Mapping and Scheduling Heterogeneous Task Graphs using Genetic
Algorithms

Harmel Singh *

Abdou Youssef t

Department of Electrical Engineering & Computer Science
The George Washington University, Washington DC 20052.

KEYWORDS

Mapping, Scheduling, Graphs, Genetic Algo-
rithms, Heterogeneous Processing.

ABSTRACT

Heterogeneous processing deals with de-
composing a general task into code segments
of diverse computation requirements and
executing each segment on a machine such
that the task takes a minimum amount of
time. An important challenge in this growing
field is the mapping and scheduling of code
segments, a problem known to be NP-hard.
Genetic Algorithms (GA) have been shown
to be very robust heuristic optimization
tools for very hard combinatorial problems.
These are a class of algorithms closely
modeling the evolution process in nature. In
this work we develop and optimize a genetic
algorithm that evolves optimal solutions to
the problem of mapping/scheduling general
task graphs on a cluster of heterogeneous
machines. This is done by first formulating
the mapping/scheduling problem in GA
terms, and then evaluating various genetic
algorithm parameters for obtaining best
performance. This parameter set is used for
mapping/scheduling general task graphs.

*hks@psi.com
tyoussef@seas.gwu.edu

We study the performance of our algorithm
’i_ind compare it with optimal polynomial
time algorithms for tasks of the form of trees
and series/parcllel graphs. The performance
results show that optimal or near optimal
solutions are generated very fast by our
GA.

\

-

1 Introduction

Heterogeneous Processing (HP) has re-
cently received much attention owing to its
promise of delivering usable computing perfor-
mance from existing computing resources. The
central idea in HP is identifying the character-
istics of the application to be run and the ma-
chine(s) available for it. After the characteris-
tics of the tasks and machines have been de-
termined this information can then be utilized
for optimally matching & scheduling the task
on the machine cluster. The characteristics of
applications and machines are determined us-
ing the two analytic steps [14] viz. code-type
profiling and analytic benchmarking. Using the
data generated by code profiling and analytic
benchmarking each code segment is mapped or
assigned onto the most suitable machine. Effi-
cient mapping and scheduling of tasks is criti-
cal for achieving the desired performance on any
parallel processing system.

Mapping deals with assigning the subtasks to
suitable machines using suitable subtask map-

e,

pings on a machine in order to achieve the de-
sired performance goals [6]. Scheduling is in-
volved with determining what would be the best
start time for each subtask on its host machine
after the mapping is completed.

‘It is known that the problem of mapping and
scheduling is non-trivial. Finding an optimal
mapping/schedule of a general task graph is NP-
Hard [21]. Researchers have tackled this problem
in various ways including developing polynomial
time algorithms for restricted cases of the prob-
lem [7]. This is done by limiting the structure
and characteristics of tasks and/or machines.
For general cases, heuristics have been used [20]
for finding near-optimal solutions.

Genetic Algorithms belong to the same class
of guided random search algorithms as simu-
lated annealing [13, 11] and are modeled af-
ter the phenomena of evolution in nature. They
have been shown to be very robust and to pro-
duce encouraging results for very hard multi-
modal search spaces. An important character-
istic of GA’s is that they can be explicitly
parallelized. Furthermore, they are theoretically
proven to be capable of implicitly and rapidly
sampling large search spaces parallel [15, 19].

Among several parameter affecting the per-
formance of a GA, the most significant are the
techniques used for encoding the solutions and
the function used for evaluating the fitness of the
encoded solutions [4, 5]. It has also been realized
that [15] there may not be a single GA for all
classes of problems, rather one has to tailor the
algorithm to a specific class of problems by in-
corporating problem-specific knowledge into the
algorithm [15].

This paper presents our work in developing
and analyzing a genetic algorithm for optimally
mapping and scheduling arbitary task graphs in
heterogeneous processing environments. It is or-
ganized as follows. The next section summarizes
the related work in mapping/scheduling hetero-
geneous task graphs and also a brief look at
genetic algorithms. Section III gives the formal
problem statement and our approach towards

solving it. Section IV presents the out perfor-
mance evaluation and the performance results
of our genetic algorithm. Finally, we conclude
in section V and propose future possible direc-
tions for extending this work. '

2 Rélated Work

2.1 Selection Theories

Mapping and scheduling in HP is addressed in
a series of selection theories proposed by re-
searchers. The Optimal Selection Theory (OST)
[14] gave the initial mathematical basis for se-
lecting a suite of machines for a particular code
types. This basic theory was later extended in
various ways by others [23, 10, 21].

In OST it was assumed that optimal perfor-
mance was achieved by executing a code seg-
ment on a best matched machine, and that
all types of machines were available. The OST
was extended by Wang to Augmented Optimal
Selection Theory (AOST) [23] in the following
ways - firstly it was assumed, more realistically,
that only a limited number of machine types
were available, secondly, mapping the code seg-
ments on suboptimal machine choices was al-
lowed, and finally non-uniform decomposition of
code-segments was considered.

It is observed in practice that the execution
times of code segments depends not- only on
the type of machine it is assigned to but also
on the different types of mappings and paral-
lelism available on these machines. For example,
the execution time of various matrix algorithms
varies significantly if the matrices are mapped
using striped or checkerboard partitioning on
the target mesh or hypercube. The Heteroge-
neous Optimal Selection Theory (HOST) ([10]
extended AOST by incorporating this view.

In all the above selection theories the task
graphs in some form or another was mod-
eled as serially ordered code-segments or sub-
tasks. The Generalized Optimal Selection The-
ory (GOST) |[21] extends the model by consid-

ering task graphs that are general. Each sub-
task is thought of as a complete execution unit,
a process. GOST also recognizes the different
types of networks that may simultaneusly con-
nect the resources in the HP environment. In
GOST polynomial time algorithms for optimally
mapping/scheduling series-parallel dependency
graphs and tree graphs are presented. Series-
Parallel graphs represent a large class of the pro-
grams containing parbegin/parend and fork/join
type of constructs. Trees represent the class
of divide-and-conquer programs. These map-
ping/scheduling algorithms will be used for com-
paring the performance of our GA to them.

2.2 Genetic Algorithms

Genetic Algorithms (GA) were first intro-
duced by J. Holland [19] in 1975. These are
stochastic algorithms belonging to a class of
Evolutionary Algorithms which use ideas bor-
rowed from the process of natural evolution for
solving very hard optimization problems.

Here the evolution proceeds on the basis of the
survival of the fittest theory. The fitness of an in-
dividual is defined by the environment in which
the algorithm is implemented. The basic model
of GA consists of a population of randomly gen-
erated initial solutions encoded in the form of
bit or character strings, known as the individu-
als or chromosomest. The evolution consists of
evaluating the fitness of the individuals of the
present population, using a user-supplied fitness
function, and generating a new population de-
pending on the fitness of each individual. Fitter
individuals have more representation in the new
generation. Each individual in a generation goes
through a crossover operation. In this operation
two randomly selected chromosomes are crossed
or spliced at a random point to generate, hope-
fully, a better individual. This generation pro-
cess is continued in order to evolve better indi-
viduals in subsequent generations and converge

1From this point the word individual and chromosome
will be used interchangeably to mean the same thing

towards an optimal solution. The detection of
convergence, or convergence criteria, will be dis-
cussed later. To fully explore the solution space
and help GA get out of local optima, the chro-
mosomes are randomly mutated - another idea
borrowed from nature.

Even though the essential components of GA
are outlined in [19, 15], exactly what part each
process plays, how important each process is in
contributing towards evolution and how do these
processes interact, all these are still not fully un-
derstood and remain subject of current research
[5]. We now briefly present important parame-
ters that affect any genetic algorithm. Note that
only the parameters that are actually tested as
part of our algorithm are being introduced.

1. Population size (P) and Number of
Generations (A) The population size
P should be large enough so that there is
enough diversity for the algorithm to sam-
ple the complete search space, but small
enough so that there is no spurious load
of computation introduced. The number of
generations determines basically the time a
GA has to find an acceptable solution, given
a set of parameters. The choice of A is crit-
ical and is closely tied to the termination
criteria.

2. Encoding techniques Encoding can be
formally defined as a function £ : O = R.
Here O is the object or valid sohition space
and R is the representation of objects or
_solutions in the GA. This encoding is nec-
essary to render feasible the string based
operations of GA. It has been dictated by
the schema theorem [19] that any encod-
ing scheme used must support the building
block hypothesis [15], ie, successful encod-
ing consists of schemata that are of short-
defining length and that interact minimally.

3. Fitness Modification And Selection
Methods The aim of the selection method
is to rapidly promote the presence of good
schema in the new population (by having

e

more representative individuals of the good
schema in the new population) and at the
same time preventing hitchhiking of bad
schema of the old population on the better
schema in the next generation. The prob-
lems of premature convergence and slow fin-
ishing [5] might be exhibited by the genetic
algorithms that rely solely on the absolute
value of the fitness of the individuals for
generating the next population set. To han-
dle these problems, several strategies for
either modifying the fitness and/or using
a modified selection method for generating
the next population have been investigated
[17, 15, 18]. These strategies and methods
are briefly discussed next.

The scaling methods modify the raw fitness
value of all the individuals in a population
that was computed using the fitness func-
tion. They can be formally expressed as
a function C: frgw — f,VZ : T € P. The
important scaling techniques for readjust-
ing fitness explicitly are-

e Window scaling [GAucsd/GeneSYS
packages]

¢ Sigma truncation [15]

e Linear scaling [15]

The selection methods are formally the
functions of the form & : Pop; — Popiy
Here Pop; is the population of GA in gen-
eration i. The basis of selection is the fit-
ness of the individuals of the old popula-
tion computed using the fitness function.
For more detailed description and implme-
mentation of the selection methods the re-
spective references are suggested.

¢ Roulette Wheel [19]
Fitness Ranking [24]
Stochastic Remainder [3]
Stochastic Universal [3]

Tournament [9]

Various selection methodologies have been
experimented with, and it has been realized
that none of the selection methods is clearly
the best [17]. One has to experiment and
tailor a selection method for each specific
problem. - . :

Recombination Operators (R) The re-
combination or crossover operator is an im-
portant player in mixing optimal schema to
generate super fit individuals from the ex-
isting generation. The amount of crossover
or genetic mixing, for any generation, is
controlled by a parameter called the proba-
bility of crossover (p.). The different types
of recombination methods are listed below.

e 1-point crossover {15]
e 2-point crossover [15]

e Uniform Crossover [22]

Again none of the crossover operators is
clearly the best.

Mutation Operators (M) The mu-
tation operators are the main factors for
introducing the lost schemas back into a
rapidly converging GA, thereby allowing
the GA to escape from local optima {15, 8].
The mutation operator acts on a chromo-
some by arbitrarily selecting a gene on the
chromosome and modifying it randomly.
The degree of mutation for a population is
controlled by a parameter called the prob-
ability of mutation p,,. The probability of
mutation p,, should be low enough so that
good schemas are not disrupted, but large
enough so that a reasonable amount of di-
versity in the GA is maintained.

Miscellaneous parameters Additional
refinements to the GA’s have been made.
Among the more significant of these refine-
ments and their parameters are -

¢ Niching [16]
e Incest Reduction [12]

o Elitism [2]

In the above discussion we have presented a
set of important parameters that we would be
evaluating to arrive at a working set of parame-
ters for our primary problem. It should be noted
that finding an optimal parameter set for any
application is very hard. The complexity is in-
troduced not only by the presence of several dis-
tinct parameters, but by the presence of sub pa-
rameters for each parameter. Another reason for
the complexity is the mutual dependence of var-
ious parameters [8, 1].

Therefore, for simplicity, we will be limiting
our evaluation only to the parameters tabulated
in Table 1. We will be using standard accept-
able values suggested in the literature for all the
parameters not evaluated in this paper.

Parameter

Value/Type

Population Size
Encoding Technique
Max. Generations
Scaling Methods

Selection Methods

Crossover Operators

Crossover Prob.
Mutation Operators
Mutation Prob.
Niching

Elitism

positive Integer (50-500)
presented in next section
positive Integer (50-200)
window, sigma trunc.
linear

rank, roulette, stoch. re-
mainder, stoch. univer-
sal, tournament

1 point, 2 point &
uniform

0.15-0.35

simple field-mutation
0.001-0.02
enabled/disabled
enabled/disabled

Table 1: The List of GA Parameters to be tested

3 GA For

Mapping &

Scheduling

In this work we will be determining a static
compile-time schedule for an arbitary prece-
dence constrained directed acyclic task graph.
The task graph will be consisting of subtasks as

the nodes. The nodes are the basic units of ex-
ecution on each machine available. We assume
there is a finite number of machine and network
types available, but there are unlimited num-
ber of machines and links for each type. The
communication model adopted is the blocked
send/receive type. That is, a subtask can either
be communicating or executing but not both at
the same time. Without any loss of generality
we can assume that each subtask first executes
the code assigned to it and then communicates
with its successors and transfers the necessary
data to them. The communication time is de-
pendent not only on source and destination ma-
chines, but also on the mapping used by them.
Of course the type of link used by them also is
factor in the communication time. The commu-
nication time includes the time for setup, data
reformatting and the actual transfer time. Any
subtask starts executing when the last of the set
of its predecessors has transfered the data to it.

Problem Statement Given a general
directed acyclic task graph G(V,£), where the
nodes in V represent the subtasks of a general
task, and £ are the edges representing the prece-
dence relation between the nodes. Assume the
number of nodes in the graph is equal to . There
are 7 machine types interconnected by XA types
of links. There are ¢ mappings available per sub-
task on each machine type 7. ¢ is equal to one
on machine types other than SIMD, MIMD etc.,
i.e, on serial machines. Also given - ‘

p¥m The execution time of subtask i on
machine k using the mapping m, where
1<k<tandl1<m<¢.

0(i7, jit; 1) The communication time from task
i assigned to a machine of type a using
mapping m to task j assigned on a ma-
chine of type b using the mapping n over a
link of type I, For alli,j € V,1<a,b< 7,
1<mn<gand1<I <A

An assignment is represented as w, where
m(i) = (a,m) gives the machine assignment of

node ¢ to machine a with mapping m. A sched-
ule o, corresponding to an assignment 7 is a
function of the form : ¢,(i) = (z,y) ; Here z
is the start time of subtask ¢ on machine a with
mapping m, where n(i) = (a,m), and y the stop
time of subtask i. We assume y — z = pf"‘ for
alli e V.

Let F; be the finish time of node i, and
Flast = maxy;ey F; the finish time of the last
node(s) in G. The problem is:

Find the optimal assignment 7 and
schedule ¢, for G which minimizes
]:laat-

The template of our genetic algorithm and de-
scription of the parameters is given in Figure 1.

mga(PN, E,F,C,8§, R,M,T)

/* P-population size, N-max. number of generations,

£-encoding function, F-fitness function,
C-scaling function, S-selection method,
R-recombination method, M-mutation method,
T -termination criteria */
begin
Read Graph (G) ; /* with 7 nodes */
initialize ;
~+ =0 ; /* current generation */
/* Individuals for generation v, | ¥ |=P ,
encoded using £*/
population : ¥, ;
compute fitness : F(T) ; VZ € ¥;
Scale fitness: Apply C on F(I) ,VI € ¥
while (v < N AND T(¥,) = FALSE) loop
the next generation : ¥, =, ¥l
/* Here ¥’ is a temporary population
for generating the new population */
Recombine : ¥/ ., N ¥ t1;
Mutate : ¥rq1 29 Uoppr;
Compute fitness : F(Z) ; VI € ¥;
Scale fitness: Apply C on F(Z) ,VI € ¥
yi=7+1;
end loop
end mga

Figure 1: GA template

It should be noted that an actual algorithm
will be an instance of that template with specific
parameters. The algorithm starts by reading a
random task graph. Depending on the parame-
ter P for the population size, a set of random
individuals corresponding to parameters of the
graph generated are initialized. Each individual
in the population is evaluated for its fitness us-
ing the fitness function provided. After these ini-
tial steps, the cycle of successive scaling, selec-
tion, crossover and mutation is continued until
the termination criteria is met or the maximum
number of generations is reached.

No operator including all the selection and
recombination and mutation operators, in the
GA takes more than O(P.n). The Genetic
Algorithm cycle hence consists of a single run
of all the operators with P runs of the fitness
function. It can be easily seen that the fitness
function accounts for more than 90% of the
time taken by the GA. The total time taken by
the GA will approximately be A * P times the
time taken by the fitness function. If the time
taken by the fitness function is significant, then
the fitness of the population can be computed
in parallel slashing down the time by a factor
of P.

Discussion

Now we discuss briefly some important param-
eters used for our Genetic Algorithm.
Encoding (£): Each chromosome I has n
genes. n is equal to number of nodes in G. Each
gene of 7 is a number in the number system of
base 7 * ¢. The elements of the chromosome are
decoded as follows-

7(@) = ((1Zi/¢] + 1), (Zi mod ¢ + 1)),
Vi:ieV. I is ith digit of Z.

The schedules are not coded because, as will be
seen in the next subsection, the optimal sched-
ule corresponding to an assignment 7 is derived
directly from 7.

Termination criteria (7): As mentioned
earlier the GA is a stochastic algorithm; there is
no indication as to how far or close the algorithm

-

is to the solution. We terminate the algorithm
if there is no improvement of the fitness over a
span of ¢t generations. ¢ can be the tolerance of
the GA. We chodse ¢ to be 30 from experimental
results.

Fitness function (F): The pseudo code for
the fitness function used is given in Figure 2.
The fitness function starts off by first decoding

Fitness(Z)
begin

decode: Vie V, n(3) = (|Zi/¢) + 1, T mod ¢+1)

compute schedule o :
/* reorder the nodes so that i < j,
if ¢ is predecessor of j */
Perform topological sort on G
fori=1tondo
if i has NO predecessor then
a(i) = (0, p?%) , where n(i) = (a,b)
else
for every predecessor p of i dO
/* U’(P) = (patortypfiniah)
This was computed in the previous
iterations, because of topological
ordering */
Fy = MINyiinkst[Psinisn + 6(p2,15,1)]
/* m(p) = (c,d) */
lstart = MAXVp Fp

/* iastart is the start time of node i */

2.j'in.i.szh = lgtart + /J?b
o(t) = (dstart, Sfinish),
, where 7 () = (a,b)
end for
end if
end for
return finish time : Frast = MAXv.‘ev(iﬁm',h)
end

Figure 2: The Fitness Function

Z into w. The next step is to topologically sort
the graph. This is a simple way to ensure that
for any given node the finish times of all its pre-
decessors are already computed. If the node is a
root(i.e, has no predecessors) in graph G, then

finish time for it is just the execution time, since
the start time for all the roots is zero. If the cur-
rent node is not a root we compute the earliest

~ time for each predecessor to complete execution

and transfer of data to it. The earliest time any

-given node can start then is the time when the

last of its predecessors have transferred the data,
to it. This way we compute the schedule for all
the nodes in the task graph, according to the
mapping 7 given by our chromosome. The fit-
ness of the chromosome or mapping is the finish
time of the graphs which will be the finish time
of the last node of the graph. The last node will
be a leaf of the graph, therefore the fitness is the
maximum finish time of all the leaves belonging
to graph G.

The time complexity of topologically sorting
the graph is O(n + €). where e is the number of
edges in the graph. The outer for loop clearly
takes time O(n + e.\), where A is the number of
link types in the system. Therefore the fitness
function takes O(n + e.))

4 Simulation Plan/Results

Our simulation plan and results for tuning the
various parameters and for operator selection is
presented next. The subsequent subsection sum-
marizes the simulation results for mapping and
scheduling.

4.1 GA Parameter Tuning

Finding the optimal values for the parameter set
for a GA is non-trivial. Hence, in this simulation
we adopt a greedy approach for finding the best
parameter set. We start our search from univer-
sally acceptable parameter values and search for
good values in their neighborhood. We will use
the following 2 mutually dependent metrics to
measure of goodness of the set of parameter val-
ues -

Metric 1: The number of generations that
the GA needed to converge according to termi-
nation criterion (7). If the GA doesn’t converge

R

in the given number of generations, it is termi-
nated and the value of metric is taken as (N).
Metric 2: The fitness error of the final fitness
is computed using the relation:

ferror = [(fT h foptimal)/foptimal] * 100.

where fr is the fitness of the best individual
in the last generation of the GA. Note that in
our simulations we will use graphs for which
foptimai, Which is the fitness of the optimal so-
lution, is known.

All the graphs have the following character-
istics: Number of Nodes (1) = 40, Number of
Machine types (r) = 2, Number of Mappings
available per machine (¢) = 3 and Number of
Link types A = 2.

Results

The results are shown in Tables 2 to 8. All the
parameters of GA were kept the same and differ-
ent selection methods were used. As can be seen
tournament selection method is clearly the best
selection method both in speed of convergence of
the algorithm and accuracy of the solution (i.e,

closeness to optimality). Next, we experimented-

with tournament sizes varying from 2 to 8 in
steps of 2. As can be seen from Table 2, as we in-
crease the tournament size from 2 the GA tends
to converge more rapidly at the expense of larger
error in the final fitness. We initially compared
the 3 crossover operators under the tournament
selection method. The results are summarized in
Table 3. Uniform crossover was found to produce
the best results. Different crossover probabilities
were also tried for the uniform crossover and the
results are tabulated. As for mutation different
mutation probabilities were compared. Table 4
shows the results. With best parameters chosen
from previous generations we experimented with
turning niching on and off for the GAs. We kept
the crowding factor for Niching to 2 and turned
on Incest reduction. As can be seen, niching sig-
nificantly improved the performance of the al-
gorithm. The results of using different scaling
methods is summarized in Table 6. As can be

seen from Table 7, leaving elitism on has posi-
tive effects on the algorithm. We experimented
with populations of sizes ranging from 50 to 200
in steps of 50. The results match with the theory
that as we increase the population size there is
more rigorous search of the solution space and
hence a GA results in lesser final fitness errors.
Table 8 gives the summary of the average per-
formance metrics for different population sizes.

SELECTION TYPES
Sel. Method | Mean Mean #
Error(%) | of Gen.
rank 49.9 55.6
roulette | 24.06 80.5
st. remainder | 12.62 | 105.5
st. universal 12.29 111.8
tournament 4.89 82.0
TOURNAMENT SIZES
Tour. size Mean Mean #
Error(%) | of Gen.
2 4.89 82.0
4 5.28 65.0
6 6.51 59.9
8 6.31 60.5

Table 2: Average metric values : selection meth-
ods

CROSSOVER TYPES .
Crossover type | Mean Mean #
Error(%) | of Gen.
1-point 4.89 82.0
2-point 4.16 72.5
uniform 3.14 69.2
CROSSOVER PROBABILITIES
Pe Mean Mean #
Error(%) | of Gen.
0.15 3.85 72.6
0.25 3.14 69.2
0.35 2.8 56.4

Table 3: Average metric values : crossover
methods

MUTATION PROBABILITIES

Pm Mean Mean #
Error(%) | of Gen.

0.001 | 6.7 56.8

0.01 3.14 69.2

0.02 1.85 81.4

Table 4: Average metric values : mutation prob-

abilities
Niching | Mean Mean #
Error(%) | of Gen.
Enabled | 3.08 67.0
Disabled | 3.14 69.2

Table 5: Average metric values : niching

WINDOW SCALING
Window Size Mean Mean #
Error(%) | of Gen.
0 3.08 67.0
1 3.08 67.0
2 3.08 67.0
SIGMA TRUNCATION
Sigma Mean Mean #
Error(%) | of Gen.
1 3.08 67.0
59.1 2.8
3 62.2 3.92
LINEAR SCALING
Scaling Multiple | Mean Mean #
Error(%) | of Gen.
1.2 3.08 67.0
14 3.08 67.0
1.6 3.08 67.0

Table 6: Average metric values : scaling meth-

ods

4.2

Mapping & Scheduling

In this subsection we use the best parameters
found in the previous section to map and sched-
ule both regular and general graphs types. The
working GA parameter set is summarized in Ta-

ble 9.

The simulations were conducted using graphs

Elitism Mean Mean #
Error(%) | of Gen.

enabled | 2.8 59.1

disabled | 3.4 75.0

Table 7: Average metric values : elitism

Population (P) | Mean Mean #
Error(%) | of Gen.

50 741 68.3

100 2.80 89.1

150 1.52 66.7

200 1.30 64.1

Table 8: Average metric values : population size

of general, trees and series-parallel type.
For each graph type (general, tree and se-
ries/parallel), graphs were generated with dif-
ferent number of nodes, mapping types, machine
types and link types. The graphs were grouped
under 3 groups depending on the value of the
parameters which are summarized in Table 10.
To sum up simulations were carried out for 10
graphs for each group, for each type of graph,
making it a total of 90 graphs.

Scaling method (S)

Fitness Function

Selection method (S)

Crossover method (R)
Mutation method (M)
Termination criteria

Parameter Value
Population size (P) 500
Max. # of Gen. (N) 200

sigma truncation o = 1
tournament tour.size == 2
Niching = yes (cf=2 |,
ir=yes)

Elitism = yes

Uniform with P, = 0.25
Field P, = 0.01

No improvement over 30
generations

from figure 2

Table 9: The working parameter set for our GA

Results

The results of running the Genetic Algorithm

parameter values
Group| Group| Group
A B C
Nodes 10 50 100
Mappings (¢) 3 2 2
Machine types (t) | 3 3 2
Link types () 2 L 2 2

Table 10: Characteristics of test graph groups

on the 3 groups of graphs with different graphs
(series-parallel, tree & general) is shown in the

figures 3 to 5.
40 T
Group A«
L Group 8 +
3 GroupC a
30
25 |
£
g 7
g 51
@
10 o
o
s |
-
+ B
0 “I.B o 4 - -+ - + 4
5 " .
o 50 150

100
Generation convarged

Figure 3: GA results for Tree type of graphs

40 r y
Group A »
35+ GroupB + ']
Group C o
a0+
25t
g
e =
L
g st
- o
i
10} . °
o ® o o q
5t . * o E
° q
ol L e e S 4
5 . .
0 50 150 200

100
Generation converged

Figure 4: GA results for series-parallel graphs

40

TR
BT Grooﬁgc B
w0l
. 25
£
g 20 F
§ 15
o
10
ol .
of - Coathde e 4;...',‘ Sv . .o B E
-5 . L
0 50 100 150
Genaration convarged
Figure 5: GA results for General Graphs

5 Conclusion

Our initial step towards determining a viable
set of parameters produced results that agree
with the theory. This working set of parame-
ters was then used for an algorithm for mapping
and scheduling heterogeneous task graphs on
a heterogeneous machine cluster. It was found
that the algorithm produced near optimal re-
sults for not only tree or series-parallel task
graphs, but also general graphs, within accept-
able error rates. In fact the GA produced opti-
mal solutions in many instances and the max-
imum error experienced in overwhelming num-
ber of cases was below 10%. It should be noted
that the algorithm invariably terminated within
predicted bounds (i.e, < 200 generations) for all
the test graphs. That'is, our genetic algorithm is
very fast, indeed considerably faster than the de-
terministic algorithms in [21]. In summary, our
experiences strongly indicate the usefulness and
robustness of genetic algorithms in tackling this
complex optimization problem.

For future work, one might attempt to tighten
our problem formulation by developing the map-
ping & scheduling with finite numbers of ma-
chines and communication links for each type.
The algorithm could be tested with actual task
graphs as opposed to randomly generated ones,

1’“ .

and with wider parameter ranges. This might
better reveal the strengths and weaknesses of
this approach. Finding a good parameter set is
also important for a realistic range of data. The
work can proceed further by incorporating more
problem-specific information into our GA or try-
ing to hybridize the Genetic Algorithms with
other known optimization techniques.

Implementation

The simple genetic algorithm template and
various genetic operators are used from the GA-
LOPPS v2.36 toolkit. GALOPPS (Genetic Al-
gorithm Optimized for Portability and Paral-
lelism) provides a rich set of genetic operators
and statistic gathering and processing routines.
The toolkit also provides a highly extensible in-
terface to easily adapt the simple genetic algo-
rithm template for any application specific pro-
cessing by providing various hooks for applica-
tion specific routines into itself. The task graphs
and related routines were defined on top of the
Directed Acyclic Graphs package implemented
in Ada.

References

[1) T. Béack. The interaction of mutation rate,
selection, and self- adaptation within ge-
netic algorithms. Technical report, Univer-
sity of Dortmund, D-44221 Dortmund, Ger-
many, 1993.

[2] T. Béck, F. Hoffmeister, and H. Schwefel. A
survey of evolution strategies. In Proceed-
ings of the 4" International Conference on
Genetic Algorithms, 1991.

[3] J. Baker. Reducing bias and inefficiency
in the selection algorithm. In Proceedings
of the 2nd International Conference on Ge-
netic Algorithms, 1987.

[4] D. Beasly, D. Bull, and R. Martin. An
overview of genetic algorithms: partl, fun-
damentals. University Computing, 1993.

[5]

[6]

[7]

[

[10]

[11]

(12]

D. Beasly, D. Bull, and R. Martin. An
overview of genetic algorithms: part2, re-
search topics. University, Computing, 1993.

Shahid H. Bokhari. On the mapping prob-
lem. IEEE Transactions on Computers,
Mar 1981.

Shahid H. Bokhari. Partitioning problems
in parallel, pipelined, and distributed com-
puting. IEEE Transactions on Computers,
Jan 1988.

M. Bramlette. Initialization, mutation and
selection methods in genetic algorithms for
function optimization. In Proceedings of
the 4** International Conference on Ge-
netic Algorithms, 1991.

A. Brindle. Ga for function optimization.
Technical report, University of Alberta, Ed-
monton, 1981.

Song Chen, M. Eshagian, A. Khokhar,
and E. Shabaan. A selection theory and
methodology for heterogeneous supercom-
puting. Workshop on Heterogeneous Pro-
cessing, 1993.

L. Davis. Genetic Algorithms and Simu-
lated Annealing. Morgan Kaufman Publish-
ers, Inc., 1987.

L. Eshelman and J. Schaffer. Prevent-
ing premature convergence in genetic algo-
rithms by preventing incest. In Proceedings
of the 4" International Conference on Ge-
netic Algorithms, 1991.

J. Filho, P. Treleaven, and C. Alippi.
Genetic-algorithm programming environ-
ments. IEEE Computer, Jun 1994.

R. F. Freund. Optimal selection theory
for superconcurrency. Supercomputing ’89,
Nov 1989.

D. Goldberg. Genetic algorithms in
search, optimisation, and machine learn-
ing. Addison-Wesley, 1989.

[16]

(17]

(21

(22]

23]

[24]

D. Goldberg and K. Deb. An investiga-
tion of niche and species formation in ge-
netic function optimization. In Proceedings
of the 3" International Conference on Ge-
netic Algorithms, 1989.

D. Goldberg and K. Deb. A comparative
study of selection schemes used in genetic
algorithms. In Foundations of Genetic Al-
gorithms. Morgan Kaufmann, 1991.

E. Goodman. The ’ genetic algorithm opti-
mized for portability and parallelism ’ sys-
tem, 1994. User guide for GALOPPS 2.36.

J. H. Holland. Adaptation in natural and
artificial systems. The University of Michi-
gan press, 1975.

Virginia Mary Lo. Heuristic algorithms
for task assignment in distributed systems.
IEEE Transactions on Computers, Nov
1988.

B. Narahari, A. Youssef, and H. Choi.
Matching and scheduling in a generalized
optimal selection theory. Technical report,
The George Washington University, Wash-
ington DC 20052, 1993.

G. Syswerda. Uniform crossover in genetic
algorithms. In Proceedings of the 3™ In-
ternational Conference on Genetic Algo-
rithms, 1989.

Mu-Cheng Wang et al. Augmenting the
optimal selection theory of superconcur-
rency. Workshop on Heterogeneous Process-
ing, 1992.

D. Whitley. The genitor algorithm and se-
lection pressure: Why rank-based alloca-
tion of reporoductive trials is the best. In
Proceedings of the 3™ International Con-
ference on Genetic Algorithms, 1989.

