term that is a
numeric value such as 2, 4, 3.14, and so on, while $v
stands for an arbitrary term that is a variable such as a, x,
y, etc. For example, the query $n+$n^2+$n^3 is matched
by 2+2^2+2^3 and by 4+5^2+7^2, but is not matched by
x+3^2+y^3 because x and y are not numeric tokens.

Combing different parts of the rule with the $ creates a

fourth level of abstraction. In this case, the user is able to
specify if arbitrary numeric values or variable names need
to be identical or independent in a query. For example, if
you need to specify a query with three or more arbitrary
numerical terms, and two of which must be identical, and
the third is not necessarily identical to the other two, the
user then uses $1n and $2n (and so on) to stand for poten-
tially different numeric terms. The query
$1n+$1n^2+$2n^3 describes that and is matched by
2+2^2+15^3 and by 2+2^2+2^3; but it is not matched by
4+5^2+7^3 because 4 and 5 are not identical numerical
tokens.

If the user wishes to specify the data type of the term,

then the appropriate symbol from {R, Z, Q, C, P, F} is
appended. This syntax creates support for the fifth level
of abstraction. For example, $nZ stands for any arbitrary
integer numerical token, $vC stands for any arbitrary
identifier of Complex data type, $1vR and $2vR stand for
any two arbitrary identifiers of type real.

Content MathML does allow its numeric and identifier
elements to have more data types than those offered by
our Query Language. But for purposes of this research,
the data type symbols will be limited to: R for real, Z for

integer, Q for rational, C for complex, P for complex-
polar, and F for function.

A Note on Ellipsis The ellipsis (…), is an important
mathematical symbol that stands for implicit patterns in
sequences, series and matrices. We refer to the ellipsis
symbol that is commonly used in mathematics as pattern-
bound ellipsis. For example: in the sequence 2, 4, 6, …,
2n the … stands for even numbers. While in the series 1
+ x/1! +x2/2! + x3/3! + …, the … stands for the pattern
xn/n!.

Our math query language, however, offers limited sup-

port for this symbol. The ellipsis is not assigned a hidden
pattern and no attempt is made to determine the hidden
pattern will be made during the processing of the user
search query. The symbol is used as a generic search
term at the sequence level to stand for any node that
doesn’t need to resemble in pattern the following or pre-
vious members in that sequence. The ellipsis in this case
is referred to as unbounded.

Unbounded ellipses are used in the math query lan-

guage horizontally between separator symbols in the con-
text of matrices. When used between commas it indicates
zero or more rows. But when used between semi-colons
its use is similar to the use of the vertical ellipsis symbol
and stands for zero or more rows. The language doesn’t
support the diagonal or anti-diagonal unbounded use of
the ellipses in the context of matrices at this time.

In future extensions of the language, we will introduce

an elaboration of that syntax that will enable the user to
specify that the matches comply with the implied pattern
of the ellipses. This will be possible with the software
support that is currently underway by Sexton and Sorge of
the University of Birmingham [16]. They are currently
working on the development of algorithms for the analy-
sis of “abstract matrices”. This term defines a common
class of matrices where underspecified parts are denoted
using the ellipses symbol (a series of three dots) [16].

4 LIMITATION OF THE QUERY

LANGUAGE

The query language specified in the previous section is
meant to be a major extension to the standard query lan-
guages in use in current math search systems. It allows
users to be more precise in specifying their math search
needs. However, the language still has a number of limita-
tions, which can be addressed in future implementations.
The following is list of some of the limitations

• The specified math query language has a syntax that

requires the user to be specific about what he/she in-
tend when searching to resolve ambiguities. However,
it puts a burden on the user to express all the specific-
ity. In the future, this language can act as an intermedi-

ary language to a more flexible (allows for ambigui-
ties) language where the burden of interpreting what is
intended falls more on the system than on the user.

• The query language does not cover every area of math.
There are specialized areas of math that haven’t been
incorporated into the language but could be added in
the future. The language is limited to the search for
mathematical constructs such as formulas and equa-
tions and doesn’t handle formal mathematics such as
theorems and proofs.

• The user query must be grammatically correct. Part of
the parsing effort is to validate the syntax of the lan-
guage at this time. Future versions should be more syn-
tax-forgiving.

• Currently, the language offers limited semantic support
of the ellipsis symbol. Future versions can take advan-
tage of ongoing research on determining the implied
patterns of ellipses in various contexts.

• We limited tree-level wildcards to single levels of the
tree. That is, the wildcards either stands for a node in
the logical structure of a mathematical expression tree
or stands for a full sub-set tree that represents a com-
plete subset expression. For example, in an expression
x+y*z, the -- wildcard can stand for sub expression y*z
resulting in x+-- query while x--*z is currently not
supported since the query cannot be parsed correctly.

• The parser doesn’t handle the following mathematical
equivalences:

− Sets and Lists: The list/set of elements in the docu-
ment can be defined explicitly in the set/list container
elements. In this case, the corresponding syntax in the
user query language will be done using List[expr,
expr,…] and Set[expr, expr,…], respectively. In
MathML, the list/set elements can also be defined im-
plicitly using bound variables and a condition element
restricting their domain. In the documents, both for-
mats can be used but their logical equivalences will not
be considered at this time. In addition, the MathML
set constructor element has a type attribute. This at-
tribute can be present in the documents but will not be
used as a search criterion on the query side at this time.
Lists differ from sets in that there is an explicit order to
the elements. The attribute that specifies the order in a
list but will not be used as a search criterion on the
query side at this time. The assumption is that ele-
ments appear in the document in a lexicographic order
even if they’re numeric.

− Sum and product operators: the following equivalence
sum(a,b,c) vs. a+b+c is outside the scope of this re-
search. The MathML encodings in this case are differ-
ent but equivalent. At this time, the user has to be spe-
cific as to whether they mean the sum operator or the
use of the plus sign when performing a search because
the sum construct in MathML has a different meaning
than the plus operator.

− The equivalent representation of numbers using differ-
ent forms, for example, 1/3 vs. 0.333 vs. 3^-1 will not
be supported at this time.

− Equivalences due to distributive laws for logical and
set theory operations will not be supported at this time.

5 CONCLUSION AND FUTURE WORK

In this paper, a new query language for math search
was defined. The language goes beyond the Boolean and
proximity query syntax found in standard text search sys-
tems. It defines a powerful set of wildcards that provide
for more precise structural search and multi-levels of ab-
stractions. Although implementations techniques for the
query language were not discussed due to space limita-
tions, we have developed algorithms for mapping the con-
structs of the query language to XPath/XQuery queries. It
is assumed that the content is encoded in MathML.

Naturally, the language has many limitations, which

were discussed in some detail. Future work entails lifting
those limitations and providing new extensions to the lan-
guage for more precision and more expressive power,
while at the same lightening the query-formulation burden
on the user by making the query processing system do
more work. Further into the future, both subjective and
objective performance evaluation of the query language
should be conducted to determine user satisfaction and
measure improvements in precision and recall.

6 REFERENCES

[1] NIST, "Digital Library of Mathematical Functions (DLMF)."
 http://dlmf.nist.gov/.
[2] Design Science, "Mathdex."
 http://www.mathdex.com:8080/mathfind/search.
[3] World Wide Web Consortium, "XML Path Language

(XPath) Version 2.0," 2005.
 http://www.w3.org/TR/xpath20/.
[4] World Wide Web Consortium, "XQuery 1.0: An XML

Query Language," 2007. http://www.w3.org/TR/xquery/.
[5] World Wide Web Consortium, "Mathematical Markup Lan-

guage (MathML) Version 2.0," 2003.
http://www.w3.org/TR/MathML2/.

[6] C. Winstead, "Creating Connexions Content Using LyX
module," Connexions Project, Rice University, 2006.
http://cnx.org/content/m13238/latest/

[7] B. Miller, "DLMF, LaTeXML and some lessons learned,"
In: The Evolution of Mathematical Communication in the
Age of Digital Libraries, IMA "Hot Topic" Workshop, 2006.
http://www.ima.umn.edu/2006-2007/SW12.8-
9.06/abstracts.html#Miller-Bruce

[8] B. R. Miller and A. Youssef, "Technical Aspects of the Digi-
tal Library of Mathematical Functions," In: Annals of Mathe-
matics and Artificial Intelligence, 38(1-3): p. 121-136,
Springer Netherlands, 2003.

[9] Design Science. http://www.dessci.com/en/.
[10] The Wolfram Functions Site.

http://functions.wolfram.com/
[11] M. Kohlhase and A. Franke, "MBase: Representing Knowl-

edge and Context for the Integration of Mathematical Soft-
ware Systems," Journal of Symbolic Computation, 32(4): p.
365-402, Academic Press, 2001. [publisher is acquired by
Elsevier, The Netherlands]

[12] Helm: Hypertextual Electronic Library of Mathematics.
http://helm.cs.unibo.it/.

[13] Monet: Mathematics on the Net. http://monet.nag.co.uk.
[14] MoWGLI: Mathematics on the Web: Get It by Logics and

Interfaces. http://mowgli.cs.unibo.it/.
[15] A. Asperti and S. Zacchiroli, "Searching Mathematics on

the Web: State of the Art and Future Developments," In: Pro-
ceedings of New Developments in Electronic Publishing of
Mathematics, p. 9-18, Edited by FIZ Karlsruhe, 2004.

[16] A. Sexton and V. Sorge, "Abstract matrices in symbolic
computation Computations," In: Proceedings of the 2006 in-
ternational symposium on Symbolic and algebraic computa-
tion, p. 318-325, ACM Press, New York, 2006.

[17] W. A. Martin, "Computer input/output of two-dimensional
notations," In: Proceedings of the second ACM symposium
on Symbolic and algebraic manipulation, p. 102-103, ACM
Press, New York, 1971.

