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Abstract

Gene selection with microarray data is an important task
towards the study of genomics. The goal is to identify the
optimal subset of genes such that maximum discrimination
power across samples (e.g., tumor types) while minimum re-
dundancy among genes are achieved. Essentially, it is NP-
complete. Approximation algorithms are usually solicited
including individual ranking and sequential forward selec-
tion. Typically, from source input microarray data to out-
put selected genes, multiple steps including preprocessing,
discretization, discrimination modeling, redundancy model-
ing, optimization formularization, classification, and eval-
uation are involved in the presence of a number of options
(techniques) for each of them. Putting them together, we
form the concept of customization for gene selection in this
paper, that is, configure the entire scenario such that var-
ious maybe trivial techniques can team work with supe-
rior performance rather than focus on certain technique
within a single step (e.g., discrimination power modeling).
One configuration following the principle of simplicity is
constructed in this paper which identifies genes effectively
shown by experiments.

1 Introduction

A significant step towards the current information revo-
lution can be appreciated from the successfully applied new
techniques and tools in molecular biology and genetics re-
search. Such technologies make it possible to collect bi-
ological information rapidly at an unprecedented level of
detail in large quantities. Among the most powerful tech-
nologies, microarrays provide the tool to extract biologi-
cal significance such as the changes in expression profiling
of genes under distinct types (e.g., normal vs cancer type),
which shed the light on use of them in many fields including
pharmacogenomics, medical diagnostics, drug target iden-
tification and underlying gene regulatory networks.

Microarrays, often interrogating thousands or tens of

thousands of genes simultaneously, are capable of extract-
ing huge amounts of biological information. It opens rich
opportunities but also poses a great challenge on study of
genomics. One critical step is called discriminant analysis,
i.e., classifying samples according to gene expression pro-
filing, for instance, distinguish cancer tissues from normal
ones [2] or one subtype of cancer vs another [1]. Efforts
have been made intensively to identify genes really con-
tributing to the disease under study, which is often achieved
via gene selection. This is necessary mainly due to the fact
that, high dimension of features often result in more clas-
sification errors. Usually, when samples are limited while
the number of features is very large beyond a certain point,
classification accuracy will reduce. Instead of using all
genes, one may look for a subset such that it can most dis-
criminatively and compactly represent the expression pat-
terns. In other words, genes with maximum discrimination
power while minimum redundancy are preferred. It is NP-
complete [6], i.e., feature selection in machine learning. We
may not expect to find the optimal solution via brute-force.
Rather, approximation algorithms are usually solicited in-
cluding individual ranking (e.g., [9], rank the genes and
choose the top) and sequential forward selection (e.g., [3],
choose the best gene as the seed and add one more per it-
eration such that the obtained subset maximizes the given
criterion function).

The entire procedure of gene selection includes multiple
steps: preprocessing, discretization, discrimination mod-
eling, redundancy modeling, optimization formularization,
classification, and evaluation, in the presence of a number
of options (techniques) for each of them. Instead of hard
improving certain technique within a single step, we put
them together and form the concept of customization for
the entire scenario. By doing so, various maybe trivial tech-
niques can team work with superior performance. In this
paper, we configure the scenario following the principle of
simplicity and experiments show its effectiveness. Specifi-
cally, we formularize the optimization issue by maximizing
U(f), discrimination power of genes in terms of Brown-
Forsythe statistic, with the constraint on V (f), i.e., redun-
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dancy, where Pearson correlation is employed. Advantages
from both individual ranking and sequential forward selec-
tion are combined for the design of selection operation. The
normalization technique is used for preprocessing. Ten-
bins, naive Bayes, leave-one-out cross-validation are cho-
sen in particular for discretization, classification and evalu-
ation, respectively.

The rest of this paper is organized as follows. In Sec-
tion 2, we present models and methods. Section 3 shows
the experiments on real datasets. We conclude in Section 4.

2 Models and Methods

2.1 Mathematical Formularization

Consider a k(≥ 2)-class discriminant analysis with p
genes, i.e., g1, g2, . . . , gp, and n microarray samples in-
volved. Let Xij be the value in terms of the measurement
of gi expression from the jth sample where i = 1, . . . , p
and j = 1, . . . , n. Typically, such microarray data can be
written as a form of matrix, M:

M =




X11 X12 · · · X1n

X21 X22 · · · X2n

...
...

...
...

Xp1 Xp2 · · · Xpn


 ,

where the columns and rows correspond to samples and
genes, respectively.

Given M, to select m genes out of p genes for dis-
criminant analysis can be viewed as the identification of
representative rows (genes) to stand for the entire expres-
sion pattern across all the given samples instead of M
itself. Effectiveness can be evaluated from two ways: (1)
the combination of chosen rows can differentiate samples
distinguishably; and (2) these rows contain redundancy as
low as possible. In other words, selected genes should be
discriminative and compact simultaneously. Let f be the
selected genes, U(f) the discriminative power of f , and
V (f) redundancy in correspond. Generally, larger U(f)
implies higher discriminative power; while lower V (f)
implies less redundancy. As such, gene selection can be for-
mularized by an optimization issue in the form of particular:

maximize : U(f), subject to : V (f) ≤ T (U, V ),

where T is a threshold function of U and V .

2.2 Functions Modeling: U(f) and V (f)

To model U(f), the key is to find some measurement
such that the discrimination power of f is truly expressed. In
this paper, we investigate this issue from the statistical point

of view. It is assumed that the data M are normalized so
that the genes have mean 0 and variance 1 across samples.
Given a fixed gene, let Yij be the expression level from the
jth sample of the ith class. Note that these Yij come from
the corresponding row of M. For example, for g1, Yij are a
rearrangement of the first row of M. The following general
model is considered for Yij in this paper:

Yij = µi + εij , for i = 1, 2, . . . , k; j = 1, 2, . . . , ni

where n1 + n2 + . . . + nk = n, µi is the mean expres-
sion level of the gene in class i, and εij are the error terms,
independent normal random variables with

E(εij) = 0, V (εij) = σ2
i < ∞,

for i = 1, 2, . . . , k; j = 1, 2, . . . , ni.
An important task, associated with above model, is to de-

tect whether or not there exists some difference among the
means µ1, µ2, . . . , µk. It is often achieved by certain statis-
tics, the well known ANOVA F test for instance, which is
well suited for measuring the discriminative power of genes
as thought in this paper. Specifically, given a test statistics
F , we define the discrimination power of a gene, d(gi), as
the value of F evaluated over the samples. This definition
is based on the fact that with larger F the null hypothesis
H0 : µ1 = µ2 = . . . = µk will be rejected more likely.
Therefore, larger F implies higher discrimination power
of the corresponding gene across classes of samples. We
also note that discrimination power of genes could be de-
termined equally well via p-values from F . However, due
to small sizes ni, it is hard to justify the approximation of
the known distribution to F and hence p-values may not re-
flect the real functionality of F . Therefore, the value of F
is preferred.

Usually, if the variances are equal, namely, σ2
1 = σ2

2 =
. . . = σ2

k, then it is simply the commonly used one-way
ANOVA model and hence the ANOVA F test is the opti-
mal option [11, 13]. For microarray data, the existence
of heterogeneity in variances is more realistic, since differ-
ent σi may describe different variation of the gene expres-
sion across classes. It makes the above task challenging
however, related to the well-known Behrens-Fisher prob-
lem [16]. When sample sizes of all classes are equal, i.e.
n1 = n2 = · · · = nk, the presence of heterogeneous vari-
ances of the errors only slightly affects the F test. If sample
sizes are not equal, the effect is serious [12]. The actual
type I error is inflated when smaller sizes ni are associated
with larger variances σ2

i . In contrast, the significance levels
are smaller than anticipated when larger sizes ni are associ-
ated with larger variances σ2

i .
In this paper, the parametric Brown-Forsythe test statistic

is chosen, which has been shown preferable over others [5].
It will be used as fitness or score function to measure the
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discrimination power of selected genes given by [4]:

B =
∑

ni(Ȳi· − Ȳ··)2∑
(1 − ni/n)s2

i

.

Under H0, B is distributed approximately as Fk−1,ν , where

ν =
[
∑

(1 − ni/n)s2
i ]

2

∑
(1 − ni/n)2s4

i /(ni − 1)
.

To model V (f), we simply use Pearson correlation be-
tween genes. Given M, the correlation of gi and gi′ is given
by

ρ(gi, gi′) =

∑
j(Xij − X̄i)(Xi′j − X̄i′)√∑

j(Xij − X̄i)2
∑

j(Xi′j − X̄i′)2
,

where X̄i =
∑

j Xij/n is the average level of gi, based on
the n samples in correspond.

Of particular, we simply formularize the optimization is-
sue as follows:

maximize : U(f) =
1
|f |

∑
gi∈f

d(gi)

subject to:

V (f) = max{ρ(gi, gj), ∀gi, gj ∈ f and i �= j} ≤ T.

For further simplicity, the threshold T is chosen as constant
and adjusted dynamically according to certain requirement
in reality.

The algorithm designed in this paper, approximating the
above optimization issue, inherits advantages from both in-
dividual ranking and sequential forward selection.

Given a test statistic F , rank all genes with d(.) descend-
ing and choose the top as the seed which has the highest
discrimination. Consider the rest whose correlation to the
chosen gene is below T . Similarly, the top is chosen as the
second. And then perform the next iteration. Note that we
rank genes only once before the seed selection. As such,
the kth informative gene is the one receiving the highest
discrimination power from the set of all genes with corre-
lation to each of the chosen k − 1 genes below T . Above
process will be repeated until the given number m of genes
are obtained or all the genes have been scanned.

2.3 Classifier

As mentioned before, we follow the principle of simplic-
ity to configure the entire selection procedure. Naive Bayes
is employed. Additionally, input is restricted in categorical
data. The discretization will be discussed in next subsec-
tion. Consider a k-class (k ≥ 2) classification issue. Let

Algorithm 1 Gene selection algorithm

1: function Σ=GeneSel(M, m, T )� M is the data matrix,
Σ is the target feature set

2: Σ ← φ
3: M′ ← rank(M) � Feature sorting
4: Σ ← Σ ∪ {first feature of M′} � Choose the

first one as the seed
5: M′ ← M′\{first row of M′} � Remove it
6: while M′ �= φ and |Σ| < m do � Loop for

qualified features
7: if max{ρ(first feature of M′, Σ)} ≤ T then

� Check correlation criterion
8: Σ ← Σ ∪ {first feature of M′}
9: M′ ← M′\{first row of M′}

10: else
11: M′ ← M′\{first row of M′}
12: end if
13: end while
14: return Σ
15: end function

X = (X1, X2, · · · , Xp)T be a p-dimensional feature vec-
tor, where T is the transpose operation. We use C to denote
the class label of X with πi referring to the prior probability,
P (C = i), for i = 1, 2, · · · , k. Suppose that given C = i,
the joint distribution of X is given by Pi(X). If x is an ob-
served value of X, then it follows from the Bayes formula
that the posterior probability of class i given X = x is

P (i|x) =
πiPi(x)∑k
i=1 πiPi(x)

. (1)

With 0 − 1 loss function, the Bayes rule states that we
classify x to the most probable class according to posterior
probabilities, that is, given X = x, the class label is chosen
to be

C(x) = argmax i {P (i|x)}. (2)

The naive Bayes model makes the additional assumption
that given a class C = i, the features X1, X2, · · · , Xp are
independent with each other. Under this assumption, we
have, for each i,

Pi(x) =
p∏

l=1

Pil(xl), (3)

where Pil(xl) is the class-conditional density of Xl for l =
1, 2, · · · , p. Using (1), (2) and (3), it is easy to see that the
naive Bayes classifier assigns x into the following class by
taking the natural logarithm:

C(x) = argmax i

{
lnπi +

p∑
l=1

lnPil(xl)
}

. (4)

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 

1063-6919/05 $20.00 © 2005 IEEE 



2.4 Discretizer

Input for naive Bayes classifier in this paper is restricted
in categorical data. Continuous values need to be dis-
cretized. Equal width interval binning is used for simplic-
ity. Actually, it is the simplest approach perhaps to achieve
nominal values generation. Given a continuous value x in
an array, then the corresponding discrete value is given by:

xd = 	 x − xmin

xmax − xmin

 × L,

where L is customized number of bins. This approach is
chosen, besides its simplicity, also because it is a unsuper-
vised discretizer which makes no use of any sample class
information. Moreover, it often achieves good performance
for Naive Bayes classifier vs continuous values as compared
by Dougherty et al. (1995) using 16 data sets [8]. In this pa-
per, ten-bins are used.

3 Experimental Results

In this section, we perform the experiments with real
datasets. Leave-one-out cross-validation (LOOCV) is used.
Datasets include Ovarian [17], MLL Leukemia [15], Lung
Cancer [10], and Colon [2].

3.1 Ovarian

It contains 36 samples: 5 normal tissues, 27 epithelial
ovarian tumor samples, and 4 malignant epithelial ovarian
cell lines. 7129 genes are employed. Table 1 summarizes
the result, where the numbers of the first line (from .05 to
1) correspond to different threshold T , and the number (m)
of the first column (e.g., 45) correspond to the number of
genes required. The bottom line, i.e., m̂ corresponds to the
real maximum number of genes that can be chosen with the
threshold T . The rest numbers represent the accuracy of
LOOCV. The smaller is the value, the higher quality the
chosen genes achieve. Usually, there are a number of op-
tions with the best performance. Which is better is based
on certain requirement or metric in reality, for example, we
can choose the least number of genes with smallest errors.
In this paper, we take the best accuracy regardless of the
number of genes within the limit 50. 100% accuracy is ob-
tained for this dataset (0 LOOCV error).

3.2 MLL leukemia

This dataset contains both training data and test data.
We combine them together for LOOCV evaluation. The
training part summarizes 57 leukemia samples (20 ALL, 17
MLL and 20 AML), while the test part summarizes 4 ALL,

3 MLL and 8 AML samples. There are 3 classes in total.
The number of genes is 12582.

Table 2 shows the LOOCV errors. The best result, 100%
accuracy, i.e., 0 LOOCV error, is achieved.

3.3 Lung cancer

Classification is conducted between two classes, i.e., ma-
lignant pleural mesothelioma (MPM) and adenocarcinoma
(ADCA) of the lung. 32 training samples and 149 test sam-
ples are combined together. In total, there are 31 MPM
and 150 ADCA described by 12533 genes. The best re-
sult (100% accuracy) is achieved along the column with
T = .25 (Table is omitted due to page limit).

3.4 Colon

There are 62 samples in this dataset collected from
colon-cancer patients. Among them, 40 tumor biopsies
are from tumors, labelled with ‘negative’ and 22 normal
biopsies, labelled with ‘positive’, from healthy parts of
the colons of the same patients. Two thousands out of
6500 genes were chosen for attributes serving these samples
based on the confidence in the measured expression levels.
The best result is 2 LOOCV errors, improving the previous
best result 4 LOOCV errors (Table is omitted due to page
limit).

From above experiments, we can see, instead of hard
improving certain technique within a single step of the
gene selection, the simple customization of the entire sce-
nario can make various maybe trivial techniques to team
work with superior performance. Specifically, the best re-
sult is achieved as before for Ovarian and MLL Leukemia
datasets, and better than before for Lung cancer and Colon
datasets. In particular, the Colon dataset involves high er-
rors which is very difficult to reduce. The best previous
result is 4 LOOCV errors, while above configuration gives
only 2.

4 Conclusion

Gene selection is essentially NP-complete. It is an im-
portant procedure for identifying genes to the target dis-
ease as well as improving the classification accuracy. Typ-
ically, multiple steps are involved including preprocessing,
discretization, discrimination modeling, redundancy model-
ing, optimization formularization, classification, and evalu-
ation, with a number of options for each of them. We form
the concept of customization in this paper for gene selec-
tion. By taking all these steps as an entire scenario, various
maybe trivial techniques are allowed to team work with su-
perior performance instead of hard improving certain indi-
vidual techniques. Of particular, we configure the entire
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m T =.05 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .75 .8 .85 .9 .95 1

1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 4 4 4
3 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 4 4 5 4 4

4 1 2 1 2 0 1 1 1 1 1 2 2 2 1 0 5 5 1 4 4

5 2 2 2 2 0 0 0 1 1 1 0 0 2 0 0 1 1 1 2 2

6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 1 2 2

7 3 3 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 2 2

8 4 2 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

9 4 2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

10 4 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

11 4 4 2 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1

12 4 2 2 4 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1

13 4 2 2 4 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1

14 4 2 3 3 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

15 4 2 2 4 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

16 4 2 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 4 2 3 6 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 4 2 4 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 4 2 4 3 2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

20 4 2 4 4 3 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0

21 4 2 4 4 3 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

22 4 2 4 3 5 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

23 4 2 4 3 4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

24 4 2 4 3 4 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

25 4 2 4 3 4 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0

26 4 2 4 6 5 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

27 4 2 4 5 6 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

28 4 2 4 5 3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

29 4 2 4 6 5 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

30 4 2 4 6 5 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

31 4 2 4 7 6 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

32 4 2 4 8 4 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

33 4 2 4 8 4 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

34 4 2 4 8 4 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

35 4 2 4 8 4 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

36 4 2 4 8 3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

37 4 2 4 8 3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

38 4 2 4 8 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

39 4 2 4 8 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

40 4 2 4 8 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

41 4 2 4 8 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

42 4 2 4 8 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

43 4 2 4 8 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

44 4 2 4 8 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

45 4 2 4 8 5 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

46 4 2 4 8 5 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

47 4 2 4 8 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

48 4 2 4 8 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

49 4 2 4 8 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

50 4 2 4 8 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

m̂ 9 12 18 32 47 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

Table 1. LOOCV Errors for Ovarian Dataset
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m T =.05 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .75 .8 .85 .9 .95 1

1 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
2 17 17 17 17 17 17 17 17 17 17 17 13 13 13 13 16 16 16 16 16
3 12 14 14 14 14 7 7 15 14 14 15 10 10 10 12 12 9 9 9 9
4 10 10 10 13 9 6 8 6 7 14 14 11 11 11 11 10 7 7 7 7
5 10 11 11 11 6 6 5 7 4 4 10 8 10 8 10 7 6 6 6 6
6 9 9 12 9 6 4 5 5 5 2 9 6 6 10 7 8 7 7 7 7
7 12 10 11 5 8 5 5 3 5 1 8 4 7 12 10 7 6 6 6 6
8 13 12 7 6 6 5 4 4 4 3 8 4 7 11 8 5 8 7 7 7
9 13 13 8 7 7 3 3 4 4 1 9 3 5 8 6 4 9 8 8 8
10 13 8 9 4 6 4 2 4 4 2 8 3 8 6 8 4 8 7 7 7
11 14 7 10 5 6 3 4 3 4 1 8 3 6 7 8 4 8 8 8 8

12 14 14 9 7 8 3 4 1 2 0 8 1 6 7 8 4 6 10 10 10

13 14 12 15 5 9 2 3 3 3 0 6 1 6 8 8 5 4 7 7 7

14 14 13 13 5 10 2 3 3 3 0 5 1 5 8 8 6 3 6 6 6

15 14 12 12 7 7 2 5 3 2 0 4 1 6 7 9 6 4 4 4 4

16 14 11 12 9 9 3 5 4 2 0 7 1 6 8 8 4 5 4 4 4
17 14 13 10 9 8 2 4 4 2 1 6 1 6 6 8 6 5 4 4 4

18 14 11 11 9 7 2 4 2 2 1 4 0 6 4 7 5 5 4 4 4

19 14 11 11 8 7 2 4 4 2 1 5 0 6 6 6 5 4 4 4 4

20 14 10 12 7 8 1 3 3 3 0 5 0 6 5 7 5 4 4 4 4

21 14 11 11 7 9 1 3 3 3 0 5 0 7 5 6 5 5 4 4 4

22 14 11 11 7 6 2 2 3 1 0 4 0 4 2 8 4 5 4 4 4

23 14 11 12 9 5 2 2 3 3 0 4 1 3 2 7 5 5 4 4 4
24 14 11 7 9 6 2 1 3 3 1 3 1 1 2 6 5 5 5 5 5

25 14 11 10 8 6 0 2 3 1 0 3 1 0 2 6 4 5 5 5 5

26 14 11 10 9 6 0 3 3 2 0 3 1 0 2 5 4 5 5 5 5

27 14 11 10 7 5 1 2 3 3 0 3 1 0 2 6 4 5 6 6 6

28 14 11 10 9 8 1 3 3 2 0 3 1 0 2 7 5 5 6 6 6

29 14 11 11 6 9 2 3 3 2 0 3 1 0 2 4 5 4 6 6 6

30 14 11 14 5 8 2 3 3 2 1 3 2 0 1 3 4 4 6 6 6

31 14 11 14 6 8 1 3 3 2 1 3 2 0 1 4 4 4 6 6 6
32 14 11 14 7 8 3 3 3 3 1 3 3 1 1 3 4 4 6 6 6
33 14 11 14 8 7 3 3 3 2 1 3 2 1 1 3 3 4 5 5 5

34 14 11 14 7 7 2 3 3 2 0 3 2 2 1 3 2 3 6 6 6

35 14 11 14 6 7 1 3 3 2 0 3 2 0 2 3 4 3 5 5 5

36 14 11 14 6 7 2 3 3 2 0 3 2 0 2 3 4 4 5 5 5

37 14 11 14 6 7 2 3 3 2 0 3 0 0 1 3 4 4 4 4 4

38 14 11 14 6 7 2 3 2 1 0 2 0 1 1 3 4 4 6 6 6

39 14 11 14 6 7 2 3 2 2 0 2 0 1 2 3 4 4 5 5 5

40 14 11 14 6 7 2 3 1 2 0 3 0 1 1 3 4 4 4 4 4

41 14 11 14 8 7 2 3 2 2 0 2 1 1 1 3 3 3 6 6 6

42 14 11 14 8 7 2 3 2 3 0 2 0 1 1 3 3 3 5 5 5

43 14 11 14 8 6 2 3 4 3 0 1 1 1 1 3 2 3 5 5 5

44 14 11 14 8 6 2 3 4 3 0 2 0 1 1 3 2 3 5 5 5

45 14 11 14 7 7 2 4 4 2 0 2 1 1 1 3 3 3 5 5 5

46 14 11 14 8 6 2 4 3 2 0 2 1 1 1 3 3 3 5 5 5

47 14 11 14 8 7 2 4 3 2 0 2 1 2 1 3 3 4 5 5 5

48 14 11 14 8 6 3 3 3 2 0 2 1 0 0 3 2 4 5 5 5

49 14 11 14 10 6 3 3 3 2 0 2 1 1 0 3 2 4 5 5 5

50 14 11 14 10 6 2 2 5 1 0 2 1 2 2 2 2 4 5 5 5

m̂ 11 21 31 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

Table 2. LOOCV Errors for MLL Leukemia Dataset.
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gene selection following the principle of simplicity. We
formularize the optimization issue by maximizing the dis-
crimination power of genes in terms of Brown-Forsythe sta-
tistic, with the constraint of redundancy modeled by Pear-
son correlation. The normalization, ten-bins, naive Bayes,
and leave-one-out cross-validation are chosen for data pre-
processing, discretization, classification and evaluation, re-
spectively. Experiments show its effectiveness with best
performance as before for Ovarian dataset (0 LOOCV er-
ror) and MLL Leukemia dataset (0 LOOCV error), and bet-
ter than before for Lung Cancer dataset (0 LOOCV error)
and Colon dataset (2 LOOCV errors vs the best previous
result 4).
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