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Abstract

Equivalence relations among banyan multistage networks have re-
ceived much attention in recent years, mainly because two equiv-
alent networks can simulate one another, Most of the efforts in
this area have focused on comparing networks of the same build-
ing block (i.e., switch) size. This paper studies relations among
banyan networks of differing switch sizes. If two N x N networks
W and W' have switch sizes r and s, respectively, and if r > s,
then W realizes a larger number of permutations than W'. Con-
sequently, the two networks can never be equivalent. However, W
may realize all the permutations of W', in which case W is said
to functionally cover W' in the strict sense. More generally, W
is said to functionally cover W' in the wide sense if the terminals
of W can be relabeled so that W realizes all the permutations
of W'. In this paper, functional covering is topologically char-
acterized, and an optimal algorithm to decide strict functional
covering is developed. The paper also shows that any N x N
digit permutation network of switch size r functionally covers in
the wide sense any other N x N digit permutation network of
switch size s if and only if r is a perfect power of s, where a digit
permutation network is a banyan multistage network such that
the interconnections are permutations that permute digits in a
specified manner.

§1. Introduction

Banyan multistage interconnection networks (MIN)
have received much attention in recent years because of
their key role in parallel processing systems [1)-{5], [9]-[11].
These networks have the unique path property, that is,
there is a unique path between every source and every des-
tination. As a result, they are efficiently controllable but do
not realize all permutations [6], except in the special case
when the network is a single crossbar.

As different MIN’s may realize different sets of permu-
tations, several reserach efforts have been directed towards
functional equivalence relations among these networks 17
(10] [12], and algorithms to decide functional equivalence
have been devised {7 [14]. However, all the research efforts
have focused on symmetric equivalence relations, and often
among networks of the same switch size.

In this paper, non-symmetric relations among MIN’s
of differing switch sizes are addressed. If two N x N MIN’s
have differing switch sizes, then the MIN with the larger
switch size can be shown to realize a larger set of permuta-
tions. Therefore, the two networks can never be function-
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ally equivalent. Consequently, the relation of inclusion of
the smaller set in the larger set, or, stated otherwise, the
relation of functional covering of one network by the other,
is the appropriate relation to address. A network is said to
functionally cover another network in the strict sense if the
permutations realizable by the second network are realiz-
able by the first network. A network is said to functionally
cover another network in the wide sense if the terminals of
the first network can be relabeled so that it functionally
covers the second network in the strict sense.

To better see the merit of the covering problem, con-
sider omega networks. It may seem intuitive that if s <*.
then an N x N omega network with r x r crossbar switches
as building blocks realizes all the permutations of another
N x N omega network with s x s crossbar switches as build:
ing blocks. However, this is not always the case. Take for
example two 64 x 64 omega networks, §; and 2y, with 8x8
and 4 x 4 crossbar switches as building blocks, respectively-
It is clear that ©; has 2 columns of 8 switches each, 80d
realizes (8!)2*® = (40320)!¢ permutations, noting that tb¢
number of realizable permutations is the number of 5t8t&
of each switch raised to a power equal to the number of
switches [6]. On the other hand, §; has 3 columns of 16
switches each, and realizes (4!)3%1¢ = (13824)!° permut¥
tions, a much smaller set than that of §2,. However, not
every permutation realizable by 2, is realizable by O b
fact, using the characterization of non-conflicting source
destination paths in omega [6), it can be shown that .
paths 0 — 0 and 24 — 5 do not conflict in §2; but d° %
flict in ;. Hence, there exists a permutation that map?
to 0 and 24 to 5, and that is realizable by §2; but not l?y 2
This would complicate the migration of parallel algont
from a parallel system that is 2;-interconnected to ”“ot i
system that is Q,-interconnected. Functional coveriné
of practical interest for upward system compa‘ibili?’ ‘:’;
for network simulation. Most of the proposed MIN s
2 x 2 crossbar switches as building blocks, but can be a;: ;5
generalizable to use switches of larger sizes (6], {13]'
therefore of interest to know whether, and under whst




conditions, the permutations realizable by each of these net-
works remain realizable after the switches are upgraded to
larger sizes, for this allows upward system compatibility. It
is also of interest to know if one MIN functionally covers
another MIN in the wide sense, for then the first network
can simulate the second by relabeling the terminals of the
first network.

This paper will investigate functional covering among
MIN’s of the same terminal size but of differing switch sizes.
Necessary and sufficient conditions for a MIN to function-
ally cover another MIN will be determined. Specifically, it
will be shown that an N x N MIN of r x r switches func-
tionally covers in the strict sense another N x N MIN of
sx & switches if and only if r is a power of s (i.e., r = s/ for
some integer [) and the topology of the second MIN can be
derived from the first MIN by replacing each switch of the
. first MIN by some r x r MIN of s x s switches. Based on

this topological characterization of functional covering, an
optimal algorithm to decide functional covering in the strict
sense will be given. Wide functional covering decision algo-
rithms are harder to develop and are left for future work.

It will also be shown that most existing MIN’s, such
% omega (6], omega inverse, the indirect binary n-cube [8],
the generalized cube network [10], and the baseline network

. [12) will grow inclusively as their switch size grows to a
power. That is, any N x N such network of r x r switches
ﬁmctionally covers in the strict sense any N x N network
o the same type and with s x s switches such that r is a
Power of s,

Finally, network covering among the networks of a
$pecial class of MIN’s, called digit permutation networks
(DPN) [13]), will be studied. In a digit permutation net-
'*ka the inter-column interconnections are digit permu-
'“m that permute digits in a specified manner. All ex-
Ming MIN’s are examples of digit permutation networks.
- ™48 shown in [13), [15] that all N x N digit permuta-
Detwork of the same switch size are widely function-
y.eq‘-li"&lent, that is, every digit permutation network
"12¢8 the same permutations of every other digit permu-
"0 network after relabeling the terminals of either one
e_“"o networks. Combining the fact that all digit per-
8ion networks are widely functionally equivalent and
.t that omega is a digit permutation network that
: mclusively as its switch size grows to a power, it will
- ®ncludeq that every N x N digit permutation network
"Xr switches functionally covers in the wide sense any
\hthttx N digit permutation network of s x s switches
T 18 a power of s. This enables the first network to
w:h‘he second. An optimal O(N log, N) algorithm to
€ terminals of a covering DPN in order to simulate
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a covered DPN will also be given.

The paper is organized as follows. The next section
will review multistage networks and rigorously define the
functional covering relations and related concepts. Section
-2 will establish the necessary and sufficient conditions in
order for a MIN to functionally cover another MIN. The

algorithm to decide strict functional covering will be de-’

veloped in section 3. Section 4 will show that most exist-
ing MIN’s grow inclusively as their switch size grows to a
power. The wide functional covering among digit permuta-
tion networks will be addressed in section 5. Section 6 will
give some concluding remarks and future directions.

§1. Preliminaries and Fundamental Concepts

In this section banyan multistage interconnection net-
works are specified, functional and topological equivalence
relations among them are reviewed, and functional and
topological covering relations will be defined.

Banyan multistage interconnection networks have N
input terminals, N output terminals, and k interconnected
columns of % r X r crossbar switches, where N = r*¥ and
r 2 2. N is called the terminal size of the network. Each
r x r crossbar switch realizes all r! permutations. The in-
terconnection between every two successive columns is a
permutation of Sy = {0,1,...,N — 1}. The connectivity
of these networks is such that they have the unique path
property. That is, between every input terminal 1 and every
output terminal j there is one and only one path, which will
be denoted i — j. The class of these networks is denoted
MIN(r, k). Figure 1 shows two MIN’s. ‘

For ease of reference, the input (i.e., left) terminals of
networks in MIN(r, k) are labeled 0, 1, ..., N —1 from top
to bottom, and so are the output (right) terminals. The
columns are numbered 0, 1, ..., k — 1 from left to right,
and the switches of each column are labeled 0, 1, ..., £ -1
from top to bottom. :

If W is a network of MIN(r, k) and f a permutation
of Sy, f can be viewed as an interconnection and can be
appended to the right end of W, forming a network denoted
W f. Another way of viewing W f is as W except that the
output terminals of W are relabeled by f, that is, output
terminal j is relabeled f(j), for every j = 0,1,...,.N — 1.
Similarly, f can be appended to the left of W forming fW.
Viewed differently, fW is the same as W except that the
input terminals of W are relabeled by f~!, that is, every
input terminal i of W is relabeled f~(i).

The composition of functions is taken here from left to
right, that is, (z)fg = g¢(f(z)). If P(W) denotes the set of
permutations realizable by W, then P(gW f) = {ghf |h €
P(W)}, which clearly follows from the definition of gW f
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Two Banyan Multistage Networks
Figure 1

and the left-to-right view of composition.

Two networks W and W' in MIN(r, k) are strictly func-
tionally equivalent if they realize the same permutations.
The two networks are widely functionally equivalent if they
can be made to realize the same permutations by relabeling
the input and/or output terminals of one of the networks,
that is, if there exist two permutations g and f of Sy such
that gW f{ and W' are strictly functionally equivalent. A
network W in MIN(r, k) is said to functionally cover an-
other network W' in MIN(s, k') in the strict sense if P(W")
1s a subset of P(W). The network W is said to functionally
cover W' in the wide sense if W can be made to function-
ally cover W' in the strict sense by relabeling the input
and/or output terminals of W, that is, if there exist two
permutations g and f of Sy such that gW f realizes all the
permutations of W',

Topological relations are defined next. To this effect,
two simple operations on networks are specified. The first,
called permute-links-within-switch {PL), consists of discon-
necting the links connected to one side (input or output)
of an r x r switch of the network and reconnecting them to
different ports of the same side of the same switch. The sec-
ond, called permute-switches-within-column (PS), consists
of permuting the switches within a column in such a way
that the links wired to a repositioned switch remain wired

to it. Two networks in MIN(r, k) are strictly topologicylly
equivalent if one network can be derived from the other by
& sequence of PL and PS operations, and widely topolog;.
cally equivalent if one can be derived from the other by ,
sequence of PL and PS operations and by relabeling the
input and output terminals. It is clear that if two networks
are strictly (resp. widely) topologically equivalent, they
they must be strictly (resp. widely) functionally equivalen
because the PS and PL operations do not funda:mentauy
alter the structure of the network. -

An N x N network W in MIN(r, k) is said to topolog.
ically cover another N x N network W' in MIN(s, k') in
the strict sense if r is a power of s (i.e., r = s for some
integer l) and the switches of W can be replaced by net.
works in MIN(s, [) such that the resulting network is strictly
topologically equivalent to W'. The network in Figure 1.
(a) topologically covers the network in F igure 1-(b). The
network W is said to topologically cover W' in the wide
sense if W can be made to topologically cover W' in the
strict sense by relabeling the input and/or output termi-
nals of W. As the permutations realizable by any network
in MIN(s,!) form a subset of the r! permutations realiz-
able by an r x r switch, it follows that strict topological
covering implies strict functional covering. Similarly, wide
topological covering implies wide functional covering.

Since the proof of the equivalence between functional
covering and topological covering will proceed by induc-
tion on the number of columns of the covering network, the
class of incomplete MIN’s will be introduced. Define by
IMIN(r, k,t) the class of N x N networks of ¢ columns of
r X 1 switches, where N = r* ¢ < k and each input termi-
nal can reach exactly r' output terminals through uniqué
paths but cannot reach any of the other output terminals
Clearly, IMIN(r, k, k) = MIN(r, k). All the functional and
topological relations can be extended to networks in IMIN'S
with only one addition to strict functional covering as fol
lows. A network W in IMIN(r, k,t) is said to ﬁmctioﬂ“w
cover another network W’ in IMIN(s, k', #') in the strict
sense if P(W') is a subset of P(W) and the set of outpu!
terminals reached from an input terminal in W is the sam¢
set reached in W from the same input terminal. This o
ond condition is equivalent to saying that r!' = s*, and ¥
hence superfluous in the case of MIN’s, that is, when t = ¥
and t' = k'

§2. Equivalence between Functional Covering and
Topological Covering .

In this section it will be shown that a network ”r;
MIN(r, k) functionally covers another network in MIN(5: k
in the strict sense (resp. wide sense) if and only if the
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first network topologically covers the second network in the
strict sense (resp. wide sense). The equivalence in the strict
sense is shown first, and the equivalence in the wide sense
will follow as a corollary.

The proof will proceed by induction on the number of
colurnns. For that reason, the equivalence between strict
functional covering and strict topological covering will be
established for the IMIN classes. A number of supporting
lemmas are shown first.

2.1 Lemma. Let W be in IMIN(r k,l), E; a subset of
switches of some column i of W, and E,4,, ..., E; defined
inductively as follows. E, is the set of switches in column t
that are linked to switchesin E,_y, fort = i+1,i42,...,7.
Then

i) 1B < Bt < . < |,

(i) If |E;| > |Ej|, then |E;| = |Eiy1] = ... = |E;| and the
switches of E;, E,4,, ..., E; along with their interconnec-
tions form an independent n x n subnetwork of W, where
n=r|E;].

Proof. (i) The number of links going out of the switches
of E; is r|E;|. Al these links come into the switches of
Ei41. As the total number of links incoming to the switches
of Eiy is r|Eiyy], it follows that r|E;| < r|Ei4;|, imply-
ing that |E;| < {E;y,]- The remaining inequalities can be
shown similarly.

(W) If |E;| > |E,|, then, using (i), we have |E;| = |Eiy| =
- = |Ej|. This shows that all the links coming to the
witches of E,,, are from the switches of E;, those coming
o the switches of E,iy are from E,;; and so on. Asa
fesult, the switches of E;, Eit1, ..., E; along with their
interconnections form -an n X n subnetwork of W, where

n=r|E’.l_ 1

22 Lemma. Let W be in IMIN(r,k,t) and W' in
MIN(s, k', #) such that W functionally covers W' in the
’flict sense. Let also ay, ag, ..., a, be the input terminals
ed to switch z in column 0 of W, and jo the label of the
t'm"St column in W' in which there exists at least one
""ltch? that is reachable from all a1, a3, ..., a, in W'
benf;~1§j0 < % and hence jy = f{-’-ﬂ-
:r°°f~ To show that % -1 < jo, note that the number of
Put terminals reachable from u in W' is sfo+! on the one
m:i and > |{fl,,a2, ..var}| = r on the other hand. Thus,
ST =sF and, therefore, j, > -’ii - 1.

Tf’ show that j, < %, we will reason by contradiction,
, g that j, > % Let B; be the set of output ter-
s Zof W' reachable from output port ¢ of switch u, for
. 8. Let Ay, Ay, ..., A, be the sets of output ter-
of W that are reachable from output ports 1,2, ...,r

PWitch . respectively, as shown in Figure 2. Let also

O, = U, B; be the set of all the output terminals of W'
reachable from u, I = {j | O, N A; # 8}, and E = UjerA;.
We clearly have O, C E. We will derive next a contrdiction
in each case whether O, = E or O, is proper subset of E.
The approach is to find two paths that conflict in W but
not in W', contradicting that W functionally covers W' in
the strict sense.

Coase 1: O, = E. Then for every j € I, A; C U!_,B;,. We
will show that |B;| < |A;|. To see this, note that |B;| =
sC=do=1 < o'~k-1 Gree w functionally covers W', it
follows that r* = s and r* = s*'. Therefore, -’ii = 3;'-, s =
+# and hence

I_'_ l“i_ —_1 -
st £ 1 podr(tf=4 1) _ -1 ;’r<rt y

As |A;| = r'~}, it follows that |B;| < |A;|. Therefore, A,
cannot be contained in any single B;. Consequently, there
exist 11 and 1 such that 4;NB;, # 8 and 4;N B, # 8. Let
hbein A;NB;, and k' in A;NB;,. Take any input terminal
a; such that the paths from a; to u and from a; to u do
not conflict in W' (such an element must clearly exist). It
can now be seen that the paths a; — h and a; — A' do
not conflict in W' because By, N B;, = @, while these same
paths conflict in W because both & and A’ are in 4; and the
two paths have to go through the output port j of switch
z. This contradicts the fact that W functionally covers W'
in the strict sense.

Case 2: O, is a proper subset of E. Let O = E —- O,
which is non-empty. As Of C E and OF # @, there exists
tg € I such that Of N A4,, # @. Since i; is in I, we have
Ou N 4, # 0. Therefore, there exist two output terminals
h and k' such that h € O, N A;, and k' € OZ N A,,. Here

. too the paths a; — h and a; — k' do not conflict in W'

while these same paths conflict in W because both  and A’
are in A4;, and the two paths have to go through the switch
z. Thus, we have the same contradiction as in the previous
case.

Therefore, the assumption j; > -’ii must be false.

2.3 Lemma. Let W, W' a;, ay, ..., a,, z, jo and u be
as in the previous lemma. Then the following statements
hold:

(i) Let F be the set of switches in column j, of W'
that are reachable from every input terminal in the set
{ai,az,...,a,}, and F; the set of switches in column j, that
are reachable from input terminal a;. Then F, = F for
everyt =1,2,...,r.

(ii) For every two output ports ¢ and d of the switches in
F' there exist two input terminals aj, and a;, such that the
two paths a;, — ¢ and a;, — d going through the first
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o + 1 columns of W' do pot conflict.
(iif) r = glotl,

(iv) The switches that can be traced from a,, aj, ..., a,

rightward to column jo in W' form an r x r independent

subnetwork S in MIN(s, jo + 1).

Proof. (i) Clearly F is a subset of F;. To show that F; is
a subset of F', let p be an arbitrary switch in F}. Let also d
be an output terminal reachable from a; through p in W'.
Since W functionally covers W' in the strict sense, it follows
that the path a; — d is realizable in W. This path must
go through switch z, and thus, a;,a3,...,a, can all reach
d in W. Due to the strict functional covering, d must be
reachable from a;, a3, ...,a, in W' as well. There must then

exist a switch that is reachable from a,,a;,...,a, in W' on .

their way to d. Let v be the leftmost such switch and n
the label of the column of v. Lemma 2.2 applies to v and
J1 a8 it does to u and j,. Therefore, j; = [-’ii — 1]. Hence,
J1 = jo and v is in column jo. As the path a; — d goes
through switch p and switch v in W', and as p and v are in
the same column, we must have p = v. Consequently, p is
reachable from a,, a5, ...,a, in W', implying that p belongs
to F. It follows that F; = F forevery i = 1,2,...,r

ii) We have two cases. The first is when both ¢ and d are
two output ports of one switch. The second is when they

are output ports of two distinct switches.
Case 1: Let v be the switch of which ¢ and d are two output

terminals. Let G, be the set of input terminals of W’ tp,y;

are reachable from input port i of v, for i = 1,2,....s. 4,
v € F, the input terminals ay, a3, ..., a, are reachable from
v in W'. Therefore,

{alsGZV"yar} g U::]Gi' (1)
It is also clear that
IG‘.~| =3 < s"i =7, (2)

It follows from (1) and (2) that the set {a;, a,,...,a,} can-
not be contained in a single G;. Therefore, there exist two
distinct integers i; and 13, and two input terminals a;, and
a;, such that a;, € G,, and a;, € G,,. Consequently, the
paths a;, — ¢ and a,, — d do not conflict in W’.

Case 2: Let v and z be the two switches such that ¢ is an
output port of v and d an output port of z. Let G,,, Gi,,
a;, and a;, be as in the previous case, and H; the set of
input terminals of W' that are reachable from input port
1 of switch z. Here too the a;'s belong to the union of the
Hi’s. Therefore, aj, must belong to some H;,. The paths
aj, — 1) and a;, — i3 do not conflict in W' because if they
did, then a;, would be reachable from input port i; of v and
hence G;, NG, # #, which is impossible because the sets
of input terminals reachable from two distinct input ports
of a switch are disjoint. Consequently, the paths a;, — ¢
and aj, — d do not conflict in W',

(iti) Let m = |F| = |Fi| = s%*!, and ¢;, ¢3,...,cm be the
output ports of the switches in F (also in F}). Let also Ci be
the set of output terminals reachable from ¢; in W', and 4;

be the set of output terminals reachable from output Portj ‘

of switch z in W. We will show that for every j = 1,2,
there exists i = 1,2,...,m such that 4; = C;. Afterwafdﬁv
noting that |A4;| = r*~1, |G| = s¥'~Jo-1 = ;,%:r ‘;:’:7’
and |C;| = |A,|, we will conclude that r = giot1,

As all the switches in column jo reachable from a; in v”
form the set F; = F, it follows that the output ports I®
column j, that are reachable from a; are ¢;, ¢z, ..., Cms 88%
consequently, the set of output terminals reachable fro®
a; in W' is U C;. On the other hand, the set of output
terminals reachable from input terminal a; in W is U,-JA’
As W functionally covers W' in the strict sense, these t¥°
sets must be equal. Therefore, for every j = 1’2“"'."
A; is & subset of UT,C,;. We claim that there must exist
an ¢ such that 4; C C;, for otherwise, there would exist
two distinct integers i, and i, such that A;nC; #0080
A;NC;, # 0. It would follow that there exist two outp*
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terminal labels e € A; N C;; and f € 4; N C;,. Using (i),
we conclude that there exist aj, and a;, such that the paths
aj, — ¢i, and @;, — ¢;, do not conflict in W’. Therefore,
the paths a;, — ¢ and a;, — f, going through c;, and ¢;,,
respectively, do not conflict in W' because C;, NC;, = 8.
However, these same paths conflict in W over output port j
of switch z because both e and f are in A;. Consequently,
there must exist 1 such that A; C C;. Noting that |C;| =
st < r'71 = |A;], it follows that A; = Ci. Using now
the equality between the cardinalities between Aj; and C;
s indicated earlier, we conclude that r = glo+!,

(iv) Let Ey be the set of switches of column 0 of W' such
that each switch is linked to at least one of a;, a3, ..., a,. Let
also E; be the set of switches in column i that are linked
to switches in E;_,, for i = 1,2, ..., jo. After Lemma 2.1-(i)
we have

|Eo| < |Ey| £ ... £ |E;,|. (3)

Every switch of E;, is clearly reachable from one of the
mputs a;, az, ..., a,. Consequently, E;, C U, F; = F, and

hence -
|Ejol < |F| = s%°. (4)

As the number of all input terminals linked to the
switches of E, is equal to s|Eg| on the one hand and
2 a1,y ..a,}| = r, it follows that |Eo| > £ = 2% =
# > |E; |. Thus,

|Eol 2 |Ej|. (5)

The inequalities of (3) and (5) enable us to use Lemma
21-(ii) concluding that the switches of Ey, E | ..., E;, along
¥ith their interconnections form an independent n x n net-
Yotk of W', where n = s|Eo| = s*! = r. As the total
tumber of input terminals linked to the switches of Ej is r,

t follows that these input terminals are ay,as,...,ay, and
e lemma follows. g

“ Lemma.  Let W be in IMIN(r, k,t) and W' in

“ﬁct(syk',t') such that W functionally covers W' in the
- Sense. Let also | = log, r. The leftmost | columns of

“an be regrouped into r x r subnetworks in MIN(s,1).
b emore, the regrouping can be done so that the left-
t'mtercozmections of W and W' (between the input

als and the leftmost column ) become identical, and
ety j and i, the set of output terminals reachable from
PUtport i of switch j of column 0 of W is identical to
5 et of output terminals reachable from output terminal

fe J-th subnetwork in W' (see Fig. 3).

-, g hAfter p-art (iii) of the previous lemma, r is a power
y k’lma hce | is an integer. After part (iv) of that same
"eVery rxr switch u of column 0 of W corresponds to

Oyt

an r x r independent subnetwork in the ! leftmost columns
of W' with the same input terminals as those connected
to switch u. Therefore, the | leftmost columns of W' can
be regrouped so that the r x r subnetwork corresponding
to switch j of column 0 of W is identifiable, positioned
in the j-th position (from the top), and having its inputs
connected to the r input terminals in the same way as the
corresponding input ports of switch j are connected to the
same input terminals. )

Foliowing the same line of reasoning as in the proof of
part (iii) of Lemma 2.3, we conclude that for every output
port i of the switch j of column 0 of W, there exists an
output terminal p; of the corresponding network such that
the set of the labels of the output terminals of W reachable
from 1 is the same as the set of output terminals of W'
reachable from p. Accordingly, for every i, the output p;
of the subnetwork is relabeled i in order for the switch-
subnetwork correspondence to be perfect. j

a //a- » = ! 4
al
a ! (a)
! i
ar ! . \/
' l
P ! !
| Bl ¢ % ]
1 : A |

T ®)

Each shaded box is an rxr network in MIN(s,/)

Figure 3



Now we are in a position to show by induction the
equivalence between strict functional covering and strict
topological covering. ‘

2.5 Theorem. A network W in IMIN(r, k,t) functionally
covers W' in IMIN(s, k', t') in the strict sense if and only
if r is a power of s and W topologically covers W' in the
strict sense.

Proof. We have seen before that topological covering im-
plies functional covering. It remains to show the converse.
Let W be a network in IMIN(r, k, t) that functionally cov-
ers another network W' in IMIN(s, k', #') in the strict sense.
After Lemma 2.3-(iii), r is power of s, that is, there exists
a positive integer I such that r = s'. It will be shown by
induction on t that W topologically covers W’ in the strict
sense.

Basis step: t = 1, that is, W has only one column
of switches. As r!' = s' we have r = s and thus [ =
t'. After Lemma 2.4, the ! leftmost columns of W', which
in this case are all the columns of W', can be regrouped
into 7 x r subnetworks in MIN(s,!) in perfect one-to-one
correspondence with the switches of column 0 of W. It can
be easily seen that by replacing each subnetwork of W' by
an r X r switch, we get a network identical to W.

Induction step: Assume that if a network in IMIN(r, k,
t—1) functionally covers another network in IMIN(s, k', t')
in the strict sense, the former network then topologically
covers the latter in the strict sense. After the previous
lernma, the ! leftmost columns of W’ can be regrouped into
rxr subnetworks in perfect one-to-one correspondence with
the switches of the leftmost column of W such that the left-
most interconnections of both networks become identical.
Do the regrouping as described in the previous lemma, then
delete the leftmost interconnection and these resulting sub-
networks from W', and call the resulting network R’ (Fig.
3-(b)). Delete also the leftmost interconnection and the
leftmost column from W, and call the resulting network
R (Fig. 3-(a)). We will show that R functionally covers
R' in the strict sense by showing that every two source-
destination paths that do not conflict in R’ do not conflict
in R. Afterwards, the inductive hypothesis can be applied.
Let ¢ — d and e — f be two source-destination paths that
do not conflict in R'. We need to show first that these two
paths are realizable in R. The input terminals ¢ and e can
be viewed as outputs of some subnetworks p and ¢ of the
[ leftmost columns of W'. They must also be two output
ports of switches p and ¢ in column 0 of W. Using the
previous lemma again, the output port ¢ reaches the same
output terminals in W and W'. Therefore, ¢ reaches the
output terminal d in W because it does in W'. Similarly,
the output port e reaches the output terminal f in W. It

remains to show that the paths ¢ — d and ¢ — f do poy
conflict in R.

Whether p = ¢ or not, there must clearly exist twg
input terminals o and £ of the subnetworks p and q such
that the paths o — ¢ and § — e do not conflict in the firgt
1 columns of W', Let a and b be the two input terminals of
W' that are linked to a and 8. Then the source-destination
paths @ — d and b — f do not conflict in W'. Conge.
quently, these same paths do not conflict in W. Clearly
these paths must go through the output ports ¢ and d in,
W, respectively. Therefore, the paths ¢ — d and ¢ — f
do not conflict in R. It follows that R functionally covers
R' in the strict sense. Using the inductive hypothesis, we
conclude that R topologically covers R’ in the strict sense.
As the first stage of W topologically covers the portion of
W' that is missing from R, it follows that W topologically
covers W' in the strict sense. §

2.6 Theorem. A network W in IMIN(r, k,t) functionally
covers a network W' in IMIN(s, k',t') in the wide sense if
W topologically covers W' in the wide sense.

Proof. By definition, W topologically covers W' in the
wide sense if and only if W topologically covers W' in the
strict sense after appropriate relabeling of the terminals of
W', that is, by Theorem 2.5, if and only if W functionally
covers W' in the strict sense after appropriate relabeling o
the terminals of W’'. As the latter statement is equivalent
to saying that W functionally covers W' in the wide sens
(by definition), the theorem follows. g

From the previous two theorems, the equivalence b‘“
tween the functionality and topology of the networks i?
MIN(r, k), proved in {14], follows here as a corollary:

2.7 Theorem. Two networks W and W' in IMIN(r,k:t)
are strictly (resp. widely) functionally equivalent if “.Jd
only if they are strictly (resp. widely) topologically €9%"
alent.

Proof. Two networks in IMIN(r, k,t) are strictly (rP
widely) functionally equivalent if and only if each networs
functionally covers the other in the strict (resp. wide) sens®
that is, by the previous two theorems, if and only if
network topologically covers the other in the strict (
wide) sense. As the latter statement is equivalent to suy“lf
that the two networks are strictly (reps. widely) topolof
cally equivalent, the theorem follows. g

resp:

§3. Network Covering Algorithm w0
This section presents an algorithm that tak&il) N

N x N networks W in MIN(r,k) and W' in MIN(s ¥ i

input and decides if W functionally covers W' in the st




sense. The algorithm makes use of the equivalence between
functional covering and topological covering, and also of the
strict functional/topological equivalence algorithm of [14],
» brief description of which will be presented later in this
section.
The covering algorithm checks first if r is & power of
s and halts if not. Otherwise, it breaks the columns of W'
into k consecutive bands of | = log, r columns each, where
the i-th band consists of columns i x I,i x [ +1,i x | +
2,.,(1+1) x 1 ~ 1. Afterwards, it examines each band
to see whether it consists of %’- independent networks in
MIN(s,!). If one of the bands does not, the overall al-
gorithm halts answering negatively; otherwise, it replaces
each subnetwork by an r x r switch. The links coming to
ad going from each of these r x r switches are the same
links coming to the leftmost column and going from the
rightmost column of the corresponding subnetwork. After
this regrouping and subnetwork-to-switch change, call the
resulting network W”. Finally, the algorithm checks if the
petwork W™ is strictly topologically equivalent to the net-
work W, using the network equivalence algorithm in [14).
Clearly, W is strictly topologically equivalent to W” if and
aly if W topologically covers W' in the strict sense, which
m turn is true if and only if W functionally covers W' in
the strict sense,
It remains to see how to decide if a band of ! columns
“usists of subnetworks in MIN(s, 1), and if so, how to re-
" Boup the switches into these independent submetworks.
main idea is to start at the top leftmost switch of
the band, trace rightward the tree of switches to the right-
Mgt column of the band, and denote by F the set of the
i'witCh-leaves. Then trace backward starting from an ar-
iy switch of F, up to the lefmost column of the band,
ting by Eyx; the set of switches reached in that col-
t Afterwards, march rightward from the switches of
! computing Eixiti, Eixit2, - E(is1)xi-1, Where
} 18 the set of switches (in column j) that are linked to
Michesin B, (of column j ~ 1), If |E;| # £ for some j,
Procedure halts the overall algorithm answering that W
l.]°t cover W'. If. on the other hand, all these numbers
:wu‘:hes in each of the columns in the band are equal
+ then these switches form an independent network in
" (3;‘1) and are replaced by an r x r switch. The same
S repeated on the remaining switches of the band
""De: eotire band is regrouped or till the regrouping fails
bere. This procedure is called REGROUP-BAND(:),
! refers to the i-th band that is to be regrouped.

T . ‘
togy be majn steps of the covering algorithm are summa-
below:

291

NETWORK-COVERING(W, W")
begin
if (r is not a power of s) then

return (W does not cover W');
endif

fori=1tok-2do

REGROUP-BAND(:):
endfor
Let- W” be the regrouped W',
EQUIVALENCE(W, W"); / the algorithm of [14} */
if W is equivalent to W” then : '
return(W covers W');
else

return(W does not covers W');
endif

end

Time Complezity: The two major steps of the cover-
ing algorithm are REGROUP-BAND and EQUIVALENCE
procedures. The first procedure iterates % times. To com-
pute the time of each iteration, note that computing the
set F takes 14 s+ s2 4 . 4 ¢/-1 = i"_;ll = O(s'~1) time.
Similarly, E,.; takes O(.s"’). The derivation of E; from
Ej-1 takes O(s|E;_1[) = O(s x £) = O(r). Thus, each
iteration takes O(s'~!) + O(s'~1) + O(! x r) = O( x r).
Consequently, REGROUP-BAND(i) takes O xIxr)=
O(Ix N). 1t follows that the overall regrouping of W' takes
Ok xIxN)=0O(k x N) = O(N log, N). The EQUIVA-
LENCE procedure was shown in [14] to take O(Nlog, N)
time as well. Therefore, the network covering algorithm
takes O(N log, N) time. This algorithm is then optimal up
to a constant factor because W' has ? log, N switches and
Nlog, N + N inter-column links which have to be “looked
at” at least once before W can be decided to cover W',

A Summary of the EQUIVALENCE Algorithm:

Due to the unique path property of MIN ’s, each switch
z of every column ¢ in a network W in MIN(s, ') can be
uniquely identified by a couple (a, b), where a is the min-
imum input terminal label reachable from z, and b is the
minimum output terminal label reachable from z. This
unique switch identification is represented by the triplet
(z,a,b). Define by T;(W) the following set:
Ti(W) = {(z,a,b) | z is & switch in column i of W, a (resp.
b) is the smallest input (resp. output) terminal reachable
from z}. .

Observe that if two networks W and W' in MIN(s, k")
are strictly functionally equivalent (and hence strictly topo-
logically equivalent), and if (a, b} identifies a switch z in col-
umn i of W, then (a,b) must identify a switch y in column
i of W'. Consequently, for all i = 0,1,2.... k' — 1, Ty(W)
can be derived from T;(W') by permuting the first compo-

&



nents of the triplets of T;(W'). The following equivalence
lgorithm can then be easily shown to decide equivalence
correctly:

EQUIVALENCE(W, W')
begin
l.fori=0tok'—1do

compute T;(W) and T;(W');
2. fori=0to k' —1do

determine if T;(W) can be derived from T:(W') by per-
muting the first components of the triplets of T;(W') by
some permutation. If this can be done, permute (or equiv-
alently, relabel) the switches of column i of W' by the same
permutation; else, answer “no” and halt;
3. Let W" be the relabeled W' after step 2. Replace the ter-
minals and the switches of W and W by nodes, and let the
resulting graphs be denoted by G(W) and G(W"), respec-
tively. If G(W) = G(W"), then W and W' are strictly func-
tionally equivalent, else they are not; (Comment: Two
graphs are equal if their sets of nodes are equal and so are
their sets of edges) :
end

The details of the implementation and time complexity
of the 3 steps of the EQUIVALENCE algorithm can be
found in [14).

The network covering algorithm decides strict func-
. tional covering but not wide functional covering. As men-
oned earlier, wide functional covering is difficult to decide
" and will be left for future work. However, wide functional
covering relations in the context of the interesting class of
digit permutation networks turned out to yield to math-
ematical analysis. The next two sections will investigate
covering relations among existing MIN’s and among digit
permutation networks.

§4. Covering Relations Among Existing Networks

An N x N omega network, denoted Q(r,k), has k
columns of r x r switches, where N = r*. The leftmost
interconnection as well as the inter-column interconnec-
tions of Q(r, k) are all the shuffie interconnection S defined
in the system of base r as follows: S(Ik-].‘l.‘k_g...xl.‘ro) =
ZTg.2...21Z9Tk~1, where z4_;...212¢ is an arbitrary k-digit
r-ary label.

Using Theorems 2.5 and 2.6, it can be concluded that
ifan N x N Q(r, k) functionally covers in the strict or wide
sense another N x N (s, k'), then r must be a power of
s. Conversely, it will be shown that if r is a power of s,
then Q(r, k) functionally covers (s, k') in the strict sense.
We say then that the omega network grows inclusively as
its switch size grows to a power.

In [6], Q-realizable permutations are characterized as
-ollows: A permutation f is realizable in §Y(r, k) if and only

if

(Vs,s') (W1 = 0,1,...,k — 1)([s # s' and diy..diy,
diy-iyy] = 8181180 # 83)_,...5})

where s = 3;_,...8180 (in the system of base r), 8 =
Sk—1---8185, d = f(s8) = di_y..dvdo, and d' = f(s =
dy i,

Using this characterization, it can be proved that if r i
a power of s, then every permutation realizable by Q(s, ¥
is also realizable by Q(r, k). . V

It follows that also omega inverse 2-(r, k) function.
ally covers 2-1(s, k') in the strict sense if and only if risa
power of s.

Following the same line of reasoning, it can be shown
that the generalizations of the indirect binary n-cube [§].
the generalized cube network [10}, and the baseline et-
work [12] all grow inclusively as their switch size grows to
a power.

"

§6. Covering Relations among Digit Permutation
Networks

One common feature in the definitions of the existing
multistage interconnection networks is that the intercon-
nections between columns are bit permutations. The well-
known shuffle interconnection is an example. Among the
reasons for using these permutations as interconnections are
their regularity, rich structure and ease of analysis. There-
fore, the MIN’s that have as inter-column interconnections
bit permutations or, in the general case where the switches
are r x r, digit permutations that permute digits of r-ary
labels, are of special interest.

Formally speaking, a permutation f of Sy = {0,1,-~
N —1}, where N = r*, is a digit permutation in the system
of base r if there exists a permutation 7 of S = {0,1,...~
1} such that f(Ik_l...:l:l.'to) = Ta(kel)-Tx(1)Tx(0): whel'e'
Ti-3...T1%p is an arbitrary k-digit r-ary label. An N "A_
digit permutation network (DPN) in MIN(r,k) is a MY
whose interconnections are digit permutations of Sy it the
system of base r. ‘

These digit permutation networks have been Swd’ecf
in [13] and [15]. Among other things, it was shown in '[13’
and (15] that all DPN in MIN(r, k) are widely functio™
ally equivalent. It follows that if W is an N x N DPN ,l,n
MIN(r, k) and W' is another N x N DPN in MIN(s.K'"
then W is widely functionally equivalent to §(r.k} &
W' is widely functionally equivalent to (s, k). Therefor®
W functionally covers W’ in the wide sense if and Onl": de
r, k) functionally covers Q(s, k') (in the strict of ¥
sense), that is, if and only if r is a power of s. b

Furthermore, an optimal terminal relabeling algont )
was given in [13] and [15] that would relabel the ter™
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ey,

s of aay N x N DPN N, in MIN(r, k) to simulate an-
otber N x N N3 DPN in MIN(r, k). That is, the algo-
gthm finds two permutations f and g of Sy such that
fhg is strictly functionally equivalent to N,. The algo-
ritbm takes O(N log, N) time. By calling this algorithm
twice, first on (r, k) and W, and then on €(s,k') and
W', we find four permutations f, g, f' and ¢’ of Sy such
that (. k) and (s, k') are strictly functionally equiva-
kot to fWg and f'W'g’, respectively. If r is a power of s,
Q(r, k) strictly covers (s, k'), and therefore, fWg strictly
overs f'W'g'. Consequently, f'=! fWgg'~! strictly cov-
o W'. That is, W simulates W' by relabeling the input
terminals of W by f~!f’, and the output terminals of W
b 9¢~". Clearly, the time complexity to find the new la-
bl is O(N log, N) + O(N log, N) + O(N), where the last
tem is the time to invert f and ¢’, and also to compose
It and gg'-1. Therefore, the overall time complexity is
O(Nlog, N'), which is optimal for the same reason cited for
the optimality of the covering algorithm.

#. Conclusions

In this paper we have studied functional covering and
topalogical covering relations and the equivalence between
thexe two types of relations among banyan multistage inter-
q'l!inCtion networks. An optimal algorithm to decide strict

covering was also given. Most existing networks

¥ee shown to grow inclusively as their switch size grows to
*Power. Finally, digit permutation networks were shown
®basetionally cover in the wide sense any other digit pert-
*aon networks of the same terminal size if the switch
Sed the former is a perfect power of the switch size of the
" We also described an algorithm to relabel the ter-
A8 of 8 Covering digit permutation network in order to
© 8 covered digit permutation network. Thus, par-
stems that are interconnected with arbitrary digit

Uation networks are upwardly compatible.

ture work includes (1) the development of efficient

- mveﬁ’“s algorithms and (2) the study of functional
— logical relations among networks that differ in ter-
%“:ze 8 well as in switch size. These latter relations

t
\ better for upward system compabitibity as the in-

- cting networks grow in terminal size and switch
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